
Now, since f(x) is convex, f(xk) ≥ f(yk) + ⟨∇f(yk),xk − yk⟩, and multiplying this inequality by
(1− αk) we have:

ϕ∗
k+1 ≥ f(yk)−

α2
k

2γk+1
∥∇f(yk)∥22+(1−αk)⟨∇f(yk),

αkγk
γk+1

(vk−yk)+xk−yk⟩+
αk(1− αk)γkµ

2γk+1
∥yk−vk∥22.

Recall that since ∇f is L-Lipschitz continuous, if we apply Lemma 3.6 to yk and xk+1 = yk −
1
L∇f(yk), we obtain

f(yk)−
1

2L
∥∇f(yk)∥22 ≥ f(xk+1).

Therefore, if we impose
αkγk
γk+1

(vk − yk) + xk − yk = 0

it justifies our choice for yk. And putting

α2
k

2γk+1
=

1

2L

it justifies our choice for αk. Since
αk(1−αk)γkµ

γk+1
≥ 0, we finally obtain ϕ∗

k+1 ≥ f(xk+1) as wished.

The above theorem suggests an algorithm to minimize f ∈ S1,1
µ,L(R

n).
Notice that in the following method, we don’t need the estimated sequence anymore.

Generic Scheme for the Nesterov’s Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, let γ0 > 0 such that L ≥ γ0 ≥ µ ≥ 0.
Set v0 := x0 and k := 0.

Step 1: Compute αk ∈ (0, 1] from the equation Lα2
k = (1− αk)γk + αkµ.

Step 2: Set γk+1 := (1− αk)γk + αkµ, yk :=
αkγkvk+γk+1xk

γk+αkµ
.

Step 3: Compute f(yk) and ∇f(yk).
Step 4: Find xk+1 such that f(xk+1) ≤ f(yk)− 1

2L∥∇f(yk)∥22 using “line search”.

Step 5: Set vk+1 :=
(1−αk)γkvk+αkµyk−αk∇f (yk)

γk+1
, k := k + 1 and go to Step 1.

Theorem 8.6 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). The

generic scheme of the Nesterov’s optimal gradient method generates a sequence {xk}∞k=0 such that

f(xk)− f(x∗) ≤ λk

[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
≤ min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
,

where α−1 = 0 and λk =
k−1∏
i=−1

(1− αi).

In other words, the sequence {f(xk) − f(x∗)}∞k=0 converges R-sublinearly to zero if µ = 0 and
R-linearly to zero if µ > 0.

In addition, if µ > 0,

∥xk − x∗∥2 ≤ 2

µ
λk

[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
≤ 2

µ
min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
.

That is, {∥xk − x∗∥2}∞k=0 converges R-linearly to zero.
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Proof:
The first inequality is obvious from the definitions and Lemma 8.2.

We already know that αk ≥
√

µ
L (k = 0, 1, . . .) (see proof of Theorem 8.5), therefore,

λk =

k−1∏
i=−1

(1− αi) =

k−1∏
i=0

(1− αi) ≤
(
1−

√
µ

L

)k

,

which only has an effect if µ > 0. For the case µ = 0, we already proved in Theorem 8.5.
For µ > 0, using the definition of strong convexity of f(x), we obtain the upper bound for

∥xk − x∗∥22.

Corollary 8.7 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). If

we take γ0 = L, the generic scheme of the Nesterov’s optimal gradient method generates a sequence
{xk}∞k=0 such that

f(xk)− f(x∗) ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

In other words, the sequence {f(xk) − f(x∗)}∞k=0 converges R-sublinearly to zero if µ = 0 and
R-linearly to zero if µ > 0.

In the particular case of µ > 0, we have the following inequality:

∥xk − x∗∥22 ≤
2L

µ
min

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

That means that the sequence {∥xk − x∗∥22}∞k=0 converges R-linearly to zero.

Proof:
The two inequalities follow from the previous theorem, f(x0) − f(x∗) ≤ ⟨∇f(x∗),x0 − x∗⟩ +

L
2 ∥x0 − x∗∥22, and the fact that ∇f(x∗) = 0.

Now, instead of doing a line search at Step 4 of the generic scheme for the Nesterov’s optimal
gradient method, let us consider the constant step size iteration xk+1 := yk − 1

L∇f(yk) (see proof
of Theorem 8.5). From the calculations given at Exercise 1, we arrive to the following simplified
scheme. Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one
iteration.

Constant Step Scheme for the Nesterov’s Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that α0(α0L−µ)
1−α0

> 0, µ ≤ α0(α0L−µ)
1−α0

≤ L,

set y0 := x0 and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).
Step 3: Compute αk+1 ∈ (0, 1) from the equation α2

k+1 = (1− αk+1)α
2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

Observe that the sequences {xk}∞k=0 and {yk}∞k=0 generated by the “Generic Scheme” and the
“Constant Step Scheme” are exactly the same4 if we choose xk+1 := yk − 1

L∇f(yk) in the former
method. Therefore, the result of Theorem 8.6 is still valid for γ0 := α0(α0L− µ)/(1− α0).

4strictly speaking, there is a one index difference between yk’s on these two methods due to the order yk is defined
in the loop.
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Also, if we further impose γ0 = α0(α0L− µ)/(1− α0) = L, we will have the rate of convergence
of Theorem 8.7.

Theorem 8.8 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). The

constant step scheme of the Nesterov’s optimal gradient method generates a sequence {xk}∞k=0 such
that

f(xk)− f(x∗) ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22,

and

∥xk − x∗∥22 ≤
2L

µ
min

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

This means that the method is “optimal” for the class of functions F1,1
L (Rn), and S1,1

µ,L(R
n).

Proof: Since the inequalities above are already shown in the previous Corollary 8.7, it remains
to show the “optimality” of the methods for each class of functions.
For the case µ = 0, the “optimality” of the method is obvious from Theorem 6.1.
Let us analyze the case when µ > 0. From Theorem 6.2, we know that we can find a function

f ∈ S∞,1
µ,L (ℓ2) such that

f(xk)− f(x∗) ≥ µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22 ≥
µ

2
exp

(
− 4k√

L/µ− 1

)
∥x0 − x∗∥22,

where the second inequality follows from ln(a−1
a+1) = − ln(a+1

a−1) ≥ 1− a+1
a−1 = − 2

a−1 , for a ∈ (1,+∞).
Therefore, the worst case bound to find xk such that f(xk)− f(x∗) < ε can not be better than

k >

√
L/µ− 1

4

(
ln

1

ε
+ ln

µ

2
+ 2 ln ∥x0 − x∗∥2

)
.

On the other hand, from the inequality above

f(xk)− f(x∗) ≤ L∥x0 − x∗∥22
(
1−

√
µ

L

)k

≤ L∥x0 − x∗∥22 exp

(
− k√

L/µ

)
,

where the second inequality follows from ln(1 − a) ≤ −a for a < 1. Therefore, we can guarantee
f(xk)− f(x∗) < ε for k >

√
L/µ

(
ln 1

ε + lnL+ 2 ln ∥x0 − x∗∥2
)
.

Now, let us analize the sequences {xk}∞k=0 generated by the method. Again from Theorem 6.2,

we can find a function f ∈ S∞,1
µ,L (ℓ2) such that

∥x− x∗∥22 ≥

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22 ≥ exp

(
− 4k√

L/µ− 1

)
∥x0 − x∗∥22.

Therefore, the worst case bound to find xk such that ∥xk − x∗∥22 < ε can not be better than

k >

√
L/µ− 1

4

(
ln

1

ε
+ 2 ln ∥x0 − x∗∥2

)
.

On the other hand, from the inequality above

∥xk − x∗∥22 ≤
2L

µ

(
1−

√
µ

L

)k

≤ 2L

µ
exp

(
− k√

L/µ

)
.

Therefore, we can guarantee ∥xk − x∗∥22 < ε for k >
√
L/µ

(
ln 1

ε + ln 2L− lnµ+ 2 ln ∥x0 − x∗∥2
)
.

This shows that the constant step scheme for the Nesterov’s gradient method is an optimal
method in terms of complexity for the dominant term ln(ε−1).
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Remark 8.9 Many times, you will find in articles that a method has “optimal rate of convergence”.
In our case, if we apply the constant step scheme for the Nesterov’s optimal gradient method
to minx∈Rn f(x), the number of iterations of this method to obtain f(xk) − f(x∗) < ε is k =

k(L,x0,x
∗, ε) = O

(√
L∥x0−x∗∥22

ε

)
and k = k(L, µ,x0,x

∗, ε) = O
(√

L
µ ln

L∥x0−x∗∥22
ε

)
for f(x) ∈

F1,1
L (Rn) and S1,1

L,µ(R
n), respectively.

It is extremely important to note that this value is the maximum number of iterations in the
worse case scenario.

To obtain the total complexity of the method, you need to multiply the above number by the
number of floating-point operations per iteration. This value also vary according to the method.

8.1 Discussion on Particular Cases

8.1.1 Nesterov’s Optimal Gradient Method for Smooth (Differentiable) Strongly Con-
vex Functions

In this case, we have µ > 0 and choosing γ0 := α0(α0L − µ)/(1 − α0) = µ, we can have further
simplifications:

αk =

√
µ

L
, βk =

√
L−√

µ
√
L+

√
µ
.

Nesterov’s Optimal Gradient Method for Smooth Strongly Convex Function

Step 0: Choose x0 ∈ Rn, set y0 := x0 and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).

Step 3: Set yk+1 := xk+1 +
√
L−√

µ√
L+

√
µ
(xk+1 − xk), k := k + 1 and go to Step 1.

8.1.2 Optimal Gradient Method for Smooth (Differentiable) Convex Functions

In the case µ = 0, there are much simpler variation of the method5.

Nesterov’s Original Optimal Gradient Method for Smooth Convex Function

Step 0: Choose x0 ∈ Rn, set y0 := x0, t0 := 1, and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).

Step 3: tk+1 :=
1 +

√
1 + 4t2k

2
.

Step 4: Set yk+1 := xk+1 +
tk − 1

tk+1
(xk+1 − xk), k := k + 1 and go to Step 1.

Moreover, there is a simpler variant of this method.

Variant of Nesterov’s Optimal Gradient Method for Smooth Convex Function

Step 0: Choose x0 ∈ Rn, set y0 := x0 and k := 1.
Step 1: Compute ∇f(yk−1).
Step 2: Set xk := yk−1 − 1

L∇f(yk−1).

Step 3: Set yk := xk +
k − 1

k + 2
(xk − xk−1), k := k + 1 and go to Step 1.

5Y. Nesterov, “A method for solving the convex programming problem with convergence rate O(1/k2),” Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543–547. It also has a scheme to estimate L in the case this constant in unknown.
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All of above methods generate sequence {xk}∞k=0 such that

f(xk)− f(x∗) ≤ 4L∥x0 − x∗∥22
(k + 1)2

.

for f ∈ F1,1
L (Rn).

Recently, it was shown that an extension of this method guarantee a o(k−2) convergence for
f(xk)− f(x∗) by Attouch and Peypouquet6.

Kim-Fessler’s Optimal Gradient Method for Smooth Convex Function

Step 0: Choose x0 ∈ Rn, set y0 := x0, t0 := 1, and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).

Step 3: tk+1 :=


1+
√

1+4t2k
2 , if k < N − 2

1+
√

1+8t2k
2 , if k = N − 1

.

Step 4: Set yk+1 := xk+1 +
tk − 1

tk+1
(xk+1 − xk) +

tk
tk+1

(xk+1 − yk), k := k + 1 and go to Step 1.

It can be shown that the Kim-Fessler’s method generate sequence {xk}Nk=0 such that

f(xN )− f(x∗) ≤ 2L∥x0 − x∗∥22
(N + 2)2

.

for f ∈ F1,1
L (Rn)7.

8.2 Exercises

1. We want to justify the Constant Step Scheme of the Optimal Gradient Method. This is a
particular case of the General Scheme for the Optimal Gradient Method for the following
choice:

γk+1 := Lα2
k = (1− αk)γk + αkµ

yk =
αkγkvk + γk+1xk

γk + αkµ

xk+1 = yk −
1

L
∇f(yk)

vk+1 =
(1− αk)γkvk + αkµyk − αk∇f(yk)

γk+1
.

(a) Show that vk+1 = xk +
1
αk

(xk+1 − xk).

(b) Show that yk+1 = xk+1 + βk(xk+1 − xk) for βk =
αk+1γk+1(1−αk)
αk(γk+1+αk+1µ)

.

(c) Show that βk = αk(1−αk)
α2
k+αk+1

.

(d) Explain why α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

6Hedy Attouch and Juan Peypouquet, “The rate of convergence of Nesterovs accelerated forward-backward method
is actually faster than 1/k2,” SIAM Journal on Optimization 26 (2016), pp. 1824-1834.

7Donghwan Kim and Jeffrey A. Fessler, “Optimized first-order methods for smooth convex minimization,” Math-
ematical Programming 159 (2016), pp. 81–107.
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