
Theorem 6.2 For any x0 ∈ ℓ2, there exists a function f ∈ S∞,1
µ,L (ℓ2) such that for any gradient

based method of type M, we have

f(xk)− f(x∗) ≥ µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22,

∥xk − x∗∥22 ≥

(√
L/µ− 1√
L/µ+ 1

)2k

∥x0 − x∗∥22,

where x∗ is the minimum of f(x).

Proof:
This type of methods are invariant with respect to a simultaneous shift of all objects in the

space of variables. Therefore, we can assume that x0 = {0}∞i=1.
Consider the following quadratic function

fµ,L(x) =
µ(L/µ− 1)

8

{
[x]21 +

∞∑
i=1

([x]i − [x]i+1)
2 − 2[x]1

}
+

µ

2
∥x∥22.

Then

∇fµ,L(x) =

(
µ(L/µ− 1)

4
A+ µI

)
x− µ(L/µ− 1)

4
e1,

where A is the same tridiagonal matrix defined in Theorem 6.1, but with infinite dimension and
e1 ∈ ℓ2 is a vector where only the first element is one.

After some calculations, we can show that µI ⪯ ∇2f(x) ⪯ LI and therefore, f(x) ∈ S∞,1
µ,L (ℓ2),

due to Corollary 5.22.
The minimal optimal solution of this function is:

[x∗]i := qi =

(√
L/µ− 1√
L/µ+ 1

)i

, i = 1, 2, . . .

Then

∥x0 − x∗∥22 =
∞∑
i=1

[x∗]2i =
∞∑
i=1

q2i =
q2

1− q2
.

Now, since ∇fµ,L(x0) = −µ(L/µ−1)
4 e1, and A is a tridiagonal matrix, [xk]i = 0 for i = k+1, k+

2, . . ., and

∥xk − x∗∥22 ≥
∞∑

i=k+1

[x∗]2i =

∞∑
i=k+1

q2i =
q2(k+1)

1− q2
= q2k∥x0 − x∗∥22.

Finally, the first inequality follows from Corollary 5.17.

7 The Steepest Descent Method for Differentiable Convex and
Differentiable Strongly Convex Functions with Lipschitz Con-
tinuous Gradients

Let us consider the steepest descent method with constant step h.

Theorem 7.1 Let f ∈ F1,1
L (Rn), and 0 < h < 2

L . The steepest descent method with constant step
generates a sequence which converges as follows:

f(xk)− f(x∗) ≤ 2(f(x0)− f(x∗))∥x0 − x∗∥22
2∥x0 − x∗∥22 + kh(2− Lh)(f(x0)− f(x∗))

.
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Proof:
Denote rk = ∥xk − x∗∥2. Then

r2k+1 = ∥xk − x∗ − h∇f(xk)∥22
= r2k − 2h⟨∇f(xk),xk − x∗⟩+ h2∥∇f(xk)∥22
= r2k − 2h⟨∇f(xk)−∇f(x∗),xk − x∗⟩+ h2∥∇f(xk)∥22

≤ r2k − h

(
2

L
− h

)
∥∇f(xk)∥22,

where the last inequality follows from Theorem 5.13.
Therefore, since 0 < h < 2

L , rk+1 < rk < · · · < r0.
Now

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22

= f(xk)− h∥∇f(xk)∥22 +
L

2
∥ − h∇f(xk)∥22 (12)

= f(xk)− ω∥∇f(xk)∥22 < f(xk), (13)

where ω = h(1− L
2 h). Denoting by ∆k = f(xk)− f(x∗), from the convexity of f(x), Theorem 5.7,

and the Cauchy-Schwarz inequality,

∆k = f(xk)− f(x∗) ≤ ⟨∇f(xk),xk − x∗⟩ ≤ ∥∇f(xk)∥2rk ≤ ∥∇f(xk)∥2r0. (14)

Combining (13) and (14),

∆k+1 ≤ ∆k −
ω

r20
∆2

k.

Thus dividing by ∆k∆k+1,
1

∆k+1
≥ 1

∆k
+

ω

r20

∆k

∆k+1
≥ 1

∆k
+

ω

r20
.

since ∆k
∆k+1

≥ 1. Summing up these inequalities we get

1

∆k+1
≥ 1

∆0
+

ω

r20
(k + 1).

To obtain the optimal step size, it is sufficient to find the maximum of the function ω := ω(h) =
h(1− L

2 h) which is h∗ := 1/L.

Corollary 7.2 If f ∈ F1,1
L (Rn), the steepest descent method with constant step h = 1/L yields

f(xk)− f(x∗) ≤ 2L∥x0 − x∗∥22
k + 4

.

That is, {f(xk)}∞k=0 converges R-sublinearly to f(x∗).

Proof:
Left for exercise.

Theorem 7.3 Let f ∈ S1,1
µ,L(R

n), and 0 < h ≤ 2
µ+L . The steepest descent method with constant

step generates a sequence which converges as follows:
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∥xk − x∗∥22 ≤
(
1− 2hµL

µ+ L

)k

∥x0 − x∗∥22,

f(xk)− f(x∗) ≤ L

2

(
1− 2hµL

µ+ L

)k

∥x0 − x∗∥22.

If h = 2
µ+L , then

f(xk)− f(x∗) ≤ L

2

(
L/µ− 1

L/µ+ 1

)2k

∥x0 − x∗∥22,

∥xk − x∗∥2 ≤
(
L/µ− 1

L/µ+ 1

)k

∥x0 − x∗∥2.

That is, {xk}∞k=0 and {f(xk)}∞k=0 converges R-linearly to x∗ and f(x∗), respectively.

Proof:
Denote rk = ∥xk − x∗∥2. Then

r2k+1 = ∥xk − x∗ − h∇f(xk)∥22
= r2k − 2h⟨∇f(xk),xk − x∗⟩+ h2∥∇f(xk)∥22
= r2k − 2h⟨∇f(xk)−∇f(x∗),xk − x∗⟩+ h2∥∇f(xk)∥22

≤ r2k − 2h

(
µL

µ+ L
r2k +

1

µ+ L
∥∇f(xk)−∇f(x∗)∥22

)
+ h2∥∇f(xk)∥22

=

(
1− 2hµL

µ+ L

)
r2k + h

(
h− 2

µ+ L

)
∥∇f(xk)∥22

from Theorems 5.13 and 5.23, and it proves the first two inequalities.
Now, for h = 2/(L+ µ) and again from Theorem 5.13,

f(xk)− f(x∗)− ⟨∇f(x∗),xk − x∗⟩ ≤ L

2
∥xk − x∗∥22

≤ L

2

(
L/µ− 1

L/µ+ 1

)2k

r20.

Theorem 7.4 (Yuan 2010) 2 In the special case of a strongly convex quadratic function f(x) =
1
2⟨Ax,x⟩+ ⟨a,x⟩+ α with λ1(A) = L ≥ λn(A) = µ > 0, we can obtain

∥xk − x∗∥2 ≤

 L/µ− 1

L/µ+
√

µ
2L

k

∥x0 − x∗∥2

for the steepest descent method with “exact line search”.

• Note that the previous result for the steepest descent method, Theorem 4.18, was only a local
result. Theorems 7.1 and 7.3 guarantee that the steepest descent method converges for any
starting point x0 ∈ Rn (due to convexity).

• Comparing the rate of convergence of the steepest descent method for the classes F1,1
L (Rn)

and S1,1
µ,L(R

n) (Theorems 7.1, Corollary 7.2, and 7.3, respectively) with their lower complexity
bounds (Theorems 6.1 and 6.2, respectively), we possible have a huge gap.

2Y.-X. Yuan, “A short note on the Q-linear convergence of the steepest descent method”, Mathematical Program-
ming 123 (2010), pp. 339–343.
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7.1 Exercises

1. Prove Corollary 7.2.

2. Consider a sequence {βk}∞k=0 which converges to zero.

The sequence is said to converge Q-sublinearly if

lim
k→∞

sup

∣∣∣∣βk+1

βk

∣∣∣∣ = 1.

A zero converging sequence {βk}∞k=0 is said to converge R-sublinearly if it is dominated by a
Q-sublinearly converging sequence. That is, if there is a Q-sublinearly converging sequence
{β̂k}∞k=0 such that 0 ≤ |βk| ≤ β̂k.

(a) Give an example of a Q-sublinear converging sequence which is not Q-linear converging
sequence.

(b) Give an example of a R-sublinear converging sequence which is not R-linear converging
sequence.

8 The Optimal Gradient Method (First-Order Method, Acceler-
ated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov3 in 1983. In [Nesterov03], he gives a
reinterpretation of the algorithm and provides another justification of it which attains the same
complexity bound of the original article.

Definition 8.1 A pair of sequences {ϕk(x)}∞k=0 and {λk}∞k=0 with λk ≥ 0 is called an estimate
sequence of the function f(x) if

λk → 0,

and for any x ∈ Rn and any k ≥ 0, we have

ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x).

Lemma 8.2 Given an estimate sequence {ϕk(x)}∞k=0, {λk}∞k=0, and if for some sequence {xk}∞k=0

we have
f(xk) ≤ ϕ∗

k := min
x∈Rn

ϕk(x)

then f(xk)− f(x∗) ≤ λk(ϕ0(x
∗)− f(x∗)) → 0.

Proof:
It follows from the definition.

Lemma 8.3 Assume that

1. f ∈ S1
µ(Rn), possible with µ = 0 (which means that f ∈ F1(Rn)).

2. ϕ0(x) is an arbitrary function on Rn.

3. {yk}∞k=0 is an arbitrary sequence in Rn.

4. {αk}∞k=−1 is an arbitrary sequence such that α−1 = 0, αk ∈ (0, 1] (k = 0, 1, . . .), and

∞∑
k=0

αk =

∞.
3Y. Nesterov, “A method for solving the convex programming problem with convergence rate O(1/k2),” Dokl.

Akad. Nauk SSSR 269 (1983), pp. 543–547.
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