Theorem 6.2 For any xy € (2, there exists a function f € SZOLl (¢%) such that for any gradient
based method of type M, we have
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where z* is the minimum of f(x).

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the
space of variables. Therefore, we can assume that xo = {0}5°;.

Consider the following quadratic function

fuslw) = HEE=D {[mﬁ F3 (e~ () - 2[mh} e
=1

Then I . I )
Vi, () = u(L/p— )Aﬂu- o ML/p—1)
’ 4 4

where A is the same tridiagonal matrix defined in Theorem 6.1, but with infinite dimension and
e € £? is a vector where only the first element is one.

After some calculations, we can show that uI < V2f(x) < LI and therefore, f(x) € SzoLl (%),
due to Corollary 5.22.

The minimal optimal solution of this function is:

[ ]l.—q—<m+l>, =1,2,...

€1,

Then

lao — 3= S =D % = Ly

i=1 i=1 q
Now, since V f, 1 (z0) = —Wq, and A is a tridiagonal matrix, [xg]; =0fori=k+1,k+
2,...,and
2 - 2 - 2i g* ) 2k
lze =23 > Y @ =) o= [z = llwo— 7|3
i=k+1 i=k+1 q

Finally, the first inequality follows from Corollary 5.17. 1

7 The Steepest Descent Method for Differentiable Convex and
Differentiable Strongly Convex Functions with Lipschitz Con-
tinuous Gradients

Let us consider the steepest descent method with constant step h.

Theorem 7.1 Let f € F lL’l(]R"), and 0 < h < % The steepest descent method with constant step
generates a sequence which converges as follows:

) — f(a' 2(f (@) — f(@")|lwo — =" [13
Han) = 1@ < S = B+ kh(2 = LA)(f (o) — (@)
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Proof:
Denote ri = [|@r — *||2. Then
riv = k= o = AV ()3
rie = 20V f (k) @, — &) + b7V f ()13
= i = 20V f(ax) = VF(@"), @z — @) + 12|V f ()13

2
2 h (L — h> IV £ ()3,
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where the last inequality follows from Theorem 5.13.
Therefore, since 0 < h < %, Tl < Tk < -+ < Tp.
Now

fain) < o)+ (VS @), o — @) + 5 fows — il
= flax) WV F@)B+ 2]~ AV F B (12
= f(@x) — @V F(@i)l3 < f(z), (13)

where w = h(1 — %h) Denoting by Ag = f(xr) — f(x*), from the convexity of f(x), Theorem 5.7,
and the Cauchy-Schwarz inequality,

Ap = f(zr) — f(2") <(V (k) e — %) <[V f(@p)ll2rk < [V F(r) 270 (14)

Combining (13) and (14),
w
Ap1 < Ay — SA;.
70

Thus dividing by AkAkJrl,

1 1 ) Ak 1 w
T

Apr1 — Ar 15 Ak Ap 1§

since 2k > 1. Summing up these inequalities we get

Akt
1 1 w
> —+ =((k+1).
Apy1 — Ao 7“8( )
1
To obtain the optimal step size, it is sufficient to find the maximum of the function w := w(h) =
h(1 — Lh) which is h* := 1/L.
Corollary 7.2 If f € F 1L’1(R"), the steepest descent method with constant step h = 1/L yields
_ < 27U 7 N2
flan) — o) < =0
That is, {f(xr)}72, converges R-sublinearly to f(x*).
Proof:
Left for exercise. 1

Theorem 7.3 Let f € Si’i(R"), and 0 < h < MJ%L The steepest descent method with constant
step generates a sequence which converges as follows:
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If h = m, then

L /L . 2k
fa) - @) < £ (PE) oo atlh

L/p—1\"
o=l = (FE7) lan-ala

That is, {x;}72, and {f(xr)}3, converges R-linearly to x* and f(x*), respectively.
Proof:
Denote ri = || — *||2. Then
risn = k=2 = hV f(a)ll3
e = 20(V f (@), xp — ") + B?(|V f (@) 13
= i = 20(V (@) = V@), @ = ") + 1|V f (@)l

2 pL o 1 _ NP 2 2
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B 2hpul\ 5 2 9
= (-2 ) en (n 2 ) IV Al

from Theorems 5.13 and 5.23, and it proves the first two inequalities.
Now, for h = 2/(L + p) and again from Theorem 5.13,

IN

flan) = f(@") = (Vf(@@ )z —2) < Jlay— 23

1
Theorem 7.4 (Yuan 2010) 2 In the special case of a strongly convex quadratic function f(x) =
Az, z) + (a,z) + o with \(A) = L > )\, (A) = > 0, we can obtain

k
L/ip—1

Lip+ /31

for the steepest descent method with “exact line search”.

[E7 R A PR [0 — 272

e Note that the previous result for the steepest descent method, Theorem 4.18, was only a local
result. Theorems 7.1 and 7.3 guarantee that the steepest descent method converges for any
starting point g € R" (due to convexity).

e Comparing the rate of convergence of the steepest descent method for the classes F lL’l(]R”)

and SilL(R”) (Theorems 7.1, Corollary 7.2, and 7.3, respectively) with their lower complexity
bounds (Theorems 6.1 and 6.2, respectively), we possible have a huge gap.

2Y .-X. Yuan, “A short note on the Q-linear convergence of the steepest descent method”, Mathematical Program-
ming 123 (2010), pp. 339-343.
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7.1 Exercises
1. Prove Corollary 7.2.

2. Consider a sequence {3}, which converges to zero.

The sequence is said to converge @Q-sublinearly if

lim sup =1.

k—00

‘Bk—&-l
Bk

A zero converging sequence {fj}32, is said to converge R-sublinearly if it is dominated by a
Q-sublinearly converging sequence. That is, if there is a Q-sublinearly converging sequence
{Br}3, such that 0 < |Bi| < By

(a) Give an example of a Q-sublinear converging sequence which is not Q-linear converging
sequence.

(b) Give an example of a R-sublinear converging sequence which is not R-linear converging
sequence.

8 The Optimal Gradient Method (First-Order Method, Acceler-
ated Gradient Method, Fast Gradient Method)

This algorithm was proposed for the first time by Nesterov? in 1983. In [Nesterov03], he gives a
reinterpretation of the algorithm and provides another justification of it which attains the same
complexity bound of the original article.

Definition 8.1 A pair of sequences {¢y(x)}72, and {A;}72, with Ay > 0 is called an estimate
sequence of the function f(x) if
)\k — 0,

and for any & € R™ and any k > 0, we have
dr(x) < (1= Xp) f() + Apgo().

Lemma 8.2 Given an estimate sequence {¢y()}7, {A\}52, and if for some sequence {x1}72,
we have

f(xr) < ¢p := min ¢y ()

xcR"”
then f(zg) — f(z*) < Ap(do(z*) — f(x*)) — 0.
Proof:
It follows from the definition. I

Lemma 8.3 Assume that
1. fe SL(R"), possible with p = 0 (which means that f € F*(R")).

2. ¢o(x) is an arbitrary function on R".

w

Ayrl, is an arbitrary sequence in R".

W

o
. {ag}P2 _ is an arbitrary sequence such that a—1 =0, o, € (0,1] (k=0,1,...), and Z ap =
k=0

Q.

3Y. Nesterov, “A method for solving the convex programming problem with convergence rate o(1/ kz)ﬂ’ Dokl.
Akad. Nauk SSSR 269 (1983), pp. 543-547.
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