The non-negativity follows from Theorem 5.7.

 $|3 \Rightarrow 6|$ Denote $\boldsymbol{x}_{\alpha} = \alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y}$. From 3,

$$\begin{aligned} f(\boldsymbol{x}) &\geq f(\boldsymbol{x}_{\alpha}) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{\alpha}), (1-\alpha)(\boldsymbol{x}-\boldsymbol{y}) \rangle + \frac{1}{2L} \| \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{\alpha}) \|_{2}^{2} \\ f(\boldsymbol{y}) &\geq f(\boldsymbol{x}_{\alpha}) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{\alpha}), \alpha(\boldsymbol{y}-\boldsymbol{x}) \rangle + \frac{1}{2L} \| \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{\alpha}) \|_{2}^{2}. \end{aligned}$$

Multiplying the first inequality by α , the second by $1 - \alpha$, and summing up, we have

$$\alpha f(\boldsymbol{x}) + (1-\alpha)f(\boldsymbol{y}) \ge f(\boldsymbol{x}_{\alpha}) + \frac{\alpha}{2L} \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{\alpha})\|_{2}^{2} + \frac{1-\alpha}{2L} \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{\alpha})\|_{2}^{2}$$

Finally, using the inequality

$$\alpha \| \boldsymbol{b} - \boldsymbol{d} \|_{2}^{2} + (1 - \alpha) \| \boldsymbol{c} - \boldsymbol{d} \|_{2}^{2} \ge \alpha (1 - \alpha) \| \boldsymbol{b} - \boldsymbol{c} \|_{2}^{2}$$

we have the result.

$$\begin{pmatrix} -\alpha(1-\alpha)\|\boldsymbol{b}-\boldsymbol{c}\|_{2}^{2} \ge -\alpha(1-\alpha)(\|\boldsymbol{b}-\boldsymbol{d}\|_{2}+\|\boldsymbol{c}-\boldsymbol{d}\|)_{2}^{2} \\ \text{Therefore} \\ \alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2}^{2}+(1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2}^{2}-\alpha(1-\alpha)(\|\boldsymbol{b}-\boldsymbol{d}\|_{2}+\|\boldsymbol{c}-\boldsymbol{d}\|_{2})^{2} \\ = (\alpha\|\boldsymbol{b}-\boldsymbol{d}\|_{2}-(1-\alpha)\|\boldsymbol{c}-\boldsymbol{d}\|_{2})^{2} \ge 0 \end{pmatrix}$$

 $6\Rightarrow3$ Dividing both sides by $1-\alpha$ and tending α to 1, we obtain 3. $2\Rightarrow7$ From 2,

$$\begin{split} f(\boldsymbol{x}) &\leq f(\boldsymbol{x}_{\alpha}) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{\alpha}), (1-\alpha)(\boldsymbol{x}-\boldsymbol{y}) \rangle + \frac{L}{2}(1-\alpha)^{2} \|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} \\ f(\boldsymbol{y}) &\leq f(\boldsymbol{x}_{\alpha}) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}_{\alpha}), \alpha(\boldsymbol{y}-\boldsymbol{x}) \rangle + \frac{L}{2} \alpha^{2} \|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} \end{split}$$

Multiplying the first inequality by α , the second by $1 - \alpha$, and summing up, we have

$$\alpha f(\boldsymbol{x}) + (1-\alpha)f(\boldsymbol{y}) \leq f(\boldsymbol{x}_{\alpha}) + \frac{L}{2} \left(\alpha (1-\alpha)^2 + (1-\alpha)\alpha^2 \right) \|\boldsymbol{x} - \boldsymbol{y}\|_2^2.$$

The non-negativity follows from Theorem 5.7.

 $7 \Rightarrow 2$ Dividing both sides by $1 - \alpha$ and tending α to 1, we obtain 2. The non-negativity follows from Theorem 5.7.

5.4 Differentiable Strongly Convex Functions

Definition 5.14 A continuously differentiable function $f(\mathbf{x})$ is called *strongly convex* on \mathbb{R}^n (notation $f \in S^1_{\mu}(\mathbb{R}^n)$) if there exists a constant $\mu > 0$ such that

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{1}{2} \mu \| \boldsymbol{y} - \boldsymbol{x} \|_2^2, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

The constant μ is called the *convexity parameter* of the function f.

Example 5.15 The following functions are some examples of strongly convex functions:

1. $f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{x}\|_2^2$. 2. $f(\boldsymbol{x}) = \alpha + \langle \boldsymbol{a}, \boldsymbol{x} \rangle + \frac{1}{2} \langle \boldsymbol{A} \boldsymbol{x}, \boldsymbol{x} \rangle$, for $\boldsymbol{A} \succeq \mu \boldsymbol{I}, \ \mu > 0$.

- 3. $|x| \in \mathcal{S}_1^1(\{0\})$ (Function |x| is strongly convex only at $0 \in \mathbb{R}$).
- 4. A sum of a convex and a strongly convex functions.
- 5. LASSO (Least Absolute Shrinkage and Selection Operator) with rank(\boldsymbol{A}) = n: $\|\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}\|_2^2 + \lambda \|\boldsymbol{x}\|_1$ and $\lambda > 0$.
- 6. The ℓ_2 -regularized logistic regression function $f(\boldsymbol{x}) = \log(1 + \exp(-\langle \boldsymbol{a}, \boldsymbol{x} \rangle)) + \lambda \|\boldsymbol{x}\|_2^2$, $\lambda > 0$, which is a sum of a convex function and a strongly convex function.

Remark 5.16 Strongly convex functions are different from strictly convex functions. For instance, $f(x) = x^4$ is strictly convex at x = 0 but it is not strongly convex at the same point.

Corollary 5.17 If $f \in S^1_{\mu}(\mathbb{R}^n)$ and $\nabla f(x^*) = 0$, then

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}^*) + \frac{1}{2}\mu \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2, \quad \forall \boldsymbol{x} \in \mathbb{R}^n.$$

Proof:

Left for exercise.

Theorem 5.18 Let f be a continuously differentiable function. The following conditions are equivalent:

1.
$$f \in S^1_{\mu}(\mathbb{R}^n)$$
.
2. $\mu \| \boldsymbol{x} - \boldsymbol{y} \|_2^2 \leq \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$.
3. $f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) + \alpha(1 - \alpha)\frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{y} \|_2^2 \leq \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}), \; \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n, \; \forall \alpha \in [0, 1].$
Proof:

Left for exercise.

Theorem 5.19 If $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$, we have

1. $f(\boldsymbol{y}) \leq f(\boldsymbol{x}) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{1}{2\mu} \| \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}) \|_{2}^{2}, \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n},$ 2. $\langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \leq \frac{1}{\mu} \| \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}) \|_{2}^{2}, \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}.$

Proof:

Let us fix $\boldsymbol{x} \in \mathbb{R}^n$, and define the function $\phi(\boldsymbol{y}) = f(\boldsymbol{y}) - \langle \nabla \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} \rangle$. Clearly, $\phi \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$. Also, one minimal solution is \boldsymbol{x} . Therefore,

$$egin{aligned} \phi(oldsymbol{x}) &= & \min_{oldsymbol{v}\in\mathbb{R}^n} \phi(oldsymbol{v}) \geq & \min_{oldsymbol{v}\in\mathbb{R}^n} \left[\phi(oldsymbol{y}) + \langle oldsymbol{
aligned} \phi(oldsymbol{y}), oldsymbol{v} - oldsymbol{y}
ight|_2^2 \ &= & \phi(oldsymbol{y}) - rac{1}{2\mu} \|oldsymbol{
aligned} \phi(oldsymbol{y})\|_2^2 \end{aligned}$$

as wished. Adding two copies of the 1 with x and y interchanged, we get 2.

Remark 5.20 The converse of Theorem 5.19 is not valid. For instance, consider $f(x_1, x_2) = x_1^2 - x_2^2$, $\mu = 1$. Then the inequalities 1. and 2. are satisfied but $f \notin S^1_{\mu}(\mathbb{R}^2)$ for any $\mu > 0$.

Theorem 5.21 Let f be a twice continuously differentiable function. Then $f \in S^2_{\mu}(\mathbb{R}^n)$ if and only if

$$\nabla^2 \boldsymbol{f}(\boldsymbol{x}) \succeq \mu \boldsymbol{I}, \quad \forall \boldsymbol{x} \in \mathbb{R}^n.$$

Proof: Left for exercise.

Corollary 5.22 Let f be a twice continuously differentiable function. Then $f \in \mathcal{S}^{2,1}_{\mu,L}(\mathbb{R}^n)$ if and only if

$$L\boldsymbol{I} \succeq \boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x}) \succeq \mu \boldsymbol{I}, \quad \forall \boldsymbol{x} \in \mathbb{R}^n.$$

Proof:

Left for exercise.

Theorem 5.23 If $f \in \mathcal{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$, then

$$\frac{\mu L}{\mu + L} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \frac{1}{\mu + L} \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})\|_2^2 \leq \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle, \; \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

Proof:

If $\mu = L$, from Theorem 5.18 and the definition of $\mathcal{C}^{1}_{\mu}(\mathbb{R}^{n})$,

$$egin{aligned} \langle oldsymbol{
aligned} f(oldsymbol{x}) - oldsymbol{
aligned} f(oldsymbol{y}), oldsymbol{x} - oldsymbol{y}
ight
angle & \geq & rac{\mu}{2} \|oldsymbol{x} - oldsymbol{y}\|_2^2 + rac{\mu}{2} \|oldsymbol{x} - oldsymbol{y}\|_2^2 \ & \geq & rac{\mu}{2} \|oldsymbol{x} - oldsymbol{y}\|_2^2 + rac{1}{2\mu} \|oldsymbol{
aligned} f(oldsymbol{x}) - oldsymbol{
aligned} f(oldsymbol{y})\|_2^2 \end{aligned}$$

and the result follows.

If $\mu < L$, let us define $\phi(\boldsymbol{x}) = f(\boldsymbol{x}) - \frac{\mu}{2} \|\boldsymbol{x}\|_2^2$. Then $\nabla \phi(\boldsymbol{x}) = \nabla f(\boldsymbol{x}) - \mu \boldsymbol{x}$ and $\langle \nabla \phi(\boldsymbol{x}) - \nabla \phi(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle = \langle \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle - \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 \leq (L - \mu) \|\boldsymbol{x} - \boldsymbol{y}\|_2^2$ since $f \in \mathcal{C}_L^{1,1}(\mathbb{R}^n)$. Also $\langle \nabla \phi(\boldsymbol{x}) - \nabla \phi(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \geq \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 - \mu \|\boldsymbol{x} - \boldsymbol{y}\|_2^2 = 0$ due to Theorem 5.18. Therefore, from Theorem 5.13, $\phi \in \mathcal{F}_{L-\mu}^{1,1}(\mathbb{R}^n)$.

We have now $\langle \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{1}{L-\mu} \| \nabla \phi(\mathbf{x}) - \nabla \phi(\mathbf{y}) \|_2^2$ from Theorem 5.13. Therefore

$$egin{aligned} \langle oldsymbol{
aligned} f(oldsymbol{x}) - oldsymbol{
aligned} f(oldsymbol{y}), oldsymbol{x} - oldsymbol{y}
ight
angle & \geq & \mu \|oldsymbol{x} - oldsymbol{y}\|_2^2 + rac{1}{L-\mu} \|oldsymbol{
aligned} f(oldsymbol{x}) - oldsymbol{
aligned} f(oldsymbol{y}) - \mu(oldsymbol{x} - oldsymbol{y})\|_2^2 \\ & = & \mu \|oldsymbol{x} - oldsymbol{y}\|_2^2 + rac{1}{L-\mu} \|oldsymbol{
aligned} f(oldsymbol{x}) - oldsymbol{
aligned} f(oldsymbol{y}) - \mu(oldsymbol{x} - oldsymbol{y})\|_2^2 \\ & + rac{\mu^2}{L-\mu} \|oldsymbol{x} - oldsymbol{y}\|_2^2, \end{aligned}$$

and the result follows after some simplifications.

5.5 Extended Real-Valued Functions

Definition 5.24 A function that can take values $-\infty$ or $+\infty$ is called an *extended real-valued* function. That is $f : \mathbb{R}^n \to [-\infty, +\infty]$. The domain of this function is defined by the set dom $(f) = \{x \in \mathbb{R} \mid f(x) < +\infty\}$.

Example 5.25 For an arbitrary set $S \subset \mathbb{R}^n$, the *indicator function* of S is defined by the following extended real-valued function:

$$\delta_S(oldsymbol{x}) = \left\{egin{array}{cc} 0, & oldsymbol{x} \in S, \ +\infty, & oldsymbol{x}
otin S, \end{array}
ight.$$

Definition 5.26 A function $f : \mathbb{R}^n \to [-\infty, +\infty]$ is called *proper* if it does not attain the value $-\infty$ and dom $(f) \neq \emptyset$. This function is called *closed* if its epigraph is a closed set.