
The non-negativity follows from Theorem 5.7.
3⇒6 Denote xα = αx+ (1− α)y. From 3,

f(x) ≥ f(xα) + ⟨∇f(xα), (1− α)(x− y)⟩+ 1

2L
∥∇f(x)−∇f(xα)∥22

f(y) ≥ f(xα) + ⟨∇f(xα), α(y − x)⟩+ 1

2L
∥∇f(y)−∇f(xα)∥22.

Multiplying the first inequality by α, the second by 1− α, and summing up, we have

αf(x) + (1− α)f(y) ≥ f(xα) +
α

2L
∥∇f(x)−∇f(xα)∥22 +

1− α

2L
∥∇f(y)−∇f(xα)∥22.

Finally, using the inequality

α∥b− d∥22 + (1− α)∥c− d∥22 ≥ α(1− α)∥b− c∥22

we have the result.
−α(1− α)∥b− c∥22 ≥ −α(1− α)(∥b− d∥2 + ∥c− d∥)22
Therefore
α∥b− d∥22 + (1− α)∥c− d∥22 − α(1− α)(∥b− d∥2 + ∥c− d∥2)2
= (α∥b− d∥2 − (1− α)∥c− d∥2)2 ≥ 0


6⇒3 Dividing both sides by 1− α and tending α to 1, we obtain 3.

2⇒7 From 2,

f(x) ≤ f(xα) + ⟨∇f(xα), (1− α)(x− y)⟩+ L

2
(1− α)2∥x− y∥22

f(y) ≤ f(xα) + ⟨∇f(xα), α(y − x)⟩+ L

2
α2∥x− y∥22

Multiplying the first inequality by α, the second by 1− α, and summing up, we have

αf(x) + (1− α)f(y) ≤ f(xα) +
L

2

(
α(1− α)2 + (1− α)α2

)
∥x− y∥22.

The non-negativity follows from Theorem 5.7.
7⇒2 Dividing both sides by 1−α and tending α to 1, we obtain 2. The non-negativity follows

from Theorem 5.7.

5.4 Differentiable Strongly Convex Functions

Definition 5.14 A continuously differentiable function f(x) is called strongly convex on Rn (no-
tation f ∈ S1

µ(Rn)) if there exists a constant µ > 0 such that

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ 1

2
µ∥y − x∥22, ∀x,y ∈ Rn.

The constant µ is called the convexity parameter of the function f .

Example 5.15 The following functions are some examples of strongly convex functions:

1. f(x) = 1
2∥x∥

2
2.

2. f(x) = α+ ⟨a,x⟩+ 1
2⟨Ax,x⟩, for A ⪰ µI, µ > 0.
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3. |x| ∈ S1
1({0}) (Function |x| is strongly convex only at 0 ∈ R).

4. A sum of a convex and a strongly convex functions.

5. LASSO (Least Absolute Shrinkage and Selection Operator) with rank(A) = n: ∥Ax− b∥22 +
λ∥x∥1 and λ > 0.

6. The ℓ2-regularized logistic regression function f(x) = log(1 + exp(−⟨a,x⟩)) + λ∥x∥22, λ > 0,
which is a sum of a convex function and a strongly convex function.

Remark 5.16 Strongly convex functions are different from strictly convex functions. For instance,
f(x) = x4 is strictly convex at x = 0 but it is not strongly convex at the same point.

Corollary 5.17 If f ∈ S1
µ(Rn) and ∇f(x∗) = 0, then

f(x) ≥ f(x∗) +
1

2
µ∥x− x∗∥22, ∀x ∈ Rn.

Proof:
Left for exercise.

Theorem 5.18 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. f ∈ S1
µ(Rn).

2. µ∥x− y∥22 ≤ ⟨∇f(x)−∇f(y),x− y⟩, ∀x,y ∈ Rn.

3. f(αx+ (1− α)y) + α(1− α)µ2∥x− y∥22 ≤ αf(x) + (1− α)f(y), ∀x,y ∈ Rn, ∀α ∈ [0, 1].

Proof:
Left for exercise.

Theorem 5.19 If f ∈ S1
µ(Rn), we have

1. f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ 1
2µ∥∇f(x)−∇f(y)∥22, ∀x,y ∈ Rn,

2. ⟨∇f(x)−∇f(y),x− y⟩ ≤ 1
µ∥∇f(x)−∇f(y)∥22, ∀x,y ∈ Rn.

Proof:
Let us fix x ∈ Rn, and define the function ϕ(y) = f(y) − ⟨∇f(x),y⟩. Clearly, ϕ ∈ S1

µ(Rn).
Also, one minimal solution is x. Therefore,

ϕ(x) = min
v∈Rn

ϕ(v) ≥ min
v∈Rn

[
ϕ(y) + ⟨∇ϕ(y),v − y⟩+ µ

2
∥v − y∥22

]
= ϕ(y)− 1

2µ
∥∇ϕ(y)∥22

as wished. Adding two copies of the 1 with x and y interchanged, we get 2.

Remark 5.20 The converse of Theorem 5.19 is not valid. For instance, consider f(x1, x2) = x21−x22,
µ = 1. Then the inequalities 1. and 2. are satisfied but f /∈ S1

µ(R2) for any µ > 0.

Theorem 5.21 Let f be a twice continuously differentiable function. Then f ∈ S2
µ(Rn) if and only

if
∇2f(x) ⪰ µI, ∀x ∈ Rn.
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Proof:
Left for exercise.

Corollary 5.22 Let f be a twice continuously differentiable function. Then f ∈ S2,1
µ,L(R

n) if and
only if

LI ⪰ ∇2f(x) ⪰ µI, ∀x ∈ Rn.

Proof:
Left for exercise.

Theorem 5.23 If f ∈ S1,1
µ,L(R

n), then

µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥∇f(x)−∇f(y)∥22 ≤ ⟨∇f(x)−∇f(y),x− y⟩, ∀x,y ∈ Rn.

Proof:
If µ = L, from Theorem 5.18 and the definition of C1

µ(Rn),

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ

2
∥x− y∥22 +

µ

2
∥x− y∥22

≥ µ

2
∥x− y∥22 +

1

2µ
∥∇f(x)−∇f(y)∥22,

and the result follows.
If µ < L, let us define ϕ(x) = f(x) − µ

2∥x∥
2
2. Then ∇ϕ(x) = ∇f(x) − µx and ⟨∇ϕ(x) −

∇ϕ(y),x−y⟩ = ⟨∇f(x)−∇f(y),x−y⟩−µ∥x−y∥22 ≤ (L−µ)∥x−y∥22 since f ∈ C1,1
L (Rn). Also

⟨∇ϕ(x) − ∇ϕ(y),x − y⟩ ≥ µ∥x − y∥22 − µ∥x − y∥22 = 0 due to Theorem 5.18. Therefore, from
Theorem 5.13, ϕ ∈ F1,1

L−µ(R
n).

We have now ⟨∇ϕ(x)−∇ϕ(y),x−y⟩ ≥ 1
L−µ∥∇ϕ(x)−∇ϕ(y)∥22 from Theorem 5.13. Therefore

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ∥x− y∥22 +
1

L− µ
∥∇f(x)−∇f(y)− µ(x− y)∥22

= µ∥x− y∥22 +
1

L− µ
∥∇f(x)−∇f(y)∥22 −

2µ

L− µ
⟨∇f(x)−∇f(y),x− y⟩

+
µ2

L− µ
∥x− y∥22,

and the result follows after some simplifications.

5.5 Extended Real-Valued Functions

Definition 5.24 A function that can take values −∞ or +∞ is called an extended real-valued
function. That is f : Rn → [−∞,+∞]. The domain of this function is defined by the set dom(f) =
{x ∈ R | f(x) < +∞}.

Example 5.25 For an arbitrary set S ⊂ Rn, the indicator function of S is defined by the following
extended real-valued function:

δS(x) =

{
0, x ∈ S,

+∞, x ̸∈ S.

Definition 5.26 A function f : Rn → [−∞,+∞] is called proper if it does not attain the value
−∞ and dom(f) ̸= ∅. This function is called closed if its epigraph is a closed set.
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