The non-negativity follows from Theorem 5.7.
[3=6] Denote &, = az + (1 — )y. From 3,

fl®) = f(®a) +(Vf(xa), (1-a)(x—y))+ %IIVJ“(%) ~ V(a3

) > f@a)+ (VF@a)aly @) + 5r |V F) ~ Viwa)l

Multiplying the first inequality by «, the second by 1 — «, and summing up, we have

« 1

af(@)+ (1 -a)f(y) > f(xa) + 5 IV f(@) = VF(@a)ll3 +

o IV F@) = V@)

Finally, using the inequality
alb—d| + (1 - a)le —d[3 > a(l —a)|lb - ¢

we have the result.

—a(l-a)[[b—cll3 > —a(l = a)(||b - d|2 + [[c — d||)3
Therefore

alb—dll5+ (1 - a)|lc—d|l3 — a(l —a)(|b—dl2 + [lc — d]]2)?
= (allb—dl2 — (1 —a)c—d[2)* >0

Dividing both sides by 1 — a and tending « to 1, we obtain 3.

m From 2,

f@) < flwa) +(VH@). (- a)e —y)) + 50— afle -y}

) < F@a)+ (Vi@a).aly @)+ 5oz — g3

Multiplying the first inequality by «, the second by 1 — «, and summing up, we have

L

af(@)+(1-a)f(y) < f(®@a) + 5 (a(l = )’ + (1 - a)a®) [l - ylf3.

The non-negativity follows from Theorem 5.7.
Dividing both sides by 1 — a and tending « to 1, we obtain 2. The non-negativity follows
from Theorem 5.7. ]

5.4 Differentiable Strongly Convex Functions

Definition 5.14 A continuously differentiable function f(x) is called strongly convexr on R™ (no-
tation f € S}L(R")) if there exists a constant > 0 such that

1
The constant p is called the convezity parameter of the function f.

Example 5.15 The following functions are some examples of strongly convex functions:

L f(z) = 5ll=l3.

2. f(®) =a+(a,z)+ 3(Az,x), for A= pI, p>0.
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3. |z| € S}({0}) (Function |z| is strongly convex only at 0 € R).
4. A sum of a convex and a strongly convex functions.

5. LASSO (Least Absolute Shrinkage and Selection Operator) with rank(A) = n: ||Ax — b||3 +
A|z][1 and A > 0.

6. The fo-regularized logistic regression function f(z) = log(1 + exp(—(a,x))) + A||z||3, A > 0,
which is a sum of a convex function and a strongly convex function.

Remark 5.16 Strongly convex functions are different from strictly convex functions. For instance,
f(x) = 2% is strictly convex at = = 0 but it is not strongly convex at the same point.

Corollary 5.17 If f € SL(]R”) and V f(x*) = 0, then

. . ,
f(@) 2 f(@") + gulle '}, Vo e R

Proof:
Left for exercise. ]

Theorem 5.18 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. feSLRM.
2. plle—yl3 <(Vf(lx)-Vf(y),z—y), Ve,yeR"
3. flax+ (1 —a)y) + a(l—a)sllz —yl3 < af(z) + (1 —a)f(y), Va,y € R", Va € [0,1].

Proof:
Left for exercise. 1

Theorem 5.19 If f € S}L(R"), we have
L f(y) < f(x) + (VF(x),y — @) + 5, [VF(x) - VF)[3, Yz, y €R",

2. (Vf(z) = VI(y).z —y) < LIIVF(@) - VI(y)l3, Yo,y € R".

Proof:
Let us fix « € R", and define the function ¢(y) = f(y) — (Vf(x),y). Clearly, ¢ € SL(R”).
Also, one minimal solution is . Therefore,

b@) = min o(v) > min |6(y) + (Vo(y),v —y) + vyl

- ¢<y>—;uuv¢<y>||%

as wished. Adding two copies of the 1 with & and y interchanged, we get 2. 1

Remark 5.20 The converse of Theorem 5.19 is not valid. For instance, consider f(z1,z2) = x%—mg,

= 1. Then the inequalities 1. and 2. are satisfied but f ¢ S}L(RQ) for any p > 0.
Theorem 5.21 Let f be a twice continuously differentiable function. Then f € SZ(]R”) if and only
if

V2f(x) = pI, YxeR™
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Proof:
Left for exercise. I

Corollary 5.22 Let f be a twice continuously differentiable function. Then f € SilL(R") if and
only if
LI = V?f(x) = uI, Vx cR"
Proof:
Left for exercise. 1

Theorem 5.23 If f € Si’i(Rn), then

wL

1
ml!fﬂ —yl3+ m\lvf(w) VW3 < (Vf(x) - Vf(y),z-y), Vz,y e R"

Proof:
If 4 = L, from Theorem 5.18 and the definition of CL(R"),

(Vi@)-Vi)z-y) > Sle—ylB+5le -yl

W 1
2 gle—yli+ g IVF@) - Vil

and the result follows.
If 4 < L, let us define ¢(x) = f(x) — §|lz||3. Then Vo(z) = Vf(z) — px and (V(z) —

Vo(y),z—y) = (Vf(@) - Viy),z—y)—plz—y|3 < (L-ulz -yl since f € C;'(R"). Also
(Vo(z) — Vo(y),z —y) > ul|lz — yl|3 — ullz — y||3 = 0 due to Theorem 5.18. Therefore, from
Theorem 5.13, ¢ € F 'L (R").

We have now (Vo (x) -V (y),z—y) > ﬁHV¢(w) —Vo(y)|3 from Theorem 5.13. Therefore

1
(V@) -Viyz-y) > ule-yli+— MHVf(w) ~Vy) -z -y)l3
= pllz—yl3+ Vi) - VI - 1o (Vi) - Vi)~ y)
I 2T T 7 27 1 )
2
L
e B,
and the result follows after some simplifications. 1

5.5 Extended Real-Valued Functions

Definition 5.24 A function that can take values —oo or +oo is called an extended real-valued
function. That is f : R" — [—00, +00]. The domain of this function is defined by the set dom(f) =
{x eR| f(x) < +o0}.

Example 5.25 For an arbitrary set S C R", the indicator function of S is defined by the following

extended real-valued function:
Ss(@) = 0, ze€l,
ST 400, g S

Definition 5.26 A function f : R" — [—o0,+00] is called proper if it does not attain the value
—oo and dom(f) # (). This function is called closed if its epigraph is a closed set.

30



