
Then

x1 − x∗ = x0 − x∗ − [∇2f(x0)]
−1∇f(x0)

= x0 − x∗ − [∇2f(x0)]
−1

∫ 1

0
∇2f(x∗ + τ(x0 − x∗))(x0 − x∗)dτ

= [∇2f(x0)]
−1G0(x0 − x∗)

where G0 =
∫ 1
0 [∇

2f(x0)−∇2f(x∗ + τ(x0 − x∗))]dτ .
Then

∥G0∥2 =

∥∥∥∥∫ 1

0
[∇2f(x0)−∇2f(x∗ + τ(x0 − x∗))]dτ

∥∥∥∥
2

≤
∫ 1

0
∥∇2f(x0)−∇2f(x∗ + τ(x0 − x∗))∥2dτ

≤
∫ 1

0
M |1− τ |r0dτ =

r0
2
M.

From (8),
∥[∇2f(x0)]

−1∥2 ≤ (ℓ−Mr0)
−1.

Then

r1 ≤
Mr20

2(ℓ−Mr0)
.

Since r0 < r̄ = 2ℓ
3M , Mr0

2(ℓ−Mr0)
< 1, and r1 < r0.

One can see now that the same argument is valid for all k’s.

• Comparing this result with the rate of convergence of the steepest descent, we see that the
Newton method is much faster.

• Surprisingly, the region of quadratic convergence of the Newton method is almost the same as
the region of the linear convergence of the gradient method.

∥x0 − x∗∥2 <
2ℓ

M
(steepest descent method) ∥x0 − x∗∥2 <

2ℓ

3M
(Newton method)

• This justifies a standard recommendation to use the steepest descent method only at the
initial stage of the minimization process in order to get close to a local minimum and then
perform the Newton method to refine.

4.4.3 The Conjugate Gradient Methods

The conjugate gradient methods were initially proposed for minimizing convex quadratic functions.
Consider the problem

min
x∈Rn

f(x)

with f(x) = α+ ⟨a,x⟩+ 1
2⟨Ax,x⟩ and A ≻ O. Since its minimal solution is x∗ = −A−1a, we can

rewrite f(x) as:

f(x) = α− ⟨Ax∗,x⟩+ 1

2
⟨Ax,x⟩

= α− 1

2
⟨Ax∗,x∗⟩+ 1

2
⟨A(x− x∗),x− x∗⟩.
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Thus, f(x∗) = α− 1
2⟨Ax∗,x∗⟩ and ∇f(x) = A(x− x∗).

Definition 4.22 Given a starting point x0, the linear Krylov subspaces is defined as

Lk := span{A(x0 − x∗), . . . ,Ak(x0 − x∗)}, k ≥ 1,

where span{a1,a2, . . . ,ap} is the linear subspace of Rn spanned by the vectors a1,a2, . . . ,ap ∈ Rn.

We claim temporarily that the sequence of points generated by a conjugate gradient method is
defined as follows:

xk := argmin{f(x) | x ∈ x0 + Lk}, k ≥ 1.

Lemma 4.23 For any k ≥ 1, Lk = span{∇f(x0), . . . ,∇f(xk−1)}.

Proof:
Let us prove by induction hypothesis.
For k = 1, the statement is true since ∇f(x0) = A(x0 − x∗).
Suppose the claim is true for some k ≥ 1. Then from the definition of the conjugate gradient

method,

xk = x0 +

k∑
i=1

λiA
i(x0 − x∗)

with some λi ∈ R, i = 1, . . . , k. Therefore,

∇f(xk) = A(x0−x∗)+
k∑

i=1

λiA
i+1(x0−x∗) = A(x0−x∗)+

k−1∑
i=1

λiA
i+1(x0−x∗)+λkA

k+1(x0−x∗).

The first two terms of the last expression belongs to Lk from the definition. And then,

span{Lk,∇f(xk)} ⊆ span{Lk,A
k+1(x0 − x∗)} = Lk+1.

There are two ways to show that the equality holds. Assume that Ak+1(x0−x∗) ∈ Lk. Then it
is obvious and Lk = Lk+1. If A

k+1(x0 − x∗) /∈ Lk, the equality holds unless λk = 0. However, this
possibility implies that xk ∈ Lk−1, xk−1 = xk and therefore, Lk−1 = Lk = Lk+1 again.

An alternative way is to use contradiction. If the equality does not hold, ∇f(xk) ∈ Lk implies
Ak+1(x0 − x∗) ∈ Lk, which again implies the equality, or λk = 0, which implies that xk = xk−1

(algorithm terminated).

Lemma 4.24 For any k, ℓ ≥ 0, k ̸= ℓ, we have ⟨∇f(xk),∇f(xℓ)⟩ = 0.

Proof:
Let k ≥ i, and consider

ϕ(λ) = f

x0 +
k∑

j=1

λj∇f(xj−1)

 .

From the previous lemma, there is a λ∗ such that xk = x0 +
∑k

j=1 λ
∗
j∇f(xj−1). Moreover, λ∗ is

the minimum of the function ϕ(λ). Therefore,

∂ϕ

∂λi
(λ∗) = ⟨∇f(xk),∇f(xi−1)⟩ = 0.

Corollary 4.25 The sequence generated by the conjugate gradient method for the convex quadratic
function is finite.
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