lower bound $(L/(2\varepsilon))^n$:	10^{20} calls of the oracle
computational complexity of the oracle	:	at least n arithmetic operations
total complexity	:	10^{21} arithmetic operations
CPU	:	1GHz or 10^9 arithmetic operations per second
total time	:	10^{12} seconds
one year	:	$\leq 3.2 \times 10^7$ seconds
we need	:	≥ 10000 years

- If we change n by n + 1, the # of calls of the oracle is multiplied by 100.
- If we multiply ε by 2, the arithmetic complexity is reduced by 1000.

We know from Corollary 4.5 that the number of iterations of the uniform grid method is at most $(\lfloor L/(2\varepsilon) \rfloor + 2)^n$. Theorem 4.6 showed that any method which uses only function evaluations requires at least $(\lfloor L/(2\varepsilon) \rfloor)^n$ calls to have a better performance than ε . If for instance we take $\varepsilon = \mathcal{O}(L/n)$, these two bounds coincide up to a constant factor. In this sense, the uniform grid method is an optimal method for the class of problems \mathcal{P} .

4.3 Optimality Conditions for Smooth Optimization Problems

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function on \mathbb{R}^n , $\bar{x} \in \mathbb{R}^n$, and s be a direction in \mathbb{R}^n such that $\|s\|_2 = 1$. Consider the local decrease (or increase) of f(x) along s:

$$f'(\bar{\boldsymbol{x}}; \boldsymbol{s}) = \lim_{\alpha \to 0} \frac{1}{\alpha} \left[f(\bar{\boldsymbol{x}} + \alpha \boldsymbol{s}) - f(\bar{\boldsymbol{x}}) \right].$$

Since $f(\bar{\boldsymbol{x}} + \alpha \boldsymbol{s}) - f(\bar{\boldsymbol{x}}) = \alpha \langle \boldsymbol{\nabla} \boldsymbol{f}(\bar{\boldsymbol{x}}), \boldsymbol{s} \rangle + o(\|\alpha \boldsymbol{s}\|_2)$, we have $f'(\bar{\boldsymbol{x}}; \boldsymbol{s}) = \langle \boldsymbol{\nabla} \boldsymbol{f}(\bar{\boldsymbol{x}}), \boldsymbol{s} \rangle$. Using the Cauchy-Schwarz inequality $-\|\boldsymbol{x}\|_2 \|\boldsymbol{y}\|_2 \leq \langle \boldsymbol{x}, \boldsymbol{y} \rangle \leq \|\boldsymbol{x}\|_2 \|\boldsymbol{y}\|_2$,

$$f'(ar{m{x}};m{s}) = \langle m{
abla} f(ar{m{x}}),m{s}
angle \geq - \|m{
abla} f(ar{m{x}})\|_2.$$

Choosing in particular the direction $\bar{s} = -\nabla f(\bar{x}) / \|\nabla f(\bar{x})\|_2$,

$$f'(\bar{x}; \boldsymbol{s}) = -\left\langle \boldsymbol{\nabla} \boldsymbol{f}(\bar{\boldsymbol{x}}), \frac{\boldsymbol{\nabla} \boldsymbol{f}(\bar{\boldsymbol{x}})}{\|\boldsymbol{\nabla} \boldsymbol{f}(\bar{\boldsymbol{x}})\|_2} \right\rangle = -\|\boldsymbol{\nabla} \boldsymbol{f}(\bar{\boldsymbol{x}})\|_2.$$

Thus, the direction $-\nabla f(\bar{x})$ is the direction of the fastest local decrease of f(x) at point \bar{x} .

Theorem 4.8 (First-order necessary optimality condition) Let x^* be a local minimum of the differentiable function f(x). Then

$$\nabla f(x^*) = 0.$$

Proof:

Let \boldsymbol{x}^* be the local minimum of $f(\boldsymbol{x})$. Then, there is r > 0 such that for all \boldsymbol{y} with $\|\boldsymbol{y} - \boldsymbol{x}^*\|_2 \leq r$, $f(\boldsymbol{y}) \geq f(\boldsymbol{x}^*)$.

Since f is differentiable on \mathbb{R}^n ,

$$f(\boldsymbol{y}) = f(\boldsymbol{x}^*) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}^*), \boldsymbol{y} - \boldsymbol{x}^* \rangle + o(\|\boldsymbol{y} - \boldsymbol{x}^*\|_2) \ge f(\boldsymbol{x}^*).$$

Dividing by $\|\boldsymbol{y} - \boldsymbol{x}^*\|_2$, and taking the limit $\boldsymbol{y} \to \boldsymbol{x}^*$,

$$\langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}^*), \boldsymbol{s} \rangle \geq 0, \quad \forall \boldsymbol{s} \in \mathbb{R}^n, \quad \| \boldsymbol{s} \|_2 = 1.$$

Consider the opposite direction -s, and then we conclude that

$$\langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}^*), \boldsymbol{s} \rangle = 0, \quad \forall \boldsymbol{s} \in \mathbb{R}^n, \quad \|\boldsymbol{s}\|_2 = 1$$

Choosing $\boldsymbol{s} = \boldsymbol{e}_i$ (i = 1, 2, ..., n), we conclude that $\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}^*) = 0$.

Remark 4.9 For the first-order sufficient optimality condition, we need convexity for the function $f(\mathbf{x})$.

Corollary 4.10 Let x^* be a local minimum of a differentiable function f(x) subject to linear equality constraints

$$oldsymbol{x} \in \mathcal{L} := \{oldsymbol{x} \in \mathbb{R}^n \mid oldsymbol{A}oldsymbol{x} = oldsymbol{b}\}
eq \emptyset,$$

where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $\boldsymbol{b} \in \mathbb{R}^m$, m < n.

Then, there exists a vector of multipliers $\boldsymbol{\lambda}^* \in \mathbb{R}^m$ such that

$$\nabla f(x^*) = A^T \lambda^*.$$

Proof:

Consider the vectors u_i (i = 1, 2, ..., k) with $k \ge n - m$ which form an orthonormal basis of the null space of A. Then, $x \in \mathcal{L}$ can be represented as

$$oldsymbol{x} = oldsymbol{x}(oldsymbol{t}) := oldsymbol{x}^* + \sum_{i=1}^k t_i oldsymbol{u}_i, \quad oldsymbol{t} \in \mathbb{R}^k.$$

Moreover, the point t = 0 is the local minimal solution of the function $\phi(t) = f(x(t))$.

From Theorem 4.8, $\phi'(\mathbf{0}) = \mathbf{0}$. That is,

$$\frac{d\phi}{dt_i}(\mathbf{0}) = \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}^*), \boldsymbol{u}_i \rangle = 0, \quad i = 1, 2, \dots, k.$$

Now there is $t^* \in \mathbb{R}^k$ and $\lambda^* \in \mathbb{R}^m$ such that

$$\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}^*) = \sum_{i=1}^k t_i^* \boldsymbol{u}_i + \boldsymbol{A}^T \boldsymbol{\lambda}^*.$$

For each i = 1, 2, ..., k,

$$\langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}^*), \boldsymbol{u}_i \rangle = t_i^* = 0.$$

Therefore, we have the result.

The following type of result is called *theorems of the alternative*, and are closed related to duality theory in optimization.

Corollary 4.11 Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $\eta \in \mathbb{R}$, either

$$\begin{cases} \langle \boldsymbol{c}, \boldsymbol{x} \rangle < \eta \\ \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \end{cases} \text{ has a solution } \boldsymbol{x} \in \mathbb{R}^n, \tag{3}$$

or

$$\begin{pmatrix}
\begin{cases}
\langle \boldsymbol{b}, \boldsymbol{\lambda} \rangle > 0 \\
\boldsymbol{A}^T \boldsymbol{\lambda} = \boldsymbol{0} \\
\text{or} \\
\begin{cases}
\langle \boldsymbol{b}, \boldsymbol{\lambda} \rangle \ge \eta \\
\boldsymbol{A}^T \boldsymbol{\lambda} = \boldsymbol{c}
\end{pmatrix}$$
has a solution $\boldsymbol{\lambda} \in \mathbb{R}^m$, (4)

but never both

Proof:

Let us first show that if $\exists x \in \mathbb{R}^n$ satisfying (3), $\exists \lambda \in \mathbb{R}^m$ satisfying (4). Let us assume by contradiction that $\exists \lambda$. Then $\langle \lambda, Ax \rangle = \langle \lambda, b \rangle$ and in the homogeneous case it gives $0 = \langle \lambda, b \rangle > 0$ and in the non-homogeneous case it gives $\eta > \langle c, x \rangle = \langle \lambda, b \rangle \ge \eta$. Both of cases are impossible.

Now, let us assume that $\exists x \in \mathbb{R}^n$ satisfying (3). If additionally $\exists x \in \mathbb{R}^n$ such that Ax = b, it means that the columns of the matrix A do not span the vector b. Therefore, there is $0 \neq \lambda \in \mathbb{R}^m$ which is orthogonal to all of these columns and $\langle b, \lambda \rangle \neq 0$. Selecting the correct sign, we constructed a λ which satisfies the homogeneous system of (4). Now, if for all x such that Ax = b we have $\langle c, x \rangle \geq \eta$, it means that the minimization of the function $f(x) = \langle c, x \rangle$ subject to Ax = b has an optimal solution x^* with $f(x^*) \geq \eta$ (since $\exists x \in \mathbb{R}^n$ such that Ax = b, we can always assume that $m \leq n$ eliminating redundant linear constraints from the system. If n = m and A is nonsingular, take $\lambda = A^{-T}c$. Otherwise, we can eliminate again redundant linear constraint to have n > m). From Corollary 4.10, $\exists \lambda \in \mathbb{R}^m$ such that $A^T\lambda = c$, and $\langle b, \lambda \rangle = \langle x^*, A^T\lambda \rangle = \langle x^*, c \rangle \geq \eta$.

If $f(\boldsymbol{x})$ is twice differentiable at $\bar{\boldsymbol{x}} \in \mathbb{R}^n$, then for $\boldsymbol{y} \in \mathbb{R}^n$, we have

$$oldsymbol{
abla} oldsymbol{f}(oldsymbol{y}) = oldsymbol{
abla} oldsymbol{f}(ar{oldsymbol{x}}) + oldsymbol{
abla}^2 oldsymbol{f}(ar{oldsymbol{x}}) (oldsymbol{y} - ar{oldsymbol{x}}) + oldsymbol{o}(\|oldsymbol{y} - ar{oldsymbol{x}}\|_2),$$

where $\boldsymbol{o}(r)$ is such that $\lim_{r\to 0} \|\boldsymbol{o}(r)\|_2/r = 0$ and $\boldsymbol{o}(0) = 0$.

Theorem 4.12 (Second-order necessary optimality condition) Let x^* be a local minimum of a twice continuously differentiable function f(x). Then

$$\nabla f(x^*) = 0, \quad \nabla^2 f(x^*) \succeq O.$$

Proof:

Since \boldsymbol{x}^* is a local minimum of $f(\boldsymbol{x})$, $\exists r > 0$ such that for all $\boldsymbol{y} \in \mathbb{R}^n$ which satisfy $\|\boldsymbol{y} - \boldsymbol{x}^*\|_2 \leq r$, $f(\boldsymbol{y}) \geq f(\boldsymbol{x}^*)$.

From Theorem 4.8, $\nabla f(x^*) = 0$. Then

$$f(y) = f(x^*) + \frac{1}{2} \langle \nabla^2 f(x^*)(y - x^*), y - x^* \rangle + o(||y - x^*||_2^2) \ge f(x^*).$$

And $\langle \boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x}^*) \boldsymbol{s}, \boldsymbol{s} \rangle \geq 0, \ \forall \boldsymbol{s} \in \mathbb{R}^n \text{ with } \|\boldsymbol{s}\|_2 = 1.$

Theorem 4.13 (Second-order sufficient optimality condition) Let the function f(x) be twice continuously differentiable on \mathbb{R}^n , and let x^* satisfy the following conditions:

$$\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}^*) = 0, \quad \boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x}^*) \succ \boldsymbol{O}.$$

Then, \boldsymbol{x}^* is a strict local minimum of $f(\boldsymbol{x})$.

Proof:

In a small neighborhood of x^* , function $f(x^*)$ can be represented as:

$$f(y) = f(x^*) + \frac{1}{2} \langle \nabla^2 f(x^*)(y - x^*), y - x^* \rangle + o(||y - x^*||_2^2).$$

Since $o(r)/r \to 0$, there is a $\bar{r} > 0$ such that for all $r \in [0, \bar{r}]$,

$$|o(r)| \leq \frac{r}{4}\lambda_1(\boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x}^*)),$$

where $\lambda_1(\nabla^2 f(x^*))$ is the smallest eigenvalue of the symmetric matrix $\nabla^2 f(x^*)$ which is positive. Then

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}^*) + \frac{1}{2}\lambda_1(\boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x}^*)) \|\boldsymbol{y} - \boldsymbol{x}^*\|_2^2 + o(\|\boldsymbol{y} - \boldsymbol{x}^*\|_2^2).$$

W.L.O.G, considering that $\bar{r} < 1$, $|o(r^2)| \le r^2 \lambda_1(\nabla^2 f(x^*))/4$ for $r \in [0, \bar{r}]$, finally we arrived at

$$f(m{y}) \ge f(m{x}^*) + rac{1}{4} \lambda_1(m{
abla}^2 m{f}(m{x}^*)) \|m{y} - m{x}^*\|_2^2 > f(m{x}^*).$$