lower bound (L/(2¢))" : 10?0 calls of the oracle

computational complexity of the oracle : at least n arithmetic operations

total complexity . 10%! arithmetic operations

CPU . 1GHz or 10? arithmetic operations per second
total time . 10" seconds

one year : <3.2x 107 seconds

we need : > 10000 years

e If we change n by n + 1, the # of calls of the oracle is multiplied by 100.

e If we multiply € by 2, the arithmetic complexity is reduced by 1000.

We know from Corollary 4.5 that the number of iterations of the uniform grid method is at
most (|L/(2¢)]| + 2)". Theorem 4.6 showed that any method which uses only function evaluations
requires at least (|L/(2¢)])™ calls to have a better performance than e. If for instance we take
e = O(L/n), these two bounds coincide up to a constant factor. In this sense, the uniform grid
method is an optimal method for the class of problems P.

4.3 Optimality Conditions for Smooth Optimization Problems

Let f: R™ — R be a differentiable function on R™, & € R", and s be a direction in R™ such that
||s|]]2 = 1. Consider the local decrease (or increase) of f(x) along s:

Since f(z + as) — f(&) = a(V f(z), s) + o(||as||2), we have f'(z;s) = (Vf(z), s).
Using the Cauchy-Schwarz inequality —||z|2||y|l2 < (x,y) < ||z|2lly]2,

fl(@:s) = (Vf(x),8) =~ V(@)
Choosing in particular the direction 8 = =V f(Z)/||V f(Z)|2,

e o TE@ N
Fi@is) == (V@) g b ) = IV F @)l

Thus, the direction —V f(&) is the direction of the fastest local decrease of f(x) at point &.

Theorem 4.8 (First-order necessary optimality condition) Let * be a local minimum of
the differentiable function f(x). Then

Vf(x*)=0.
Proof:
Let «* be the local minimum of f(x). Then, there is > 0 such that for all y with ||y —x*|2 < r,
fly) = f(z).

Since f is differentiable on R",
fy) = f(@) +(Vf(x"),y —z") +o(ly — z7[2) = f(=").
Dividing by ||y — x*||2, and taking the limit y — x*,
(Vf(x¥),s) >0, VseR" |[s]z2=1
Consider the opposite direction —s, and then we conclude that
(Vf(x*),s) =0, VseR" |s|2=1

Choosing s =e; (i=1,2,...,n), we conclude that V f(x*) = 0. I
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Remark 4.9 For the first-order sufficient optimality condition, we need convexity for the function

f(@).

Corollary 4.10 Let x* be a local minimum of a differentiable function f(x) subject to linear

equality constraints
xeLl:={xecR"| Az =b} # ),

where A € R"™*" b e R™, m < n.
Then, there exists a vector of multipliers A* € R™ such that

Vi(x*) = ATA"

Proof:
Consider the vectors u; (i = 1,2,...,k) with £ > n —m which form an orthonormal basis of the
null space of A. Then, & € £ can be represented as

k
x=ux(t):=x" + Ztiui, t € R*

=1

Moreover, the point ¢ = 0 is the local minimal solution of the function ¢(t) = f(x(t)).
From Theorem 4.8, ¢/(0) = 0. That is,

d¢

i, (0) =(Vf(z*),u;) =0, i=12,...,k

Now there is t* € R* and A* € R™ such that
k
V(™) =) tiu+ AT
i=1

Foreachi=1,2,...,k,
(Vf(x"),u;) =t; =0.

Therefore, we have the result. 1

The following type of result is called theorems of the alternative, and are closed related to duality
theory in optimization.

Corollary 4.11 Given A € R™*" b e R™, ¢ € R", n € R, either

{ <22>:<bn has a solution & € R", (3)
or
(b,A) > 0
{ ATx=0
or has a solution A € R™, (4)
(b, A) > 1)
{ AT =c

but never both

Proof:

Let us first show that if Jx € R" satisfying (3), AX € R™ satisfying (4). Let us assume by
contradiction that IA. Then (A, Ax) = (A, b) and in the homogeneous case it gives 0 = (A, b) > 0
and in the non-homogeneous case it gives n > (¢, x) = (A, b) > 1. Both of cases are impossible.
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Now, let us assume that Ax € R" satisfying (3). If additionally Az € R™ such that Ax = b, it
means that the columns of the matrix A do not spam the vector b. Therefore, there is 0 # A € R™
which is orthogonal to all of these columns and (b, A) # 0. Selecting the correct sign, we constructed
a X which satisfies the homogeneous system of (4). Now, if for all & such that Az = b we have
(c,x) >, it means that the minimization of the function f(x) = (¢, x) subject to Ax = b has an
optimal solution «* with f(x*) > 7 (since dz € R" such that Az = b, we can always assume that
m < n eliminating redundant linear constraints from the system. If n = m and A is nonsingular,
take A = A~ Zc. Otherwise, we can eliminate again redundant linear constraint to have n > m).
From Corollary 4.10, 3A € R™ such that ATX = ¢, and (b, A) = (z*, ATA) = (x*,¢) > 7. 1

If f(x) is twice differentiable at & € R", then for y € R", we have

Vi(y) = V@) + V@) (y—2)+olly —z|2),

where o(r) is such that lim,_,q ||o(r)||2/r = 0 and o(0) = 0.

Theorem 4.12 (Second-order necessary optimality condition) Let x* be a local minimum
of a twice continuously differentiable function f(x). Then

Vfx*)=0, Vf(z*)=O0.

Proof:
Since x* is a local minimum of f(x), 3r > 0 such that for all y € R"™ which satisfy ||y —a*||2 < r,

fly) = f=z).
From Theorem 4.8, V f(x*) = 0. Then

fy) = f@") + %<V2f(w*)(y —a*),y —x) + oy — z*|3) > f(=").
And (V2f(x*)s,s) >0, Vs € R with ||s|jz = 1. 1

Theorem 4.13 (Second-order sufficient optimality condition) Let the function f(x) be twice
continuously differentiable on R™, and let x* satisfy the following conditions:

Vf(x*) =0, Vif(z*) > O.
Then, x* is a strict local minimum of f(x).

Proof:
In a small neighborhood of *, function f(x*) can be represented as:

fly) = fx") + %<V2f(w*)(y —a’),y —a) +oly — z”|[3).
Since o(r)/r — 0, there is a 7 > 0 such that for all € [0, 7],
o(r)] < TA(V2f ("),

where A\ (V2f(z*)) is the smallest eigenvalue of the symmetric matrix V2 f(x*) which is positive.
Then

fly) = f=") + %Al(VQf(w*))lly — a3+ oy — 2*[13).

W.L.O.G, considering that 7 < 1, |o(r?)| < 72X\ (V2 f(z*))/4 for r € [0,7], finally we arrived at

P> f@) + V@)l — a3 > fla).
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