lower bound $(L /(2 \varepsilon))^{n}$
computational complexity of the oracle
total complexity
CPU
total time
one year
we need
: 10^{20} calls of the oracle
: at least n arithmetic operations
: 10^{21} arithmetic operations
: 1 GHz or 10^{9} arithmetic operations per second
: 10^{12} seconds
: $\leq 3.2 \times 10^{7}$ seconds
$: \geq 10000$ years

- If we change n by $n+1$, the $\#$ of calls of the oracle is multiplied by 100 .
- If we multiply ε by 2 , the arithmetic complexity is reduced by 1000 .

We know from Corollary 4.5 that the number of iterations of the uniform grid method is at most $(\lfloor L /(2 \varepsilon)\rfloor+2)^{n}$. Theorem 4.6 showed that any method which uses only function evaluations requires at least $(\lfloor L /(2 \varepsilon)\rfloor)^{n}$ calls to have a better performance than ε. If for instance we take $\varepsilon=\mathcal{O}(L / n)$, these two bounds coincide up to a constant factor. In this sense, the uniform grid method is an optimal method for the class of problems \mathcal{P}.

4.3 Optimality Conditions for Smooth Optimization Problems

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function on $\mathbb{R}^{n}, \overline{\boldsymbol{x}} \in \mathbb{R}^{n}$, and \boldsymbol{s} be a direction in \mathbb{R}^{n} such that $\|\boldsymbol{s}\|_{2}=1$. Consider the local decrease (or increase) of $f(\boldsymbol{x})$ along \boldsymbol{s} :

$$
f^{\prime}(\overline{\boldsymbol{x}} ; \boldsymbol{s})=\lim _{\alpha \rightarrow 0} \frac{1}{\alpha}[f(\overline{\boldsymbol{x}}+\alpha \boldsymbol{s})-f(\overline{\boldsymbol{x}})]
$$

Since $f(\overline{\boldsymbol{x}}+\alpha \boldsymbol{s})-f(\overline{\boldsymbol{x}})=\alpha\langle\boldsymbol{\nabla} \boldsymbol{f}(\overline{\boldsymbol{x}}), \boldsymbol{s}\rangle+o\left(\|\alpha \boldsymbol{s}\|_{2}\right)$, we have $f^{\prime}(\overline{\boldsymbol{x}} ; \boldsymbol{s})=\langle\boldsymbol{\nabla} \boldsymbol{f}(\overline{\boldsymbol{x}}), \boldsymbol{s}\rangle$.
Using the Cauchy-Schwarz inequality $-\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2} \leq\langle\boldsymbol{x}, \boldsymbol{y}\rangle \leq\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2}$,

$$
f^{\prime}(\overline{\boldsymbol{x}} ; \boldsymbol{s})=\langle\boldsymbol{\nabla} \boldsymbol{f}(\overline{\boldsymbol{x}}), \boldsymbol{s}\rangle \geq-\|\boldsymbol{\nabla} \boldsymbol{f}(\overline{\boldsymbol{x}})\|_{2}
$$

Choosing in particular the direction $\overline{\boldsymbol{s}}=-\boldsymbol{\nabla} \boldsymbol{f}(\overline{\boldsymbol{x}}) /\|\boldsymbol{\nabla} \boldsymbol{f}(\overline{\boldsymbol{x}})\|_{2}$,

$$
f^{\prime}(\bar{x} ; \boldsymbol{s})=-\left\langle\nabla \boldsymbol{f}(\overline{\boldsymbol{x}}), \frac{\boldsymbol{\nabla} \boldsymbol{f}(\overline{\boldsymbol{x}})}{\|\nabla \boldsymbol{f}(\overline{\boldsymbol{x}})\|_{2}}\right\rangle=-\|\nabla \boldsymbol{f}(\overline{\boldsymbol{x}})\|_{2}
$$

Thus, the direction $-\boldsymbol{\nabla} \boldsymbol{f}(\overline{\boldsymbol{x}})$ is the direction of the fastest local decrease of $f(\boldsymbol{x})$ at point $\overline{\boldsymbol{x}}$.
Theorem 4.8 (First-order necessary optimality condition) Let \boldsymbol{x}^{*} be a local minimum of the differentiable function $f(\boldsymbol{x})$. Then

$$
\nabla \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}
$$

Proof:
Let \boldsymbol{x}^{*} be the local minimum of $f(\boldsymbol{x})$. Then, there is $r>0$ such that for all \boldsymbol{y} with $\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2} \leq r$, $f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}^{*}\right)$.

Since f is differentiable on \mathbb{R}^{n},

$$
f(\boldsymbol{y})=f\left(\boldsymbol{x}^{*}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right), \boldsymbol{y}-\boldsymbol{x}^{*}\right\rangle+o\left(\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}\right) \geq f\left(\boldsymbol{x}^{*}\right)
$$

Dividing by $\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}$, and taking the limit $\boldsymbol{y} \rightarrow \boldsymbol{x}^{*}$,

$$
\left\langle\nabla \boldsymbol{f}\left(\boldsymbol{x}^{*}\right), s\right\rangle \geq 0, \quad \forall s \in \mathbb{R}^{n}, \quad\|\boldsymbol{s}\|_{2}=1
$$

Consider the opposite direction $-\boldsymbol{s}$, and then we conclude that

$$
\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right), \boldsymbol{s}\right\rangle=0, \quad \forall \boldsymbol{s} \in \mathbb{R}^{n}, \quad\|\boldsymbol{s}\|_{2}=1
$$

Choosing $\boldsymbol{s}=\boldsymbol{e}_{i} \quad(i=1,2, \ldots, n)$, we conclude that $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=0$.

Remark 4.9 For the first-order sufficient optimality condition, we need convexity for the function $f(\boldsymbol{x})$.

Corollary 4.10 Let \boldsymbol{x}^{*} be a local minimum of a differentiable function $f(\boldsymbol{x})$ subject to linear equality constraints

$$
\boldsymbol{x} \in \mathcal{L}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\} \neq \emptyset
$$

where $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m}, m<n$.
Then, there exists a vector of multipliers $\boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}$ such that

$$
\nabla \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=\boldsymbol{A}^{T} \boldsymbol{\lambda}^{*}
$$

Proof:
Consider the vectors $\boldsymbol{u}_{i}(i=1,2, \ldots, k)$ with $k \geq n-m$ which form an orthonormal basis of the null space of \boldsymbol{A}. Then, $\boldsymbol{x} \in \mathcal{L}$ can be represented as

$$
\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{t}):=\boldsymbol{x}^{*}+\sum_{i=1}^{k} t_{i} \boldsymbol{u}_{i}, \quad \boldsymbol{t} \in \mathbb{R}^{k}
$$

Moreover, the point $\boldsymbol{t}=\mathbf{0}$ is the local minimal solution of the function $\phi(\boldsymbol{t})=f(\boldsymbol{x}(\boldsymbol{t}))$.
From Theorem 4.8, $\phi^{\prime}(\mathbf{0})=\mathbf{0}$. That is,

$$
\frac{d \phi}{d t_{i}}(\mathbf{0})=\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right), \boldsymbol{u}_{i}\right\rangle=0, \quad i=1,2, \ldots, k
$$

Now there is $\boldsymbol{t}^{*} \in \mathbb{R}^{k}$ and $\boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}$ such that

$$
\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=\sum_{i=1}^{k} t_{i}^{*} \boldsymbol{u}_{i}+\boldsymbol{A}^{T} \boldsymbol{\lambda}^{*}
$$

For each $i=1,2, \ldots, k$,

$$
\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right), \boldsymbol{u}_{i}\right\rangle=t_{i}^{*}=0
$$

Therefore, we have the result.
The following type of result is called theorems of the alternative, and are closed related to duality theory in optimization.

Corollary 4.11 Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m}, \boldsymbol{c} \in \mathbb{R}^{n}, \eta \in \mathbb{R}$, either

$$
\left\{\begin{array}{c}
\langle\boldsymbol{c}, \boldsymbol{x}\rangle<\eta \tag{3}\\
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
\end{array} \quad \text { has a solution } \boldsymbol{x} \in \mathbb{R}^{n}\right.
$$

or

$$
\binom{\left\{\begin{array}{c}
\langle\boldsymbol{b}, \boldsymbol{\lambda}\rangle>0 \tag{4}\\
\boldsymbol{A}^{T} \boldsymbol{\lambda}=\mathbf{0} \\
\text { or }
\end{array}\right.}{\left\{\begin{array}{c}
\langle\boldsymbol{b}, \boldsymbol{\lambda}\rangle \geq \eta \\
\boldsymbol{A}^{T} \boldsymbol{\lambda}=\boldsymbol{c}
\end{array}\right.} \text { has a solution } \boldsymbol{\lambda} \in \mathbb{R}^{m},
$$

but never both
Proof:
Let us first show that if $\exists \boldsymbol{x} \in \mathbb{R}^{n}$ satisfying (3), $\boldsymbol{\lambda} \boldsymbol{\lambda} \in \mathbb{R}^{m}$ satisfying (4). Let us assume by contradiction that $\exists \boldsymbol{\lambda}$. Then $\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}\rangle=\langle\boldsymbol{\lambda}, \boldsymbol{b}\rangle$ and in the homogeneous case it gives $0=\langle\boldsymbol{\lambda}, \boldsymbol{b}\rangle>0$ and in the non-homogeneous case it gives $\eta>\langle\boldsymbol{c}, \boldsymbol{x}\rangle=\langle\boldsymbol{\lambda}, \boldsymbol{b}\rangle \geq \eta$. Both of cases are impossible.

Now, let us assume that $\nexists \boldsymbol{x} \in \mathbb{R}^{n}$ satisfying (3). If additionally $\nexists \boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{A x}=\boldsymbol{b}$, it means that the columns of the matrix \boldsymbol{A} do not spam the vector \boldsymbol{b}. Therefore, there is $\mathbf{0} \neq \boldsymbol{\lambda} \in \mathbb{R}^{m}$ which is orthogonal to all of these columns and $\langle\boldsymbol{b}, \boldsymbol{\lambda}\rangle \neq 0$. Selecting the correct sign, we constructed a $\boldsymbol{\lambda}$ which satisfies the homogeneous system of (4). Now, if for all \boldsymbol{x} such that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ we have $\langle\boldsymbol{c}, \boldsymbol{x}\rangle \geq \eta$, it means that the minimization of the function $f(\boldsymbol{x})=\langle\boldsymbol{c}, \boldsymbol{x}\rangle$ subject to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has an optimal solution \boldsymbol{x}^{*} with $f\left(\boldsymbol{x}^{*}\right) \geq \eta$ (since $\exists \boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, we can always assume that $m \leq n$ eliminating redundant linear constraints from the system. If $n=m$ and \boldsymbol{A} is nonsingular, take $\boldsymbol{\lambda}=\boldsymbol{A}^{-T} \boldsymbol{c}$. Otherwise, we can eliminate again redundant linear constraint to have $n>m$). From Corollary 4.10, $\exists \boldsymbol{\lambda} \in \mathbb{R}^{m}$ such that $\boldsymbol{A}^{T} \boldsymbol{\lambda}=\boldsymbol{c}$, and $\langle\boldsymbol{b}, \boldsymbol{\lambda}\rangle=\left\langle\boldsymbol{x}^{*}, \boldsymbol{A}^{T} \boldsymbol{\lambda}\right\rangle=\left\langle\boldsymbol{x}^{*}, \boldsymbol{c}\right\rangle \geq \eta$.

If $f(\boldsymbol{x})$ is twice differentiable at $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$, then for $\boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
\nabla \boldsymbol{f}(\boldsymbol{y})=\nabla \boldsymbol{f}(\overline{\boldsymbol{x}})+\nabla^{2} \boldsymbol{f}(\overline{\boldsymbol{x}})(\boldsymbol{y}-\overline{\boldsymbol{x}})+\boldsymbol{o}\left(\|\boldsymbol{y}-\overline{\boldsymbol{x}}\|_{2}\right)
$$

where $\boldsymbol{o}(r)$ is such that $\lim _{r \rightarrow 0}\|\boldsymbol{o}(r)\|_{2} / r=0$ and $\boldsymbol{o}(0)=0$.
Theorem 4.12 (Second-order necessary optimality condition) Let \boldsymbol{x}^{*} be a local minimum of a twice continuously differentiable function $f(\boldsymbol{x})$. Then

$$
\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=0, \quad \boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right) \succeq \boldsymbol{O}
$$

Proof:
Since \boldsymbol{x}^{*} is a local minimum of $f(\boldsymbol{x}), \exists r>0$ such that for all $\boldsymbol{y} \in \mathbb{R}^{n}$ which satisfy $\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2} \leq r$, $f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}^{*}\right)$.

From Theorem 4.8, $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=0$. Then

$$
f(\boldsymbol{y})=f\left(\boldsymbol{x}^{*}\right)+\frac{1}{2}\left\langle\nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right), \boldsymbol{y}-\boldsymbol{x}^{*}\right\rangle+o\left(\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right) \geq f\left(\boldsymbol{x}^{*}\right)
$$

And $\left\langle\nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right) \boldsymbol{s}, \boldsymbol{s}\right\rangle \geq 0, \forall \boldsymbol{s} \in \mathbb{R}^{n}$ with $\|\boldsymbol{s}\|_{2}=1$.
Theorem 4.13 (Second-order sufficient optimality condition) Let the function $f(\boldsymbol{x})$ be twice continuously differentiable on \mathbb{R}^{n}, and let \boldsymbol{x}^{*} satisfy the following conditions:

$$
\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=0, \quad \nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right) \succ \boldsymbol{O}
$$

Then, \boldsymbol{x}^{*} is a strict local minimum of $f(\boldsymbol{x})$.
Proof:
In a small neighborhood of \boldsymbol{x}^{*}, function $f\left(\boldsymbol{x}^{*}\right)$ can be represented as:

$$
f(\boldsymbol{y})=f\left(\boldsymbol{x}^{*}\right)+\frac{1}{2}\left\langle\nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)\left(\boldsymbol{y}-\boldsymbol{x}^{*}\right), \boldsymbol{y}-\boldsymbol{x}^{*}\right\rangle+o\left(\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right)
$$

Since $o(r) / r \rightarrow 0$, there is a $\bar{r}>0$ such that for all $r \in[0, \bar{r}]$,

$$
|o(r)| \leq \frac{r}{4} \lambda_{1}\left(\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)\right)
$$

where $\lambda_{1}\left(\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)\right)$ is the smallest eigenvalue of the symmetric matrix $\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)$ which is positive. Then

$$
f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}^{*}\right)+\frac{1}{2} \lambda_{1}\left(\nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)\right)\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}+o\left(\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right)
$$

W.L.O.G, considering that $\bar{r}<1,\left|o\left(r^{2}\right)\right| \leq r^{2} \lambda_{1}\left(\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)\right) / 4$ for $r \in[0, \bar{r}]$, finally we arrived at

$$
f(\boldsymbol{y}) \geq f\left(\boldsymbol{x}^{*}\right)+\frac{1}{4} \lambda_{1}\left(\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)\right)\left\|\boldsymbol{y}-\boldsymbol{x}^{*}\right\|_{2}^{2}>f\left(\boldsymbol{x}^{*}\right)
$$

