Practical Parallel Computing (実践的並列コンピューティング) No. 1

Overview of the course & Basic usage of TSUBAME

Toshio Endo

School of Computing & GSIC

endo@is.titech.ac.jp

Purpose of This Course

- To learn parallel computing practically
 - Lecture + Practice
 - We will use the TSUBAME supercomputer from this room

- Plan
 - Introduction (2 classes including today)
 - Lecture about libraries/languages for parallel computing
 - OpenMP (4 classes)
 - MPI (4 classes)
 - GPU programming (4 classes)

Overview and Credits

- Part 1: OpenMP for shared memory parallel programming
- Part 2: MPI for distributed memory parallel programming
- Part 3: GPU programming

Your score will be determined by the followings

- Each part has homework. Reports submission for 2 parts is required
 - The due date will be about two weeks after each part finished
 - (You can submit more)
- Also attendances will be considered

講義の流れと単位認定

- Part 1: OpenMPによる共有メモリ並列プログラミング
- Part 2: MPIによる分散メモリ並列プログラミング
- Part 3: GPUプログラミング

下記により採点・単位認定

- 各パートで課題を出す。2つのパートのレポート提出を必須とする
 - ●〆切は、各パート終了の約2週間後
 - ●(それ以上のレポート提出してもよい)
- 出席点

Required Knowledge

- This course uses C language as basis
 - Pointers, malloc/free
 - Relation between pointers and arrays
 - Knowledge of Pthread, Java threads is useful, but not required
- Basic Linux commands
 - TSUBAME uses Linux OS
 - Is, cp, mkdir, gcc...
 - SSH public key authorization (SSH公開鍵認証)
 - "make" would be helpful

What are supercomputers?

Variety of Supercomputers

What are Supercomputers used for?

Simulations and Big-data analysis are important for area of science, engineering, security...

Difference with "Normal" Computers

- SCs are computers that support much faster and much larger computation than normal computers
 - Speeds are often compared in "Flops": The number of possible add/subtract/multiplication operations per second

~200GFlops (2x10¹¹ times per sec) 12PFlops (1.2x10¹⁶ times per sec)

Cray-1 (1976)
160MFlops

Development of Supercomputers (from www.top500.org)

Performance

Why are Speed & Size Important?

- For simulation & big-data analysis, large number of computations should be done speedily
- ⇒Want to obtain forecast of tomorrow weather by tomorrow (of course!)
- ⇒Want to develop and sell new medicine (than competitors)
- For simulation & big-data analysis, storing large scale data is needed
- ⇒Want to make discovery by comparing mass genome data
- ⇒Want to visualize motion of molecules for every time step

How is Weather Forecast done?

Motions of air, clouds, water are expressed by differential equations

$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{1}{\rho} \nabla p + \nu \Delta \boldsymbol{v} - g \boldsymbol{\hat{z}}$$

But no analytical solution for them, generally

- ⇒ Instead, space and time are discretized
- The space is divided into small grids, expressed as an array
 - ⇒ Each array element should be computed
- The time is divided into time steps
 - ⇒ After a time step is computed, we go to next step, and so on

Why is Speed Important?

- Since we have to compute all points for every time step, computational complexity is
 - O(x-size × y-size × z-size × time-steps)

For better prediction, we need to make grid finer (arrays larger)

If resolution is 10x higher, we need 10000x computations! (10x10x10x10)

→ In future, we are going to 50m grid...

Why are SCs Fast?

- Do SCs have 10THz CPUs? → No!!
- Basic idea: If multiple workers work cooperatively and simultaneously, they can do great tasks than a single worker ⇒Parallel execution

A work is cultivating a large field

Multiple workers are working together → fast!

Hierarchical SC Structure

- System = Many nodes (=computers) +
 External storage
 - Parts are connected by Network

- Node = Several processors (CPU etc.)
 - + Memory + Local storage
 - Parts are connected by PCI-e, QPI, etc.
- Processor = Several cores + Cache

System	540 nodes	12.15PFlops	88000 nodes	11.26PFlops
Node	2 CPUs + 4 GPUs	2 x 425GFlops + 4 x 5300GFlops = 22050GFlops	1 CPU	128GFlops
Processor	CPU: 14 cores GPU: 56 SMXs	CPU: 425GFlops GPU: 5300GFlops	8 cores	128GFlops
Core	CPU core: 1.9GHz x 16 = 30.4GFlops GPU SMX: 1.48GHz x 64 = 94.6GFlops		2GHz x 8 = 16GFlops	

TSUBAME Account

TSUBAME Account Creation

- Please visit https://www.t3.gsic.titech.ac.jp/
 - Click "Getting Accounts" / "アカウント取得方法"
 - Tokyo Tech members can create an account in TokyoTech Portal / 東工大ポータル
 - Basically the account name is same as student ID (like 19M12345...)

Notes after Account Creation

After account creation, do not forget

- (1) To create SSH private key (秘密鍵) and public key (公開鍵) on your PC
 - The method depends on Windows or Mac
- (2) To "register SSH public key" / "SSH公開鍵登録" in the TSUBAME portal
 - If you are not familiar with SSH, Please use web search
 - "SSH public key Windows 10" or "SSH public key Mac"...

Do not mistake a private key for a public key

Login to TSUBAME

After Apr 5 10:00

- Use SSH to login TSUBAME
 - Putty, Teraterm+SSH in Windows
 - Terminal in Mac → ssh command
- Hostname: login.t3.gsic.titech.ac.jp

Since each student logins to TSUBAME from this room,

- We recommend you to bring your laptop PC
 - If it is difficult, please practice in home
- Please install SSH terminal software
 - For Windows PC, "Putty" or "Teraterm+SSH" will work
 - For Mac, "Terminal" is already installed
 - Applications -> Utilities -> Terminal
- Make sure use can connect to Wifi network
 - We recommend "TokyoTech" Wifi network

Today's Homework

Please do the followings by Apr 15 (earlier is better)

- Please make your account on TSUBAME3
- Please send an e-mail to ppcomp@el.gsic.titech.ac.jp

Subject: TSUBAME3 ppcomp account

To: ppcomp@el.gsic.titech.ac.jp

Lab name:

Department name:

School year:

Name:

Your TSUBAME account name:

TSUBAME Group in This Course

- Students of this course will become members of "tga-ppcomp" TSUBAME group
 - Use qsub/qrsh command with "-g tga-ppcomp"

Contact/ Information on the Course

- About this course
 - ppcomp@el.gsic.titech.ac.jp
- Tokyo Tech OCW
 - http://ocw.titech.ac.jp
 - → Search with "Practical Parallel Computing" 「実践的並列コンピューティング」で検索