
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 11

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (1)

Parallel Programming using
CPUs
 Both OpenMP and MPI uses multiple processor

cores in CPUs
 OpenMP: cores in a single node
 MPI: we can use cores in multiple nodes

2

CPU
cores

Memory

OpenMP MPI

In Part 3, we use other processors than CPUs GPU

2010/12/06

GPU Computing
 Graphic processing units (GPU) have been originally used for computing

graphics (including video games)
 A high performance GPU has many cores

 CPU: 2 to 32 cores. GPU: >1000 cores
 The concept is called GPGPU (General-Purpose computing on GPU)

 GPGPU became popular since NVIDIA invented CUDA language in 2007
 Recently it is popular for deep learning

TSUBAME3
node

A Compute Node with GPU

 A GPU has its distinct memory (device memory)
 CPU memory is called host memory

 Many cores in a GPU share its device memory
4

CPU

Host memory

GPU

Device memory Device memory

GPU

Characteristics of GPUs

Comparing Xeon E5-2680 v4 (TSUBAME3’s CPU) and
Tesla P100 (TSUBAME3’s GPU)

1 CPU 1 GPU
Number of cores 14 cores

(28 cores with 2CPUs)
3584 CUDA cores
(=64 x 56SMXs)

Clock Frequency 2.4GHz 1.48GHz

Peak Computation
Speed (double precision)

425GFlops 5300GFlops

Memory Capacity 128GB
(256GB shared by 2CPUs)

16GB

<<<

<<
>

>>

A GPU is a board or a card attached to computers
 It cannot work alone. Driven by CPUs
 Different programming methods

Programming Environments
for NVIDIA GPUs
 CUDA

 The most popular environment, designed by NVIDIA
 C/Fortran + new syntaxes
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

 OpenACC Today’s topic
 C/Fortran + directives (#pragma acc …), Easier programming
 I recommend PGI compiler

 module load pgi
 pgcc –acc … XXX.c

 Basically for data parallel programs with for-loops
 OpenMP 4.5, OpenCL…

6

An OpenACC Program Look Like

7

int a[100], b[100], c[100];
int i;

#pragma acc data copy(a,b,c)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}

Examples of OpenACC
directives

In this case, each directive has
an effect on the following
block/sentence

C/C++/Fortran + directives

8

“mm” sample: Matrix Multiply

A: a (m×k) matrix, B: a (k×n)
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format

 Execution: ./mm [m] [n] [k]

CA

B

m

k

k

n

Available at ~endo-t-ac/ppcomp/19/mm-acc/

9

Compiling OpenACC Programs
Not so popular as OpenMP, unfortunately
 PGI compiler on TSUBAME3.0

 module load pgi, and then use pgcc
 Use -acc option in compiling and linking
 -Minfo option outputs many information on parallelization

 Also very new gcc (gcc 6 or later) supports OpenACC

Example of output
:

47, Generating copyin(A[:m*k])
Generating copy(C[:m*n])
Generating copyin(B[:k*n])

50, Loop is parallelizable
:

#!/bin/sh
#$ -cwd
#$ -l s_core=1
#$ -l h_rt=00:10:00

./mm 1000 1000 1000

Submitting a GPU Job
 OpenACC version

 see mm-acc directory
 To use a GPU, use q_node type
 (h_node or f_node types for multi-GPU)

10

#!/bin/sh
#$ -cwd
#$ -l q_node=1
#$ -l h_rt=00:10:00

./mm 1000 1000 1000

mm-acc/job.sh

 Job submission
 qsub job.sh

resource type
and count

maximum
run time

 Sequential version
 see mm directory

mm/job.sh

11

Kernel Region in OpenACC

int main()
{

A;
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;
E;

}

A sentence/block immediately after #pragma acc kernels
is called a kernel region, executed on GPU
 We don’t need to specify number of threads (we also can)
 Also #pragma acc parallel works similarly (not same)

A

B

C

D

E

Kernel
region
on GPU

CPU GPU

Data Movement between CPU
and GPU
 We need to move data between CPU and GPU

 Host (CPU) memory and Device (GPU) memory are distinct, like
distributed memory

 Threads on a GPU share the device memory

12

Host memory

CPU GPU

Device memory

PCI Express
link (16GB/s)

For this purpose, we use #pragma acc data directive
 Data region

Data Directives to use GPU
memory

 Data region may contain 1 or more kernel regions
 Data movement occurs at beginning and end of data region 13

int main()
{

A;
#pragma acc data copy(x,y)

{
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;

}
E;

}

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Data
Region

Kernel
regions

Data Directive
 Arrays:

 we can write array names if the
sizes are statically declared
entire array is copied

 Pointers as arrays:
cf) b [0 : 20]

 Partial copying like b[10:5] or
a[4:4] are ok

14

int x;
float a[10];
double *b = (double*)

malloc(20*sizeof(double));
:

#pragma acc data copy(x, a, b[0:20])
:start index number of elements

 Directions of copying
 … data copyin(…): Copy CPUGPU at the begininng
 … data copyout(…): Copy GPUCPU at the end
 … data copy(…): Do both
Optimization of data movement will help speedup

Loop Directive
 #pragma acc loop must be

included in “acc kernels” or
“acc parallel”

 Directly followed by “for”
loop
 The loop must have a loop

counter, as in OpenMP
 List/tree traversal is NG

15

int a[100], b[100], c[100];
int i;

#pragma acc data copy(a,b,c)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}

• … loop independent: Iterations are done in parallel by multiple
GPU threads

• … loop seq: Done sequentially. Not be parallelized
• … loop: Compiler decides

OpenACC Version of mm
(mm-acc/mm.c)

 Each element in C can be computed in parallel (i-loop, j-loop)
 Computation of a single C element is sequential (L-loop)

 mm-acc/mm.c includes JLI version (matmulJLI()) and JIL version
(matmulJIL())
 Both have same computation amount. How are speeds?

16

#pragma acc data copyin(A[0:m*k],B[0:k*n]),copy(C[0:m*n])
#pragma acc kernels
#pragma acc loop independent
for (j = 0; j < n; j++) {

#pragma acc loop independent
for (i = 0; i < m; i++) {

#pragma acc loop seq
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each column in C

←For each row in C

←For dot product

We can omit CPUGPU copy of A,B

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

17

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion
[M2] mm
[M3] free

[G1] diffusion
[G2] mm
[G3] free

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

18

Assignments in GPU Part (1)
Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

Optional：
 To make array sizes variable parameters
 To compare OpenACC vs CUDA
 To improve performance further
 Different assignment of threads and elements (CUDA)
 Different num_gang, vector_length, etc (OpenACC)
 etc.

19

Assignments in GPU Part(2)
[G2] Evaluate speed of “mm-acc” or “mm-cuda” in

detail
 Use various matrices sizes
 Evaluate effects of data transfer cost
 Compare with CPU (OpenMP) version
Optional：
 To evaluate both mm-acc and mm-cuda
 To change/improve the program
 To use different loop order (matmulJLI() and matmulJIL()

iin mm-cuda)
 To use different assignment of threads and elements
 etc

20

Assignments in GPU Part (3)
[G3] (Freestyle) Parallelize any program by OpenACC

or CUDA.

 cf) A problem related to your research
 “pi” sample?
 Using reduction on OpenACC/CUDA is not easy

 “sort” sample on GPU?
 Other algorithms than quick sort may be appropriate

 More challenging one for parallelization is better
 cf) Partial computations have dependency with each other

21

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

22

Next Class:
 GPU Programming (2)
 Improving data copy
 Improving loop parallelization

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

23

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 11
	Parallel Programming using CPUs
	GPU Computing
	A Compute Node with GPU
	Characteristics of GPUs
	Programming Environments for NVIDIA GPUs
	An OpenACC Program Look Like
	“mm” sample: Matrix Multiply
	Compiling OpenACC Programs
	Submitting a GPU Job
	Kernel Region in OpenACC
	Data Movement between CPU and GPU
	Data Directives to use GPU memory
	Data Directive
	Loop Directive
	OpenACC Version of mm�(mm-acc/mm.c)
	Assignments in this Course
	Assignments in GPU Part (1)
	Assignments in GPU Part(2)
	Assignments in GPU Part (3)
	Notes in Submission
	Next Class:
	Information

