2019

Practical Parallel Computing
(EERAH o E1—T12))
No. 11

GPU Programming (1)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Parallel Programming using
CPUs

e Both OpenMP and MPI uses multiple processor
cores in CPUs
e OpenMP: cores in a single node
e MPI: we can use cores in multiple nodes

CPU
cores

A R R p——_-

In Part 3, we use other processors than CPUs - GPU

GPU Computing

e Graphic processing units (GPU) have been originally used for computing
graphics (including video games)

e A high performance GPU has many cores
e CPU: 2to 32 cores. GPU: >1000 cores
e The concept is called GPGPU (General-Purpose computing on GPU)

e GPGPU became popular since NVIDIA invented CUDA language in 2007
o Recently it is popular for deep learning

o e e Rl NN
| 4 —-@Wﬁ"'—"'b\ _‘/[H

o = Bl TSUBAME3
= node

A Compute Node with GPU

CPU

QQ

S0

Host memory

Device memory

Device memory

e A GPU has its distinct memory (device memory)
CPU memory is called host memory

e Many cores in a GPU share its device memory

Characteristics of GPUs :

A GPU is a board or a card attached to computers
—> It cannot work alone. Driven by CPUs
—> Different programming methods
Comparing Xeon E5-2680 v4 (TSUBAME3’'s CPU) and

Tesla P100 (TSUBAME3'’s GPU)

| fcPu | 1GPU

Number of cores 14 cores <<<3584 CUDA cores
(28 cores with 2CPUs) (=64 x 56SMXs)
Clock Frequency 2.4GHz S 1.48GHz
Peak Computation 425GFlops << 5300GFlops
Speed (double precision)
Memory Capacity 128GB >>S 16GB

(256GB shared by 2CPUs)

Programming Environments
for NVIDIA GPUs

e CUDA

e The most popular environment, designed by NVIDIA
o C/Fortran + new syntaxes

o Use “nvcc” command for compile
module load cuda
nvce ... XXX.cu

e OpenACC € Today’s topic

o C/Fortran + directives (#pragma acc ...), Easier programming

e | recommend PGI compiler
module load pgi
pgcc —acc ... XXX.c

o Basically for data parallel programs with for-loops

e OpenMP 4.5, OpenCL...

An OpenACC Program Look Like | ¢

C/C++/Fortran + directives

int a[100], b[100], c[100]:
int i; __— Examples of OpenACC

#pragma acc data copy(a,b,ck—" directives
#pragma acc kernels

#Ip ragma acc_loop_independent ___ In this case, each directive has

| for (ai[i:] O:; bi[i<]+1co[oi;] ,i++) { | an effect on the following
B ’ : block/sentence

“mm” sample: Matrix Multiply

Available at ~endo-t-ac/ppcomp/19/mm-acc/

A: a (m X k) matrix, B: a (k X n)
matrix

C: a (m X n) matrix

C—AXB m&

e Algorithm with a triple for loop Al A
e Supports variable matrix size.
o Each matrix is expressed as a 1D —
array by column-major format

e Execution: ./mm [m] [n] [K]

Compiling OpenACC Programs, :

Not so popular as OpenMP, unfortunately®
e PGI compiler on TSUBAMES3.0

e module load pgi, and then use pgcc
o Use -acc option in compiling and linking

e -Minfo option outputs many information on parallelization
Example of output

47, Generating copyin(A[:m*k])
Generating copy(C[:m*n])
Generating copyin(B[:k*n])

50, Loop is parallelizable

e Also very new gcc (gcc 6 or later) supports OpenACC

Submitting a GPU Job

e OpenACC version
e see mm-acc directory
e Touse a GPU, use q node type
e (h_node or f_node types for multi-GPU)

e Sequential version
e see mm directory

mm/job.sh resource type mm-acc/job.sh
#!/bin/sh ~ and count #!/bin/sh
#$ -cwd ‘ \ #$ -cwd
#$ -l s_core=1 #$ -l g _node=1
#$ -l h_rt=00:10:00~—_ maximum #$ -1 h_rt=00:10:00
run time

/mm 1000 1000 1000 ‘ /mm 1000 1000 1000

1 e Job submission Q

e Qsub job.sh 10

Kernel Region in OpenACC 3T
CPU GPU E
‘
{int main() A % SOREEEEER
A =QEOSI=NEYs
#pr?gma acc kernels B —
B; Kernel

e L eEEsT

D;
A sentence/block immediately after #pragma acc kernels

E;
is called a kernel region, executed on GPU
® \We don't need to specify number of threads (we also can)
® Also #pragma acc parallel works similarly (not same) 1

}

é. C % region
E S

Data Movement between CPU
and GPU

e \We need to move data between CPU and GPU

e Host (CPU) memory and Device (GPU) memory are distinct, like
distributed memory

e Threads on a GPU share the device memory

PCI Express CPU GPU
link (16GB/s)

Host memory

Device memory

For this purpose, we use #pragma acc data directive
-> Data region 12

Data Directives to use GPU T
memory CPU GPU .
{int main() A % Cgﬁpiégu
#Drgéma acc data copy(x,y) i %
{ .
#pragma acc kernels i \
{ . C Data
} > % Region
#pragéé acc kernels E %%%% < “Kernel
L CO regions
) - E % CPU -GPU

e Data region may contain 1 or more kernel regions
e Data movement occurs at beginning and end of data region

13

000
0000
o000
see
Data Directive :
e Arrays:
e we can write array names if the | |
sizes are statically declared - nt X
entire array is copied float al10];
double *b = (dOUb|e*)
e Pointers as arrays: mal loc(20+sizeof (double));

cf) b[0:20]

start index number of elements
e Partial copying like b[10:5] or

#pragma acc data copy(x, a, b[0:20])

al4:4] are ok
e Directions of copying
e ... data copyin(...): Copy CPU->GPU at the begininng
e ... data copyout(...): Copy GPU->CPU at the end

e ... data copy(...): Do both
Optimization of data movement will help speedup

14

Loop Directive

e #pragma acc loop must be

int i;) c
#pragma acc data copy(a,b,c) acc parallel
#pragma acc kernels e Directly followed by “for”

#pragma_acc _loop independent

“tor (i =0; i <1005 i+) {§ '0OP
I ali]l = blil+clil; | e The loop must have a loop
) ! counter, as in OpenMP

o List/tree traversal is NG

« ... loop independent: Iterations are done in parallel by multiple
GPU threads
« ... loop seq: Done sequentially. Not be parallelized

« ... loop: Compiler decides

15

00
i 0000
OpenACC Version of mm 3
(mm-acc/mm.c) .
#pragma acc data copyin(A[O:mxk],B[0:k*n]),copy(C[O:m*n])
fipragma acc kernels "N We can omit CPU<GPU copy of A,B
#pragma acc loop independent _
for (j =0; j <n; j+) { —For each columnin C
#pragma acc loop independent _
#pragma acc loop seq
for (1 =0; | <k; I++) { —For dot product
Ci,j += Ai,I *~ Bl,j;
Frok

e Each elementin C can be computed in parallel (i-loop, j-loop)
e Computation of a single C element is sequential (L-loop)

e mm-acc/mm.c includes JLI version (matmulJLI()) and JIL version
(matmulJIL())

e Both have same computation amount. How are speeds?

16

Assignments in this Course

e There is homework for each part. Submissions of reports
for 2 parts are required

e Also attendances will be considered

- T N T

Part 1 :8;: d'ﬁr‘tjs'on Select

SO =

OvenMP i~ 1 problem
9 P O3] free i)
a M AT A e o ™

Part 2 :m;: ?T:]::JS'O” Select Select

MPI . 1 problem | [2parts

L M3] free])
- P N

Part 3 :G1: diffusion S

GPU G2] mm " 1 problem
L G3] free |)

— 17

Assignments in GPU Part (1)

Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

[G1] Parallelize “diffusion”™ sample program by
OpenACC or CUDA

Optional:
To make array sizes variable parameters
To compare OpenACC vs CUDA

To improve performance further

Different assignment of threads and elements (CUDA)

Different num_gang, vector_length, etc (OpenACC)
etc. '

Assignments in GPU Part(2)

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in
detall

Use various matrices sizes
Evaluate effects of data transfer cost
Compare with CPU (OpenMP) version
Optional:
To evaluate both mm-acc and mm-cuda

To change/improve the program
To use different loop order (matmulJLI() and matmulJIL()
iin mm-cuda)
To use different assignment of threads and elements
etc

19

Assignments in GPU Part (3)

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

cf) A problem related to your research
“pi” sample?

Using reduction on OpenACC/CUDA is not easy
“sort” sample on GPU?

Other algorithms than quick sort may be appropriate
More challenging one for parallelization is better

cf) Partial computations have dependency with each other

20

Notes in Submission

e Submit the followings via OCW-i
(1) A report document
A PDF or MS-Word file, 2 pages or more
in English or Japanese (B A&+ 0k)
(2) Source code files of your program
If you use multiple files, you can use “.zip” or “.tgz”
e Report should include:
Which problem you have chosen
How you parallelized

It is even better if you mention efforts for high performance or new
functions

Performance evaluation on TSUBAME
With varying number of processor cores
With varying problem sizes
Discussion with your findings
Other machines than TSUBAME are ok, if available

21

Next Class:

e GPU Programming (2)
Improving data copy
Improving loop parallelization

22

Information

Lecture
eSlides are uploaded in OCW
www.ocw.titech.ac.jp = search “2019 practical parallel computing”
eAssignments information/submission site are in OCW-i
Login portal.titech.ac.jp > OCW/OCW:-i
elnquiry
ppcomp@el.gsic.titech.ac.jp
eSample programs
Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

TSUBAME
e Official web including Users guide
www.t3.gsic.titech.ac.jp

e Your account information
Login portal.titech.ac.jp > TSUBAME portal

23

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 11
	Parallel Programming using CPUs
	GPU Computing
	A Compute Node with GPU
	Characteristics of GPUs
	Programming Environments for NVIDIA GPUs
	An OpenACC Program Look Like
	“mm” sample: Matrix Multiply
	Compiling OpenACC Programs
	Submitting a GPU Job
	Kernel Region in OpenACC
	Data Movement between CPU and GPU
	Data Directives to use GPU memory
	Data Directive
	Loop Directive
	OpenACC Version of mm�(mm-acc/mm.c)
	Assignments in this Course
	Assignments in GPU Part (1)
	Assignments in GPU Part(2)
	Assignments in GPU Part (3)
	Notes in Submission
	Next Class:
	Information

