
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 11

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (1)

Parallel Programming using
CPUs
 Both OpenMP and MPI uses multiple processor

cores in CPUs
 OpenMP: cores in a single node
 MPI: we can use cores in multiple nodes

2

CPU
cores

Memory

OpenMP MPI

In Part 3, we use other processors than CPUs  GPU

2010/12/06

GPU Computing
 Graphic processing units (GPU) have been originally used for computing

graphics (including video games)
 A high performance GPU has many cores

 CPU: 2 to 32 cores. GPU: >1000 cores
 The concept is called GPGPU (General-Purpose computing on GPU)

 GPGPU became popular since NVIDIA invented CUDA language in 2007
 Recently it is popular for deep learning

TSUBAME3
node

A Compute Node with GPU

 A GPU has its distinct memory (device memory)
 CPU memory is called host memory

 Many cores in a GPU share its device memory
4

CPU

Host memory

GPU

Device memory Device memory

GPU

Characteristics of GPUs

Comparing Xeon E5-2680 v4 (TSUBAME3’s CPU) and
Tesla P100 (TSUBAME3’s GPU)

1 CPU 1 GPU
Number of cores 14 cores

(28 cores with 2CPUs)
3584 CUDA cores
(=64 x 56SMXs)

Clock Frequency 2.4GHz 1.48GHz

Peak Computation
Speed (double precision)

425GFlops 5300GFlops

Memory Capacity 128GB
(256GB shared by 2CPUs)

16GB

<<<

<<
>

>>

A GPU is a board or a card attached to computers
 It cannot work alone. Driven by CPUs
 Different programming methods

Programming Environments
for NVIDIA GPUs
 CUDA

 The most popular environment, designed by NVIDIA
 C/Fortran + new syntaxes
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

 OpenACC  Today’s topic
 C/Fortran + directives (#pragma acc …), Easier programming
 I recommend PGI compiler

 module load pgi
 pgcc –acc … XXX.c

 Basically for data parallel programs with for-loops
 OpenMP 4.5, OpenCL…

6

An OpenACC Program Look Like

7

int a[100], b[100], c[100];
int i;

#pragma acc data copy(a,b,c)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}

Examples of OpenACC
directives

In this case, each directive has
an effect on the following
block/sentence

C/C++/Fortran + directives

8

“mm” sample: Matrix Multiply

A: a (m×k) matrix, B: a (k×n)
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format

 Execution: ./mm [m] [n] [k]

CA

B

m

k

k

n

Available at ~endo-t-ac/ppcomp/19/mm-acc/

9

Compiling OpenACC Programs
Not so popular as OpenMP, unfortunately
 PGI compiler on TSUBAME3.0

 module load pgi, and then use pgcc
 Use -acc option in compiling and linking
 -Minfo option outputs many information on parallelization

 Also very new gcc (gcc 6 or later) supports OpenACC

Example of output
:

47, Generating copyin(A[:m*k])
Generating copy(C[:m*n])
Generating copyin(B[:k*n])

50, Loop is parallelizable
:

#!/bin/sh
#$ -cwd
#$ -l s_core=1
#$ -l h_rt=00:10:00

./mm 1000 1000 1000

Submitting a GPU Job
 OpenACC version

 see mm-acc directory
 To use a GPU, use q_node type
 (h_node or f_node types for multi-GPU)

10

#!/bin/sh
#$ -cwd
#$ -l q_node=1
#$ -l h_rt=00:10:00

./mm 1000 1000 1000

mm-acc/job.sh

 Job submission
 qsub job.sh

resource type
and count

maximum
run time

 Sequential version
 see mm directory

mm/job.sh

11

Kernel Region in OpenACC

int main()
{

A;
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;
E;

}

A sentence/block immediately after #pragma acc kernels
is called a kernel region, executed on GPU
 We don’t need to specify number of threads (we also can)
 Also #pragma acc parallel works similarly (not same)

A

B

C

D

E

Kernel
region
on GPU

CPU GPU

Data Movement between CPU
and GPU
 We need to move data between CPU and GPU

 Host (CPU) memory and Device (GPU) memory are distinct, like
distributed memory

 Threads on a GPU share the device memory

12

Host memory

CPU GPU

Device memory

PCI Express
link (16GB/s)

For this purpose, we use #pragma acc data directive
 Data region

Data Directives to use GPU
memory

 Data region may contain 1 or more kernel regions
 Data movement occurs at beginning and end of data region 13

int main()
{

A;
#pragma acc data copy(x,y)

{
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;

}
E;

}

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Data
Region

Kernel
regions

Data Directive
 Arrays:

 we can write array names if the
sizes are statically declared
entire array is copied

 Pointers as arrays:
cf) b [0 : 20]

 Partial copying like b[10:5] or
a[4:4] are ok

14

int x;
float a[10];
double *b = (double*)

malloc(20*sizeof(double));
:

#pragma acc data copy(x, a, b[0:20])
:start index number of elements

 Directions of copying
 … data copyin(…): Copy CPUGPU at the begininng
 … data copyout(…): Copy GPUCPU at the end
 … data copy(…): Do both
Optimization of data movement will help speedup

Loop Directive
 #pragma acc loop must be

included in “acc kernels” or
“acc parallel”

 Directly followed by “for”
loop
 The loop must have a loop

counter, as in OpenMP
 List/tree traversal is NG

15

int a[100], b[100], c[100];
int i;

#pragma acc data copy(a,b,c)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
a[i] = b[i]+c[i];

}

• … loop independent: Iterations are done in parallel by multiple
GPU threads

• … loop seq: Done sequentially. Not be parallelized
• … loop: Compiler decides

OpenACC Version of mm
(mm-acc/mm.c)

 Each element in C can be computed in parallel (i-loop, j-loop)
 Computation of a single C element is sequential (L-loop)

 mm-acc/mm.c includes JLI version (matmulJLI()) and JIL version
(matmulJIL())
 Both have same computation amount. How are speeds?

16

#pragma acc data copyin(A[0:m*k],B[0:k*n]),copy(C[0:m*n])
#pragma acc kernels
#pragma acc loop independent
for (j = 0; j < n; j++) {

#pragma acc loop independent
for (i = 0; i < m; i++) {

#pragma acc loop seq
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each column in C

←For each row in C

←For dot product

We can omit CPUGPU copy of A,B

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

17

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion
[M2] mm
[M3] free

[G1] diffusion
[G2] mm
[G3] free

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

18

Assignments in GPU Part (1)
Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

Optional：
 To make array sizes variable parameters
 To compare OpenACC vs CUDA
 To improve performance further
 Different assignment of threads and elements (CUDA)
 Different num_gang, vector_length, etc (OpenACC)
 etc.

19

Assignments in GPU Part(2)
[G2] Evaluate speed of “mm-acc” or “mm-cuda” in

detail
 Use various matrices sizes
 Evaluate effects of data transfer cost
 Compare with CPU (OpenMP) version
Optional：
 To evaluate both mm-acc and mm-cuda
 To change/improve the program
 To use different loop order (matmulJLI() and matmulJIL()

iin mm-cuda)
 To use different assignment of threads and elements
 etc

20

Assignments in GPU Part (3)
[G3] (Freestyle) Parallelize any program by OpenACC

or CUDA.

 cf) A problem related to your research
 “pi” sample?
 Using reduction on OpenACC/CUDA is not easy

 “sort” sample on GPU?
 Other algorithms than quick sort may be appropriate

 More challenging one for parallelization is better
 cf) Partial computations have dependency with each other

21

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

22

Next Class:
 GPU Programming (2)
 Improving data copy
 Improving loop parallelization

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

23

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 11
	Parallel Programming using CPUs
	GPU Computing
	A Compute Node with GPU
	Characteristics of GPUs
	Programming Environments for NVIDIA GPUs
	An OpenACC Program Look Like
	“mm” sample: Matrix Multiply
	Compiling OpenACC Programs
	Submitting a GPU Job
	Kernel Region in OpenACC
	Data Movement between CPU and GPU
	Data Directives to use GPU memory
	Data Directive
	Loop Directive
	OpenACC Version of mm�(mm-acc/mm.c)
	Assignments in this Course
	Assignments in GPU Part (1)
	Assignments in GPU Part(2)
	Assignments in GPU Part (3)
	Notes in Submission
	Next Class:
	Information

