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Considerations in Parallel 
Programming
Step1: How we can make “correct” parallel 
software
 Is dependency preserved?
 No race condition?

Step2: How we can make “fast” parallel 
software
 Is bottleneck small?
 Are tasks well balanced between threads?
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Towards “Correct” Parallel 
Software
 We have learned several OpenMP syntaxes 

to make computations parallel
 #pragma omp parallel
 #pragma omp for
 #pragma omp task

 But it is programmer’s responsibility to check 
whether the parallelization is correct or not
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Can We Do in Parallel?
[Q1] Is it ok to execute C1 and C2 in parallel?
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C1: y = 10; C2: z = 20; ※y, z are shared 
variables

C1: y = 10; C2: z = 20;
then

C2: z = 20; C1: y = 10;
then

Yes  Execution order of C1&C2 does not affect results

y = 10 and z = 20
Same results

[Q2] Is it ok to execute C3 and C4 in parallel?

C3: x = 10; C4: x = 20;

C3: x = 10; C4: x = 20;
then


then

No!  If execution order is changed, we see different results

x = 20? x = 10? 
Different results!

C4: x = 20; C3: x = 10;

※x is a shared 
variable



Dependency between 
Computations
We define following sets for computation C
Read set R(C): the set of variables read by C
Write set W(C): the set of variables written by C

 Ex) C: x = y+z  R(C) = {y, z}, W(C) = {x}

We define dependency between C1 and C2
If (W(C1) ∩ R(C2) ≠ ∅), C1 and C2 are dependent (write vs read)
If (R(C1) ∩ W(C2) ≠ ∅), C1 and C2 are dependent (read vs write)
If (W(C1) ∩ W(C2) ≠ ∅), C1 and C2 are dependent (write vs write)
Otherwise, C1 and C2 are independent

 ※ read vs read cases are independent

If C1 and C2 are independent, parallelization of C1 and C2 is safe 
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Dependency and Parallelism
in Stencil Computations (1)
Consider 1D stencil computation:
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t=5

t=6
t=7

20 2119
x=

time ttime t-1

We let Ct,x be computation of a single point ft,x
R(Ct,x) = {ft-1,x-1, ft-1,x, ft-1,x+1}, W(Ct,x) = {ft,x}

※ This is simpler than 
“diffusion” (2D) samplefor (t = 1; t < NT; t++) 

for (x = 1; x < NX-1; x++)
ft,x = (ft-1,x-1 + ft-1,x + ft-1,x+1) / 3.0   /* Ct,x */

※ This figure omits
double buffering
technique



Dependency and Parallelism
in Stencil Computations (2)

 Can we compute f6,20 and f6,21 in 
parallel? (t is same, x is different)
 R(C6,20)={f5,19, f5,20, f5,21 }, W(C6,20)={f6,20}
 R(C6,21)={f5,20, f5,21, f5,22 }, W(C6,21)={f6,21}
 They are independent  (for all pairs of x)

 Can we compute f6,20 and f7,20 in 
parallel? (t is different)
 R(C6,20)={f5,19, f5,20, f5,21 }, W(C6,20)={f6,20} 
 R(C7,20)={f6,19, f6,20, f6,21 }, W(C7,20)={f7,20}
 They are dependent 
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dependent!!

In Assignment [O1]
• it is OK to parallelize x-loop or y-loop
• it is NG to parallelize t-loop

Read vs. Read is Ok



Partially Dependent Case
 Can we execute C1 and C2 in parallel?

 Here, sum is a shared variable
 Similar pattern appears in “pi” sample
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:
[calculate ans1]

:
sum += ans1;

C1
:

[calculate ans2]
:

sum += ans2;

C2

these parts
are independent

 C1 and C2 are dependent 
 since both W(C1) and W(C2) includes sum

 Do we have to abandon parallel execution?

dependent



What’s Wrong if Parallelized? (1)
 Now we simply consider C1: sum += 10; & C2: sum += 20;
 We assume “sum = 0” initially
 [Q] Does execution order of C1 & C2 affect the results?

 Note: “sum += 10” is compiled into machine codes like
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reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

※ reg1, reg2… are registers, 
which are thread private

The results are same: sum=30. Ok to parallelize???

Case A: C1 then C2

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

10

0

10

30

Case B: C2 then C1

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

0

20

30



What’s Wrong if Parallelized? (2)
 No!!! The results can be different if C1 & C2 are 

executed (almost) simultaneously
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Case C

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

10

0
0

20

Case D

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2
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0
0

20

Now sum=20 Now sum=10

Such a bad situation is called “Race Condition”
The expected result is 30, but we may get bad results
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Mutual Exclusion to 
Avoid Race Condition

⇒ With mutual exclusion, 
race condition is avoided

Mutual exclusion (mutex): 
Mechanism to control threads 
so that only a single thread 
can enter a “specific region”
 The region is called critical 

section

Case C with Mutual Exclusion

CS start

CS end

CS終了

CS start

W
aiting!

sum=30

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2
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Mutual Exclusion in OpenMP

double sum = 0;
#pragma omp parallel

{
[ do something ]

#pragma omp critical
sum += myans;

}

#pragma omp critical makes 
the following block/sentence 
be critical section

An example available at 
~endo-t-ac/ppcomp/19/
pi-good-omp/

cf) ./pi 100000000
 Computes integral by multiple 

threads
 The algorithm uses “sum += …”
 The answer is 3.1415…

Compare several versions. What are differences?
- pi-bad-omp: Bad answer  due to race condition
- pi-good-omp: Correct answer , but slow  (why?)
- pi-omp / pi-fast-omp: Correct  and fast 



Towards “Fast” Parallel 
Software

 If the entire algorithm is divided into independent 
computations (such as mm example), the story is easy

 But generally, most algorithms include both
 Computations that can be parallelized
 Computations that cannot (or hardly) be parallelized

⇒ The later part raises problems called “bottleneck”
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Bottleneck

Bottle



Various Bottlenecks
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Bottleneck by
critical sections

Bottleneck by
sequential part

Bottleneck by
load imbalance

Moreover, There are architectural bottlenecks

Bottle
neck

Bottle
neck

Bottle
neck



Amdahl’s Law
 We consider an algorithm. Then we let
 T1 : execution time with 1 processor core
 α: ratio of computation that can be parallelized
 1-α : ratio that CANNOT be parallelized (bottleneck)

⇒ Estimated execution time with p processor 
cores is  Tp = ((1 – α) + α / p) T1
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Due to bottleneck, there is limitation in speed-up 
no matter how many cores are used

T∞ = (1-α) T1



An Illustration of Amdahl’s Law
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Parallelized
α T1

Bottleneck
(1-α) T1

With
p=2

With
p=4

With
p=1

T1

Scalability: How performance is 
improved with larger resources
(p, in this context)

Amdahl’s law tells us
• if we want scalability with p～10, α should be >0.9
• if we want scalability with p～100, α should be >0.99



The Fact is Harder Than Theory
 According to Amdahl’s law, Tp is monotonically decreasing
 Is large p always harmless ??
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Performance comparison of pi-omp and pi-good-omp
export OMP_NUM_THREADS= [p]
./pi 100000000

Reducing bottleneck is even more important
(than Amdahl’s law tells)

p pi-omp
pi-fast-omp

pi-good-omp

1 0.80 (sec) 1.8 (sec)
2 0.40 (sec) 9.4 (sec)
5 0.16 (sec) 10.9~13.0 (sec)
10 0.08 (sec) 13~16 (sec)

Slower! 



Reducing Bottlenecks
 Approaches for reducing 

bottlenecks depend on algorithms!
 We need to consider, consider
 Some algorithms are essentially 

difficult to be parallelized
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 Some directions
 Reducing access to shared variables
 Reducing length of dependency chains

 called “critical path”
 Reducing parallelization costs

 entering/exiting “omp parallel”, “omp critical”… is not free
:



Cases of “pi” Sample
 “pi-good-omp” is slow, since each thread enters a critical 

section too frequently
 To improve this, another pi-fast-omp version introduces 

private variables

Step 1: Each thread accumulates values into private “local_sum”
Step 2: Then each thread does “sum += local_sum” in a critical section 

once per thread
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Why is pi-omp (the first omp version) also fast?
“omp for reduction(…)” is internally compiled to a 
similar code as above

pi-fast-omp is fast and scalable 



What We Have Learned in 
OpenMP Part
 OpenMP: A programming tool for parallel

computation by using multiple processor cores
 Shared memory parallel model
 #pragma omp parallel  Parallel region
 #pragma omp for  Parallelize for-loops
 #pragma omp task  Task parallelism

 We can use multiple processor cores, but only in 
a single node node

 In MPI part, we will go over the wall of a node
20



Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: May 9 (Thursday)

[O1] Parallelize “diffusion” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see No.3 slides at OCW-i.
21
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Next Class:
 Part 2: Distributed Memory Parallel 

Programming with MPI (1)



Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory
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TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal
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