
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 6

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Shared Memory Parallel
Programming with OpenMP (4)

Considerations in Parallel
Programming
Step1: How we can make “correct” parallel
software
 Is dependency preserved?
 No race condition?

Step2: How we can make “fast” parallel
software
 Is bottleneck small?
 Are tasks well balanced between threads?

2

Towards “Correct” Parallel
Software
 We have learned several OpenMP syntaxes

to make computations parallel
 #pragma omp parallel
 #pragma omp for
 #pragma omp task

 But it is programmer’s responsibility to check
whether the parallelization is correct or not

3

Can We Do in Parallel?
[Q1] Is it ok to execute C1 and C2 in parallel?

4

C1: y = 10; C2: z = 20; ※y, z are shared
variables

C1: y = 10; C2: z = 20;
then

C2: z = 20; C1: y = 10;
then

Yes  Execution order of C1&C2 does not affect results

y = 10 and z = 20
Same results

[Q2] Is it ok to execute C3 and C4 in parallel?

C3: x = 10; C4: x = 20;

C3: x = 10; C4: x = 20;
then


then

No!  If execution order is changed, we see different results

x = 20? x = 10?
Different results!

C4: x = 20; C3: x = 10;

※x is a shared
variable

Dependency between
Computations
We define following sets for computation C
Read set R(C): the set of variables read by C
Write set W(C): the set of variables written by C

 Ex) C: x = y+z  R(C) = {y, z}, W(C) = {x}

We define dependency between C1 and C2
If (W(C1) ∩ R(C2) ≠ ∅), C1 and C2 are dependent (write vs read)
If (R(C1) ∩ W(C2) ≠ ∅), C1 and C2 are dependent (read vs write)
If (W(C1) ∩ W(C2) ≠ ∅), C1 and C2 are dependent (write vs write)
Otherwise, C1 and C2 are independent

 ※ read vs read cases are independent

If C1 and C2 are independent, parallelization of C1 and C2 is safe 
5

Dependency and Parallelism
in Stencil Computations (1)
Consider 1D stencil computation:

6

t=5

t=6
t=7

20 2119
x=

time ttime t-1

We let Ct,x be computation of a single point ft,x
R(Ct,x) = {ft-1,x-1, ft-1,x, ft-1,x+1}, W(Ct,x) = {ft,x}

※ This is simpler than
“diffusion” (2D) samplefor (t = 1; t < NT; t++)

for (x = 1; x < NX-1; x++)
ft,x = (ft-1,x-1 + ft-1,x + ft-1,x+1) / 3.0 /* Ct,x */

※ This figure omits
double buffering
technique

Dependency and Parallelism
in Stencil Computations (2)

 Can we compute f6,20 and f6,21 in
parallel? (t is same, x is different)
 R(C6,20)={f5,19, f5,20, f5,21 }, W(C6,20)={f6,20}
 R(C6,21)={f5,20, f5,21, f5,22 }, W(C6,21)={f6,21}
 They are independent  (for all pairs of x)

 Can we compute f6,20 and f7,20 in
parallel? (t is different)
 R(C6,20)={f5,19, f5,20, f5,21 }, W(C6,20)={f6,20}
 R(C7,20)={f6,19, f6,20, f6,21 }, W(C7,20)={f7,20}
 They are dependent 

7

dependent!!

In Assignment [O1]
• it is OK to parallelize x-loop or y-loop
• it is NG to parallelize t-loop

Read vs. Read is Ok

Partially Dependent Case
 Can we execute C1 and C2 in parallel?

 Here, sum is a shared variable
 Similar pattern appears in “pi” sample

8

:
[calculate ans1]

:
sum += ans1;

C1
:

[calculate ans2]
:

sum += ans2;

C2

these parts
are independent

 C1 and C2 are dependent 
 since both W(C1) and W(C2) includes sum

 Do we have to abandon parallel execution?

dependent

What’s Wrong if Parallelized? (1)
 Now we simply consider C1: sum += 10; & C2: sum += 20;
 We assume “sum = 0” initially
 [Q] Does execution order of C1 & C2 affect the results?

 Note: “sum += 10” is compiled into machine codes like

9

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

※ reg1, reg2… are registers,
which are thread private

The results are same: sum=30. Ok to parallelize???

Case A: C1 then C2

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

10

0

10

30

Case B: C2 then C1

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

0

20

30

What’s Wrong if Parallelized? (2)
 No!!! The results can be different if C1 & C2 are

executed (almost) simultaneously

10

Case C

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

10

0
0

20

Case D

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

10

0
0

20

Now sum=20 Now sum=10

Such a bad situation is called “Race Condition”
The expected result is 30, but we may get bad results

11

Mutual Exclusion to
Avoid Race Condition

⇒ With mutual exclusion,
race condition is avoided

Mutual exclusion (mutex):
Mechanism to control threads
so that only a single thread
can enter a “specific region”
 The region is called critical

section

Case C with Mutual Exclusion

CS start

CS end

CS終了

CS start

W
aiting!

sum=30

reg1 ← [sum]
reg1 ← reg1+10
[sum] ← reg1

reg2 ← [sum]
reg2 ← reg2+20
[sum] ← reg2

12

Mutual Exclusion in OpenMP

double sum = 0;
#pragma omp parallel

{
[do something]

#pragma omp critical
sum += myans;

}

#pragma omp critical makes
the following block/sentence
be critical section

An example available at
~endo-t-ac/ppcomp/19/
pi-good-omp/

cf) ./pi 100000000
 Computes integral by multiple

threads
 The algorithm uses “sum += …”
 The answer is 3.1415…

Compare several versions. What are differences?
- pi-bad-omp: Bad answer  due to race condition
- pi-good-omp: Correct answer , but slow  (why?)
- pi-omp / pi-fast-omp: Correct  and fast 

Towards “Fast” Parallel
Software

 If the entire algorithm is divided into independent
computations (such as mm example), the story is easy

 But generally, most algorithms include both
 Computations that can be parallelized
 Computations that cannot (or hardly) be parallelized

⇒ The later part raises problems called “bottleneck”

13

Bottleneck

Bottle

Various Bottlenecks

14

Bottleneck by
critical sections

Bottleneck by
sequential part

Bottleneck by
load imbalance

Moreover, There are architectural bottlenecks

Bottle
neck

Bottle
neck

Bottle
neck

Amdahl’s Law
 We consider an algorithm. Then we let
 T1 : execution time with 1 processor core
 α: ratio of computation that can be parallelized
 1-α : ratio that CANNOT be parallelized (bottleneck)

⇒ Estimated execution time with p processor
cores is Tp = ((1 – α) + α / p) T1

15

Due to bottleneck, there is limitation in speed-up
no matter how many cores are used

T∞ = (1-α) T1

An Illustration of Amdahl’s Law

16

Parallelized
α T1

Bottleneck
(1-α) T1

With
p=2

With
p=4

With
p=1

T1

Scalability: How performance is
improved with larger resources
(p, in this context)

Amdahl’s law tells us
• if we want scalability with p～10, α should be >0.9
• if we want scalability with p～100, α should be >0.99

The Fact is Harder Than Theory
 According to Amdahl’s law, Tp is monotonically decreasing
 Is large p always harmless ??

17

Performance comparison of pi-omp and pi-good-omp
export OMP_NUM_THREADS= [p]
./pi 100000000

Reducing bottleneck is even more important
(than Amdahl’s law tells)

p pi-omp
pi-fast-omp

pi-good-omp

1 0.80 (sec) 1.8 (sec)
2 0.40 (sec) 9.4 (sec)
5 0.16 (sec) 10.9~13.0 (sec)
10 0.08 (sec) 13~16 (sec)

Slower! 

Reducing Bottlenecks
 Approaches for reducing

bottlenecks depend on algorithms!
 We need to consider, consider
 Some algorithms are essentially

difficult to be parallelized

18

 Some directions
 Reducing access to shared variables
 Reducing length of dependency chains

 called “critical path”
 Reducing parallelization costs

 entering/exiting “omp parallel”, “omp critical”… is not free
:

Cases of “pi” Sample
 “pi-good-omp” is slow, since each thread enters a critical

section too frequently
 To improve this, another pi-fast-omp version introduces

private variables

Step 1: Each thread accumulates values into private “local_sum”
Step 2: Then each thread does “sum += local_sum” in a critical section

once per thread

19

Why is pi-omp (the first omp version) also fast?
“omp for reduction(…)” is internally compiled to a
similar code as above

pi-fast-omp is fast and scalable 

What We Have Learned in
OpenMP Part
 OpenMP: A programming tool for parallel

computation by using multiple processor cores
 Shared memory parallel model
 #pragma omp parallel  Parallel region
 #pragma omp for  Parallelize for-loops
 #pragma omp task  Task parallelism

 We can use multiple processor cores, but only in
a single node node

 In MPI part, we will go over the wall of a node
20

Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: May 9 (Thursday)

[O1] Parallelize “diffusion” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see No.3 slides at OCW-i.
21

22

Next Class:
 Part 2: Distributed Memory Parallel

Programming with MPI (1)

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

23

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 6
	Considerations in Parallel Programming
	Towards “Correct” Parallel Software
	Can We Do in Parallel?
	Dependency between Computations
	Dependency and Parallelism�in Stencil Computations (1)
	Dependency and Parallelism�in Stencil Computations (2)
	Partially Dependent Case
	What’s Wrong if Parallelized? (1)
	What’s Wrong if Parallelized? (2)
	Mutual Exclusion to �Avoid Race Condition
	Mutual Exclusion in OpenMP
	Towards “Fast” Parallel Software
	Various Bottlenecks
	Amdahl’s Law
	An Illustration of Amdahl’s Law
	The Fact is Harder Than Theory
	Reducing Bottlenecks
	Cases of “pi” Sample
	What We Have Learned in OpenMP Part
	Assignments in OpenMP Part�(Abstract)
	Next Class:
	Information

