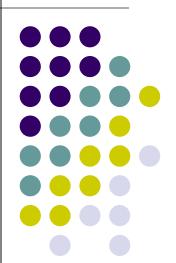
Practical Parallel Computing (実践的並列コンピューティング) No. 6

Shared Memory Parallel Programming with OpenMP (4)

Toshio Endo School of Computing & GSIC endo@is.titech.ac.jp



Considerations in Parallel Programming

Step1: How we can make "correct" parallel software

- Is <u>dependency</u> preserved?
- No race condition?

Step2: How we can make "fast" parallel software

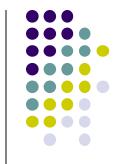
- Is <u>bottleneck</u> small?
- Are tasks well balanced between threads?

Towards "Correct" Parallel Software

- We have learned several OpenMP syntaxes to make computations parallel
 - #pragma omp parallel
 - #pragma omp for
 - #pragma omp task

 But it is <u>programmer's responsibility</u> to check whether the parallelization is correct or not

Can We Do in Parallel?



[Q1] Is it ok to execute C1 and C2 in parallel?

C2:
$$z = 20$$
;

Xy, z are shared variables

→ Yes © Execution order of C1&C2 does not affect results

C1:
$$y = 10$$
;

C1:
$$y = 10$$
; then C2: $z = 20$;

$$y = 10 \text{ and } z = 20$$

C2:
$$z = 20$$
; then C1: $y = 10$;

C1:
$$y = 10$$
;

Same results

[Q2] Is it ok to execute C3 and C4 in parallel?

C3:
$$x = 10$$
;

C4:
$$x = 20$$
;

Xx is a shared variable

→No! ⊗ If execution order is changed, we see different results

C3:
$$x = 10$$
;

$$\rightarrow$$
 C4: x = 20;

$$x = 20$$
? $x = 10$? Different results!

Dependency between Computations

We define following sets for computation C

- Read set R(C): the set of variables read by C
- Write set W(C): the set of variables written by C
 - Ex) C: $x = y+z \rightarrow R(C) = \{y, z\}, W(C) = \{x\}$

We define dependency between C1 and C2

- •If $(W(C1) \cap R(C2) \neq \emptyset)$, C1 and C2 are dependent (write vs read)
- •If $(R(C1) \cap W(C2) \neq \emptyset)$, C1 and C2 are dependent (read vs write)
- If (W(C1) ∩ W(C2) ≠ Ø), C1 and C2 are dependent (write vs write)
- Otherwise, C1 and C2 are independent
 - ※ read vs read cases are independent

If C1 and C2 are independent, parallelization of C1 and C2 is safe ©

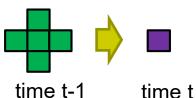
Dependency and Parallelism in Stencil Computations (1)

Consider 1D stencil computation:

for (t = 1; t < NT; t++)
for (x = 1; x < NX-1; x++)

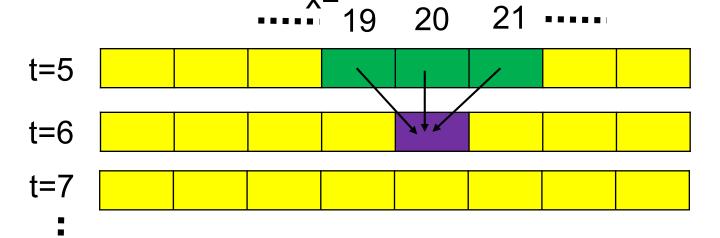
$$f_{t,x} = (f_{t-1,x-1} + f_{t-1,x} + f_{t-1,x+1}) / 3.0 /* C_{t,x} */$$

☆ This is simpler than "diffusion" (2D) sample



We let $C_{t,x}$ be computation of a single point $f_{t,x}$

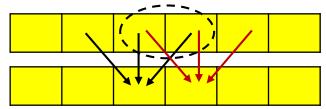
$$R(C_{t,x}) = \{f_{t-1,x-1}, f_{t-1,x}, f_{t-1,x+1}\}, W(C_{t,x}) = \{f_{t,x}\}$$



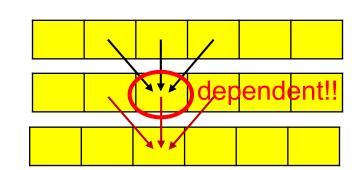
X This figure omits double buffering technique

Dependency and Parallelism in Stencil Computations (2)

- Can we compute $f_{6,20}$ and $f_{6,21}$ in parallel? (t is same, x is different)
 - $R(C_{6,20}) = \{f_{5,19}, f_{5,20}, f_{5,21}\}, W(C_{6,20}) = \{f_{6,20}\}$
 - $R(C_{6,21})=\{f_{5,20}, f_{5,21}, f_{5,22}\}, W(C_{6,21})=\{f_{6,21}\}$
 - → They are independent © (for all pairs of x)



- Can we compute f_{6,20} and f_{7,20} in parallel? (t is different)
 - $R(C_{6,20}) = \{f_{5,19}, f_{5,20}, f_{5,21}\}, W(C_{6,20}) = \{f_{6,20}\},$
 - $R(C_{7,20})=\{f_{6,19},f_{6,20},f_{6,21}\},\ W(C_{7,20})=\{f_{7,20}\}$
 - → They are dependent ⊗

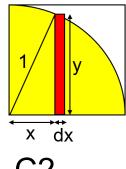


In Assignment [O1]

- it is OK to parallelize x-loop or y-loop
- it is NG to parallelize t-loop

Partially Dependent Case

- Can we execute C1 and C2 in parallel?
 - Here, sum is a shared variable
 - Similar pattern appears in "pi" sample

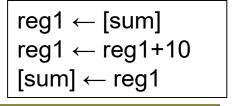




- C1 and C2 are dependent (S)
 - since both W(C1) and W(C2) includes sum
- → Do we have to abandon parallel execution?

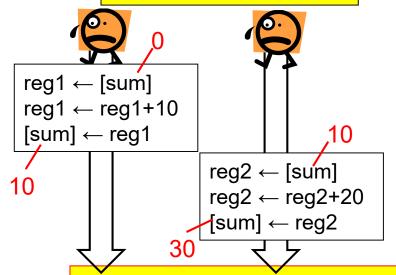
What's Wrong if Parallelized? (1)

- Now we simply consider C1: sum += 10; & C2: sum += 20;
- We assume "sum = 0" initially
- [Q] Does execution order of C1 & C2 affect the results?
 - Note: "sum += 10" is compiled into machine codes like



☆ reg1, reg2... are registers, which are thread private

Case A: C1 then C2



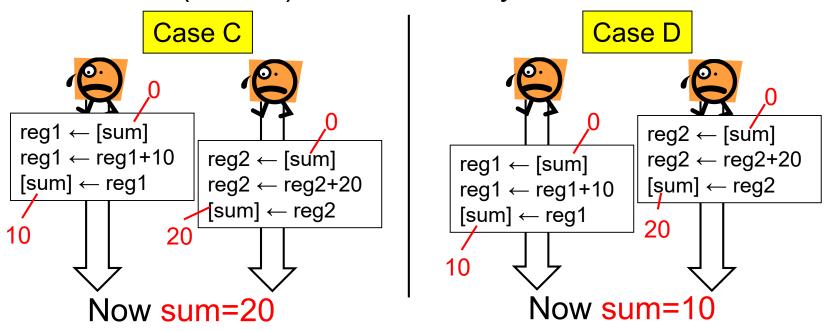
 $reg2 \leftarrow [sum]$ $reg2 \leftarrow reg2+20$ $[sum] \leftarrow reg2$ $reg1 \leftarrow [sum]$ $reg1 \leftarrow reg1+10$ $[sum] \leftarrow reg1$

Case B: C2 then C1

The results are same: sum=30. Ok to parallelize???

What's Wrong if Parallelized? (2)

 No!!! The results can be different if C1 & C2 are executed (almost) simultaneously



The expected result is 30, but we may get bad results

Such a bad situation is called "Race Condition"

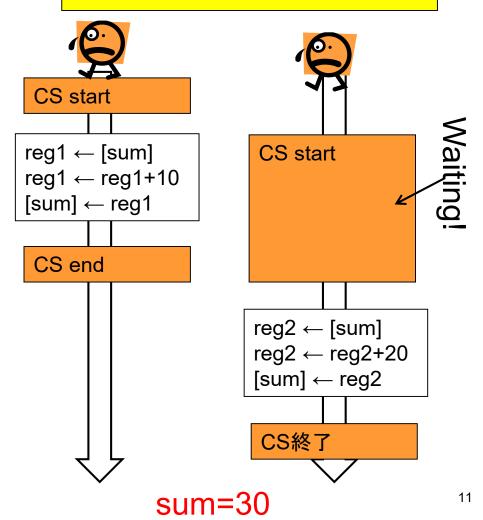
Mutual Exclusion to Avoid Race Condition

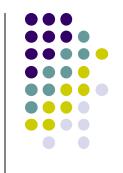
Mutual exclusion (mutex):

Mechanism to control threads so that only a single thread can enter a "specific region"

- The region is called critical section
- ⇒ With mutual exclusion, race condition is avoided

Case C with Mutual Exclusion





#pragma omp critical makes
the following block/sentence
be critical section

An example available at ~endo-t-ac/ppcomp/19/ pi-good-omp/

cf) ./pi 10000000

- Computes integral by multiple threads
- The algorithm uses "sum += ..."
- The answer is 3.1415...

Compare several versions. What are differences?

- pi-bad-omp: Bad answer (3) due to race condition
- pi-good-omp: Correct answer ©, but slow (why?)
- pi-omp / pi-fast-omp: Correct @ and fast @

Towards "Fast" Parallel Software

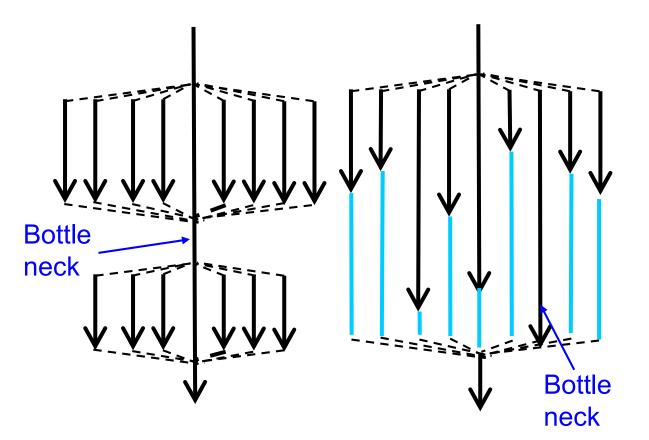
- If the entire algorithm is divided into independent computations (such as mm example), the story is easy
- But generally, most algorithms include both
 - Computations that can be parallelized
 - Computations that cannot (or hardly) be parallelized
- ⇒ The later part raises problems called "bottleneck"

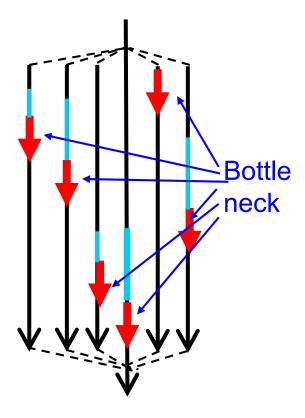
Various Bottlenecks

Bottleneck by sequential part

Bottleneck by load imbalance

Bottleneck by critical sections



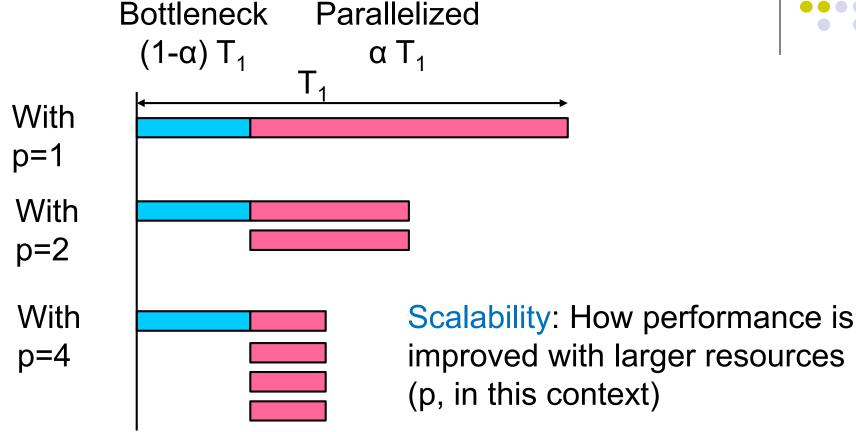


- We consider an algorithm. Then we let
 - T₁: execution <u>time</u> with <u>1</u> processor core
 - α: ratio of computation that can be <u>parallelized</u>
 - 1-α: ratio that CANNOT be parallelized (bottleneck)
- \Rightarrow Estimated execution time with p processor cores is $T_p = ((1 \alpha) + \alpha / p) T_1$

Due to bottleneck, there is limitation in speed-up no matter how many cores are used

$$T_{\infty} = (1-\alpha) T_1$$

An Illustration of Amdahl's Law



Amdahl's law tells us

- if we want scalability with p~10, α should be >0.9
- if we want scalability with p \sim 100, α should be >0.99

- According to Amdahl's law, T_p is monotonically decreasing
- → Is large p always harmless ??

Performance comparison of pi-omp and pi-good-omp export OMP_NUM_THREADS= [p] ./pi 100000000

р	pi-omp pi-fast-omp	pi-good-omp	
1	0.80 (sec)	1.8 (sec)	
2	0.40 (sec)	9.4 (sec)	
5	0.16 (sec)	10.9~13.0 (sec)	Slower! 😕
10	0.08 (sec)	13~16 (sec)	

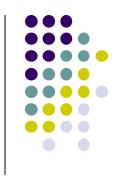
Reducing bottleneck is even more important (than Amdahl's law tells)

Reducing Bottlenecks

- Approaches for reducing bottlenecks depend on algorithms!
 - We need to consider, consider
 - Some algorithms are essentially difficult to be parallelized

- Reducing access to shared variables
- Reducing length of dependency chains
 - called "critical path"
- Reducing parallelization costs
 - entering/exiting "omp parallel", "omp critical"... is not free

18



- "pi-good-omp" is slow, since each thread enters a critical section too frequently
- → To improve this, another pi-fast-omp version introduces private variables

<u>Step 1</u>: Each thread accumulates values into private "local_sum"
<u>Step 2</u>: Then each thread does "sum += local_sum" in a critical section once per thread

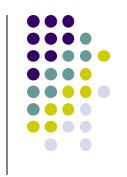
→ pi-fast-omp is fast and scalable ©

Why is pi-omp (the first omp version) also fast? "omp for reduction(...)" is internally compiled to a similar code as above

What We Have Learned in OpenMP Part

- OpenMP: A programming tool for parallel computation by using multiple processor cores
 - Shared memory parallel model
 - #pragma omp parallel → Parallel region
 - #pragma omp for → Parallelize for-loops
 - #pragma omp task → Task parallelism
- We can use multiple processor cores, but only in a single node node
- In MPI part, we will go over the wall of a node

Assignments in OpenMP Part (Abstract)



Choose <u>one of [O1]—[O3]</u>, and submit a report

Due date: May 9 (Thursday)

[O1] Parallelize "diffusion" sample program by OpenMP.

(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)

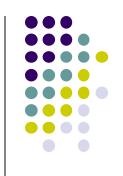
[O2] Parallelize "sort" sample program by OpenMP.

(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see No.3 slides at OCW-i.

Next Class:



 Part 2: Distributed Memory Parallel Programming with MPI (1)

Information

Lecture

- Slides are uploaded in OCW
 - www.ocw.titech.ac.jp → search "2019 practical parallel computing"
- Assignments information/submission site are in OCW-i
 - Login portal.titech.ac.jp → OCW/OCW-i
- Inquiry
 - ppcomp@el.gsic.titech.ac.jp
- Sample programs
 - Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

TSUBAME

- Official web including Users guide
 - www.t3.gsic.titech.ac.jp
- Your account information
 - Login portal.titech.ac.jp → TSUBAME portal