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“mm” sample: Matrix Multiply

A: a (m×k) matrix, B: a (k×n) 
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size. 
 Each matrix is expressed as a 1D 

array by column-major format

 Execution: ./mm [m] [n] [k]

CA

B

m

k

k

n

Available at ~endo-t-ac/ppcomp/19/mm/



Matrix Multiply Algorithm

 The innermost statement is executed for mnk times
 Compute Complexity：O(mnk)

 Computation speed (Flops) is obtained as 2mnk/t, where t is 
execution time
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for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each row in C
←For each column in C
←For dot product

The innermost statement includes 
2 (floating point) calculation

 [Q] What if loop order is changed?
 IJL order in above. JLI order in mm sample
 Number of operations does not change. But how is the speed?
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Variable Length Arrays in 
(Classical) C Language
 int a[n]; raises an error. How do we do?
 void *malloc(size_t size);

⇒ Allocates a memory region of size bytes from “heap region”, 
and returns its head pointer

 When it becomes unnecessary, it should be discarded with 
free() function

int *a;
a = (int *)malloc(sizeof(int)*n);

… a[i] can be used …

free(a);

int a[5];

… a[i] can be used …

A fixed length array

※ Exceptionally, C99 specification includes variable length arrays

array length

A variable length array
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How We Do for Multiple 
Dimensional Arrays
int a[m][n]; raises an error. How do we do? 
Not in a straightforward way. Instead, we do either of:

(1) Use a pointer of pointers
 We malloc m 1D arrays for every row (each has n length)
 We malloc 1D array of m length to store the above pointers

(2) Use a 1D array with length of  m×n
(mm sample uses this method)

 To access an array element, we should use a[i*n+j] or a[i+j*m], 
instead of a[i][j]



Express a 2D array 
using a 1D array
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8 3 7 4 1 2
0 2 1 5 0 3
1 8 6 4 2 1
3 4 8 1 0 2

m

n

a 2D array a[m][n]

“I want
to use …”

8 3 7 4 1 2 0 2 1 5 8 1 0 20 3

Expressions in C language
int *a;   a = malloc(sizeof(int)*m*n);

n

a[1][3]

a[1*n+3]

In this case, an element ai,j is a[i*n+j]



Two Data Formats

 We have more choices for 3D, 4D… arrays

[Q] Does the format affect the execution speed?
7

Row major format
• More natural for C 

programmers

Column major format
• BLAS library
• mm sample

ai,j⇒a[i*n+j]

ai,j⇒a[i+j*m] m

n



OpenMP Version of mm
(mm-omp)

 One of loops is parallelized
#pragma omp parallel private(i,l)
#pragma omp for

for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {

for (i = 0; i < m; i++) {
C[i+j*ldc] += A[i+l*lda] * B[l+j*ldb];

}  }   }
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← j loop is parallelized

What is “private” option for?
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Shared Variables &
Private Variables (1)
While OpenMP uses “shared memory model”, not all are shared

In default, variables are classified as follows
 Variables declared out of parallel region ⇒ Shared variables
 Variables declared inside parallel region ⇒ Private variables

{
int s = 1000;

#pragma omp parallel
{

int i;
i = func(s, omp_get_thread_num());
printf(“%d¥n”, i);

}
}

int func(int a, int b)
{

int rc = a+b;
return rc;

}

shared

private
private



Shared Variables &
Private Variables (2)
We let x, y be shared, and z be private
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gridDim.xは3、
blockDim.xは2
gridDim.xは3、
blockDim.xは2
gridDim.xは3、
blockDim.xは2
gridDim.xは3、
blockDim.xは2

x is 123
y is 456

z is 
15

z is 
4

z is 
7

z is 
4

z is 
21

z is 
9

 When a thread updates a shared variable, other threads 
are affected
 We should be careful and careful!

Single instance
for each x, y

Each thread has
its own instance for z



Pitfall in Nested Loops (1)
 The following sample looks ok, but there is a bug

 We do not see compile errors, but answers would be wrong 
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int i, j;
#pragma omp parallel
#pragma omp for
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {

…
} }

Both i, j are declared 
outside parallel region
Considered “shared”
It is a problem to share j

cf)
Thread A is executing i=5 loop
Thread B is executing i=8 loop

The executions should be independent
Each execution must include 
j=0, j=1…j=n-1 correctly
j must be private



Pitfall in Nested Loops (2)
Two modifications (Either is ok)
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int i;
#pragma omp parallel for
for (i = 0; i < m; i++) {
int j;   // j is private
for (j = 0; j < n; j++) {

…
} }

int i, j;
#pragma omp parallel for private(j)

// j is forcibly private
for (i = 0; i < m; i++) {

for (j = 0; j < n; j++) {
…

} }
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Performance of mm sample

 A TSUBAME3 node (Xeon E5-2680 v4 x2 = 28core)
 Speed is (2mnk/t)
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m=n=k=2048,
Varying # of threads

8 threads,
Varying m=n=k Should be constant 

“theoretically”. There 
are effects of cache
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OpenMP Version of mm 
(Again)

 One of loops is parallelized
#pragma omp parallel private(i,l)
#pragma omp for

for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {

for (i = 0; i < m; i++) {
C[i+j*ldc] += A[i+l*lda] * B[l+j*ldb];

}  }   }
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← j loop is parallelized

[Q] What if we parallelize other loops?
 i loop is ok for correct answers, but may be slow
 l loop causes wrong answers!



How Multiple Threads Work
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A

B

C

Simultaneous read
(in this case, A) is OK

Parallelizing j loop

Similarly, parallelizing 
i loop is ok

Parallelizing l loop (??)

A

B

C

Possible simultaneous write
 “Race condition” problem 

may occur. 
Answers may be wrong !!

j

l
l



“diffusion” Sample Program (1)

 Density of ink in each point vary according to 
time Simulated by computers
 cf) Weather forecast compute wind speed, 

temperature, air pressure…

An example of diffusion phenomena:
• Pour a drop of ink into a water glass

© 青木尊之

The ink spreads gradually, and finally the density 
becomes uniform   (Figure by Prof. T. Aoki)
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“diffusion” Sample Program (2)

 Execution：./diffusion [nt]
 nt: Number of time steps
 nx, ny: Space grid size

 nx=8192, ny=8192 (Fixed. See the code)
 How can we make them variables? (See mm sample)

 Compute Complexity：O(nx×ny×nt)

Available at ~endo-t-ac/ppcomp/19/diffusion/



Data Structures in diffusion

 Space to be simulated are divided into grids, and 
expressed by arrays (2D in this sample)

NX

NY

Time step t=0 t=1 t=20

• Array elements are computed via timestep, by using 
“previous” data



Stencil Computations
 A data point (x,y) at time t is computed using 

following data at time t-1 (previous data)
 point (x,y)
 “Neighbor” points of (x,y)

 Computations of similar type is called 
“stencil computation”

 The followings must be given beforehand
 All data at time step 0 (Initial condition)
 Data in “boundary” points for every time step

(Boundary condition) 19

time ttime t-1

Original meanings of
“stencil”

Points at 
boundary
require special
treatments



Double Buffering Technique
 A simple way is to make arrays for all time steps, but it 

consumes too much memory!
 It is sufficient to have “current” array and “previous” array. 

“Double buffers” are used for many times
An Array for
“even” steps

An Array for
“odd” steps

Compute t=0→t=1

Compute t=1→t=2

Compute t=2→t=3

※ Sample program uses a global variables
float data[2][NY][NX];
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How We Parallelize “diffusion” 
sample (Related to Assignment [O1])

The program mainly uses “for” loops. So “omp
parallel for” looks good.

There are 3 (t, x, y) loops. Which should be 
parallelized?

[Hint] Parallelizing one of spatial (x, y)  would be 
good. Spaces are divided into multiple threads

[Q] Parallelizing t loop is a not good idea. Why?



Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: May 9 (Thursday)

[O1] Parallelize “diffusion” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see No.3 slides or OCW-i.
22
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Next Class:
 OpenMP(3)
 “task parallelism” for programs with irregular 

structures
 sort: Quick sort sample
 Related to assignment [O2]



Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory
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TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal
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