
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. ４

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Shared Memory Parallel
Programming with OpenMP (2)

2

“mm” sample: Matrix Multiply

A: a (m×k) matrix, B: a (k×n)
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format

 Execution: ./mm [m] [n] [k]

CA

B

m

k

k

n

Available at ~endo-t-ac/ppcomp/19/mm/

Matrix Multiply Algorithm

 The innermost statement is executed for mnk times
 Compute Complexity：O(mnk)

 Computation speed (Flops) is obtained as 2mnk/t, where t is
execution time

3

for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {
Ci,j += Ai,l * Bl,j;

} } }

←For each row in C
←For each column in C
←For dot product

The innermost statement includes
2 (floating point) calculation

 [Q] What if loop order is changed?
 IJL order in above. JLI order in mm sample
 Number of operations does not change. But how is the speed?

4

Variable Length Arrays in
(Classical) C Language
 int a[n]; raises an error. How do we do?
 void *malloc(size_t size);

⇒ Allocates a memory region of size bytes from “heap region”,
and returns its head pointer

 When it becomes unnecessary, it should be discarded with
free() function

int *a;
a = (int *)malloc(sizeof(int)*n);

… a[i] can be used …

free(a);

int a[5];

… a[i] can be used …

A fixed length array

※ Exceptionally, C99 specification includes variable length arrays

array length

A variable length array

5

How We Do for Multiple
Dimensional Arrays
int a[m][n]; raises an error. How do we do?
Not in a straightforward way. Instead, we do either of:

(1) Use a pointer of pointers
 We malloc m 1D arrays for every row (each has n length)
 We malloc 1D array of m length to store the above pointers

(2) Use a 1D array with length of m×n
(mm sample uses this method)

 To access an array element, we should use a[i*n+j] or a[i+j*m],
instead of a[i][j]

Express a 2D array
using a 1D array

6

8 3 7 4 1 2
0 2 1 5 0 3
1 8 6 4 2 1
3 4 8 1 0 2

m

n

a 2D array a[m][n]

“I want
to use …”

8 3 7 4 1 2 0 2 1 5 8 1 0 20 3

Expressions in C language
int *a; a = malloc(sizeof(int)*m*n);

n

a[1][3]

a[1*n+3]

In this case, an element ai,j is a[i*n+j]

Two Data Formats

 We have more choices for 3D, 4D… arrays

[Q] Does the format affect the execution speed?
7

Row major format
• More natural for C

programmers

Column major format
• BLAS library
• mm sample

ai,j⇒a[i*n+j]

ai,j⇒a[i+j*m] m

n

OpenMP Version of mm
(mm-omp)

 One of loops is parallelized
#pragma omp parallel private(i,l)
#pragma omp for

for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {

for (i = 0; i < m; i++) {
C[i+j*ldc] += A[i+l*lda] * B[l+j*ldb];

} } }

8

← j loop is parallelized

What is “private” option for?

9

Shared Variables &
Private Variables (1)
While OpenMP uses “shared memory model”, not all are shared

In default, variables are classified as follows
 Variables declared out of parallel region ⇒ Shared variables
 Variables declared inside parallel region ⇒ Private variables

{
int s = 1000;

#pragma omp parallel
{

int i;
i = func(s, omp_get_thread_num());
printf(“%d¥n”, i);

}
}

int func(int a, int b)
{

int rc = a+b;
return rc;

}

shared

private
private

Shared Variables &
Private Variables (2)
We let x, y be shared, and z be private

10

gridDim.xは3、
blockDim.xは2
gridDim.xは3、
blockDim.xは2
gridDim.xは3、
blockDim.xは2
gridDim.xは3、
blockDim.xは2

x is 123
y is 456

z is
15

z is
4

z is
7

z is
4

z is
21

z is
9

 When a thread updates a shared variable, other threads
are affected
 We should be careful and careful!

Single instance
for each x, y

Each thread has
its own instance for z

Pitfall in Nested Loops (1)
 The following sample looks ok, but there is a bug

 We do not see compile errors, but answers would be wrong 

11

int i, j;
#pragma omp parallel
#pragma omp for
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {

…
} }

Both i, j are declared
outside parallel region
Considered “shared”
It is a problem to share j

cf)
Thread A is executing i=5 loop
Thread B is executing i=8 loop

The executions should be independent
Each execution must include
j=0, j=1…j=n-1 correctly
j must be private

Pitfall in Nested Loops (2)
Two modifications (Either is ok)

12

int i;
#pragma omp parallel for
for (i = 0; i < m; i++) {
int j; // j is private
for (j = 0; j < n; j++) {

…
} }

int i, j;
#pragma omp parallel for private(j)

// j is forcibly private
for (i = 0; i < m; i++) {

for (j = 0; j < n; j++) {
…

} }

0

5

10

15

20

25

30

256 512 1024 2048 4096 8192

Sp
ee

d
(G

Fl
op

s)

m=n=k

4 threads 8 threads

Performance of mm sample

 A TSUBAME3 node (Xeon E5-2680 v4 x2 = 28core)
 Speed is (2mnk/t)

13

m=n=k=2048,
Varying # of threads

8 threads,
Varying m=n=k Should be constant

“theoretically”. There
are effects of cache

0
10
20
30
40
50
60
70

0 10 20 30

Sp
ee

d
(G

Fl
op

s)

Number of threads

OpenMP Version of mm
(Again)

 One of loops is parallelized
#pragma omp parallel private(i,l)
#pragma omp for

for (j = 0; j < n; j++) {
for (l = 0; l < k; l++) {

for (i = 0; i < m; i++) {
C[i+j*ldc] += A[i+l*lda] * B[l+j*ldb];

} } }

14

← j loop is parallelized

[Q] What if we parallelize other loops?
 i loop is ok for correct answers, but may be slow
 l loop causes wrong answers!

How Multiple Threads Work

15

A

B

C

Simultaneous read
(in this case, A) is OK

Parallelizing j loop

Similarly, parallelizing
i loop is ok

Parallelizing l loop (??)

A

B

C

Possible simultaneous write
 “Race condition” problem

may occur.
Answers may be wrong !!

j

l
l

“diffusion” Sample Program (1)

 Density of ink in each point vary according to
time Simulated by computers
 cf) Weather forecast compute wind speed,

temperature, air pressure…

An example of diffusion phenomena:
• Pour a drop of ink into a water glass

© 青木尊之

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

17

“diffusion” Sample Program (2)

 Execution：./diffusion [nt]
 nt: Number of time steps
 nx, ny: Space grid size

 nx=8192, ny=8192 (Fixed. See the code)
 How can we make them variables? (See mm sample)

 Compute Complexity：O(nx×ny×nt)

Available at ~endo-t-ac/ppcomp/19/diffusion/

Data Structures in diffusion

 Space to be simulated are divided into grids, and
expressed by arrays (2D in this sample)

NX

NY

Time step t=0 t=1 t=20

• Array elements are computed via timestep, by using
“previous” data

Stencil Computations
 A data point (x,y) at time t is computed using

following data at time t-1 (previous data)
 point (x,y)
 “Neighbor” points of (x,y)

 Computations of similar type is called
“stencil computation”

 The followings must be given beforehand
 All data at time step 0 (Initial condition)
 Data in “boundary” points for every time step

(Boundary condition) 19

time ttime t-1

Original meanings of
“stencil”

Points at
boundary
require special
treatments

Double Buffering Technique
 A simple way is to make arrays for all time steps, but it

consumes too much memory!
 It is sufficient to have “current” array and “previous” array.

“Double buffers” are used for many times
An Array for
“even” steps

An Array for
“odd” steps

Compute t=0→t=1

Compute t=1→t=2

Compute t=2→t=3

※ Sample program uses a global variables
float data[2][NY][NX];

21

How We Parallelize “diffusion”
sample (Related to Assignment [O1])

The program mainly uses “for” loops. So “omp
parallel for” looks good.

There are 3 (t, x, y) loops. Which should be
parallelized?

[Hint] Parallelizing one of spatial (x, y) would be
good. Spaces are divided into multiple threads

[Q] Parallelizing t loop is a not good idea. Why?

Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: May 9 (Thursday)

[O1] Parallelize “diffusion” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see No.3 slides or OCW-i.
22

23

Next Class:
 OpenMP(3)
 “task parallelism” for programs with irregular

structures
 sort: Quick sort sample
 Related to assignment [O2]

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

24

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. ４
	“mm” sample: Matrix Multiply
	Matrix Multiply Algorithm
	Variable Length Arrays in (Classical) C Language
	How We Do for Multiple Dimensional Arrays
	Express a 2D array �using a 1D array
	Two Data Formats
	OpenMP Version of mm�(mm-omp)
	Shared Variables &�Private Variables (1)
	Shared Variables &�Private Variables (2)
	Pitfall in Nested Loops (1)
	Pitfall in Nested Loops (2)
	Performance of mm sample
	OpenMP Version of mm (Again)
	How Multiple Threads Work
	“diffusion” Sample Program (1)
	“diffusion” Sample Program (2)
	Data Structures in diffusion
	Stencil Computations
	Double Buffering Technique
	How We Parallelize “diffusion” sample (Related to Assignment [O1])
	Assignments in OpenMP Part�(Abstract)
	Next Class:
	Information

