2019

Practical Parallel Computing
(EERMIEFH A E1—T12))
No. 14

GPU Programming (4)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Parallelization of mm Sample

(related to [G2])

In mm, we can compute different C elements in parallel

CUDA (mm1-cuda)
e\Ve can create many many threads

o1 thread computes 1 row
o We use m threads

> This is not the unique way

We have seen that this is
slower than OpenACC version
® -- Why?

« The number of threads (m)
is still insufficient on GPUs

« |If (1thread = 1element), we

can use m*n threads

Creating Threads with 2D/3D IDs

e Now we want to make m*n (may be >1,000,000) thre

<<<(m*n)/BS, BS>>> is ok, but coding is bothersome

e On CUDA, gridDim and blockDim may have “dim3” type,
3D vector structure with x, y, z fields

(QeQ
REYER

)
VREYKY

\’@ ‘R ’@

RRY

REYRY
RIYY,

)
RAYKY

RRY

RIYY,

RIYR)

> This example is the case of 2D (Z dimensions are 1)

ads

cf) func <<< dim3(4,2,1), dim3(3,2,1) >>> (); > 48 threads
299
RRK
RVRAY

Thread IDs in multi-dimensional cases

In the case of func <<< dim3(4,2,1), dim3(3,2,1) >>> ();

EERICERIEERE
222/999/899)9
e
R

299280 RA9
[@ag/ear)leaq

e Forevery thread,
gridDim.x=4, gridDim.y=2, gridDim.z=1
blockDim.x=3, blockDim.y=2, blockDim.z=1
e For the thread with blue mark,
blockldx.x=1, blockldx.y=1, blockldx.z=0
threadldx.x=2, threadldx.y=0, threadldx.z=0

Threads in mm2-cuda Sample

e The total number of threads are m*n

e How do we determine gridDim, blockDim?
<<<m, n>>> does not work for constraints explained later

e Here, we use fixed blockDim (x=16, y=16 - 256 threads per block)
Then gridDim is computed from M, N
e X is mapped to column index, y is mapped to row index (%)

M >
289) ||
aeslagel | — V|| ©
N I = |

N

/ X A different mapping is possible, |
but inefficient (explained later)

DOD
WO

(oD

Code in mm2-cuda

gridDim blockDim
A \
! | \

matmul_kernel<<<dim3(m /BS, n/BS, 1), dm3(BS, BS, 1)>>>
(DA, DB, DC, m, n, k);

BS=16 in this sample
Actually, we use rounding up

In matmul_kernel function,

j = blockldx.y * blockDim.y + threadldx.y;
| = blockldx.x * blockDim.x + threadldx.x;
This thread computes C; < Only 1 for-loop

(XY
= XXX
Comparing speed of 1T
o0
mm-acc, mm1-cuda, mm2-cuda :
m=n mm-acc mmi-cuda mmi-cuda mm2-cuda mm2-cuda
=k (thread (thread (x = row, (x = col,
=row) =col) y = col) Yy = row)

1000 143 14 14 185 105

(Gflops) (Gflops) (Gflops) (Gflops) (Gflops)

2000 173 27 24 232 ?

4000 164 50 29 246 ?

6000 138 70 31 240 ?

8000 137 85 32 243 ? \
Measured with a P100 GPU on TSUBAME3 Please make this
CUDA version is compiled with —arch=sm_60 version and compare
option (optional in [G2])

Data transfer costs are included)

CUDA Rules on Number of
Threads

func<<<gs, bs>>> (...); is interpreted as
func<<<dim3(gs,1,1), dim3(bs,1,1)>>> (...);

gridDim blockDim

\
! k | [\

func<<<dim3(gx, gy, gz), dim3(b>(7y, bz)>>> (...);

< 231_
= 271 < 1024 =64

<
= 69935 Also, bx*by*bz must be =1024

BlockDim has severe limitation ®
Cf) <<<m, n>>> causes an error if n>1024 ® .

Discussion on parallel “diffusion”
(related to [G1])

An Array for “even” steps Dguble An Array for “odd” steps

YT TYYT YT buffering
0000000008
0000080088;

N
506660 0@)
Lol IS ~

NY| T3 T L TR
Tl T T TICS

NX -
e Speed is improved by assignment: 1 Thread = 1 Point
(optional)

Considering gridDim/blockDim | ¢

e Points [1, NX-1) X [1, NY-1), excluded
boundary, should be computed.
There are choices: (A)
(A) Create NX x NY threads bs
(B) Create (NX-2) x (NY-2) threads

e For gridDim/blockDim, using “dim3” type
would be a good idea

bs

int BS =16
.<<< dim3 (NX/BS, NY/BS, 1),
dim3 (BS,BS, 1) >>>.. OO OO OO0

eActually, we need rounding up and LR
excluding extra threads

o“mm2-cuda” sample is a hint

e Again, <<<NX, NY>>> causes error
e BS must be 1024 or less

Mapping between Threads and | 3:¢
Data

diffusion:
Matrices has 2D array has
column-major format row-major format
CUDA threads : i
C s o
NY
M ’ [|
vy Y \
N NX

7 = blockIdx.y * blockDim.y + y = blockIdx.y * blockDim.y +
threadIdx.y; threadIdx.y;
i = blockIdx.x * blockDim.x + X = blockIdx.x * blockDim.x +
threadIdx.x; threadIdx.x;

: This thread computes Cif : This thread computes[y] [x]

[Q] What if the dimensions are exchanged?

Discussions on CUDA Speed

e How should block-size determined?

When creating 1,000,000 threads,

<<<1, 1000000>>> causes an error
* blockDim must be <= 1024

<<<1000000, 1>>> can work, but slow - Why?

e How should each thread access memory?

e In mm2-cuda, (x = row,y = col) and (x = col, y = row)
shows different speed

Knowledge of GPU architecture helps understanding
of speeds 12

Why Do We Have to Specify both | ss:.

gridDim and blockDim? oo
e and why did NVIDIA decide so?
- Hierarchical structure of GPU processor is considered

ERCERICEREEE
588
299|998
2201298

Structure of P100 GPU
(16nm, 15Billion transistors)

1 GPU = 56 SMX *
1 SMX = 64 CUDA core R

- 1GPU=3,584 CUDA cores

Mapping between Threads and
Cores

e 1 thread blocks (or more) run on 1 SMX
- At least 56 blocks are needed to use all SMXs on P100
> gridDim (gx*gy*gz) should be =56

e 1 thread (or more) run on a CUDA core

> At least 56°64=3584 threads in total are needed to use all CUDA
cores on P100

> Total threads (gx*gy*gz * bx*by*bz) should be =3584
e 32 consective threads (in a block) are batched (called a
warp) and scheduled
- At least 32 threads per block are needed for performance
> blockDim (bx*by*bz) should be =32

14

Wan: Internal Execution Unit
t

hread < warp < thread block < grid

-
Q 99 .. (O

/R LU

eThreads in a thread block are internally divided into “warp”, a group of

contiguous 32 threads

e32 threads in a warp always are executed synchronously
e They execute the same instruction simultaneously

eThere is only one program counter for 32 threads! - Structure of a GPU core
is simplified

Threadldx.x 0O 1 mwmmmi 31 32 33 m=mmmi (3

15

Observations due to Warps

e If number of threads per block (blockDim) is not 32 x n, it
IS inefficient
Even if blockDim=1, the system creates a warp for it

e Characteristics in memory addresses accessed by
threads in a warp affect the performance
Coalesced accesses are fast

‘sl < In multi-dimensional cases (blockDim.y>1 or

3
N

= blockDim.z>1), “neighborhood” is defined by x-
@E®) dimension

16

Coalesced Access

e \When threads in a warp access “neighbor” address

on memory (coalesced access), it is more efficient

Coalesced access
- Faster

Non-coalesced access
- Slower

Accesses in mm2-cuda Sample

e In mm2-cuda,
e (x=row,y = col) = coalesced and fast
e (x=col, y=row) > non-coalesced and slow

We should see "what data are accessed by threads in a
warp simultaneously

Fast 1 Slow
\A A/

\AA A/

18

matrices in column-major format

More Things to Study

e Overlapping data transfer and computation by using
cudaMemcpyAsync()

e Performance impact by divergent branch
e Using CUDA shared memory

fast and small memory than device memory

e Unified memory in recent CUDA
cudaMemcpy can be omitted for automatic data transfer

e Using multiple GPUs towards petascale computation
MPI+CUDA!

e More and more...

19

Official Documents s

CUDA
ehttps://docs.nvidia.com/cuda/
OpenACC

ehttps://www.openacc.org

- Resources
- Spec

20

We Have Learned

e Part 1: Shared memory parallel programming with
OpenMP

e Part 2: Distributed memory parallel programming with
MPI

e Part 3: GPU programming with OpenACC and CUDA

Many common strategies for speed-up

e To understand source of bottleneck

e Reducing computation and communication

e Overlapping computation and communication
e To understand property of architecture

21

Assignments in GPU Part

(Abstract)

Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

(G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “'mm-cuda” (mm1-
cuda and mmz2-cuda) in detail

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

22

Notes in Submission

e Submit the followings via OCW-i
(1) A report document
A PDF or MS-Word file, 2 pages or more
in English or Japanese (B A&+ 0k)
(2) Source code files of your program
If you use multiple files, you can use “.zip” or “.tgz”
e Report should include:
Which problem you have chosen
How you parallelized

It is even better if you mention efforts for high performance or new
functions

Performance evaluation on TSUBAME
With varying number of processor cores
With varying problem sizes
Discussion with your findings
Other machines than TSUBAME are ok, if available

23

Information

Lecture
eSlides are uploaded in OCW
www.ocw.titech.ac.jp = search “2019 practical parallel computing”
eAssignments information/submission site are in OCW-i
Login portal.titech.ac.jp > OCW/OCW:-i
elnquiry
ppcomp@el.gsic.titech.ac.jp
eSample programs
Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

TSUBAME
e Official web including Users guide
www.t3.gsic.titech.ac.jp

e Your account information
Login portal.titech.ac.jp > TSUBAME portal

24

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 14
	Parallelization of mm Sample�(related to [G2])
	Creating Threads with 2D/3D IDs
	Thread IDs in multi-dimensional cases
	Threads in mm2-cuda Sample
	Code in mm2-cuda
	Comparing speed of �mm-acc, mm1-cuda, mm2-cuda
	CUDA Rules on Number of Threads
	Discussion on parallel “diffusion” �(related to [G1])
	Considering gridDim/blockDim
	Mapping between Threads and Data
	Discussions on CUDA Speed
	Why Do We Have to Specify both gridDim and blockDim?
	Mapping between Threads and Cores
	Warp: Internal Execution Unit
	Observations due to Warps
	Coalesced Access
	Accesses in mm2-cuda Sample
	More Things to Study
	Official Documents
	We Have Learned
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Information

