
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 14

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (4)

Parallelization of mm Sample
(related to [G2])

2

In mm, we can compute different C elements in parallel

CUDA (mm1-cuda)
We can create many many threads
1 thread computes 1 row

 We use m threads

B

CA

※ This is not the unique way

We have seen that this is
slower than OpenACC version
 -- Why?

• The number of threads (m)
is still insufficient on GPUs

• If (1thread = 1element), we
can use m*n threadsm

Creating Threads with 2D/3D IDs
 Now we want to make m*n (may be >1,000,000) threads

 <<<(m*n)/BS, BS>>> is ok, but coding is bothersome
 On CUDA, gridDim and blockDim may have “dim3” type,

3D vector structure with x, y, z fields

3

cf) func <<< dim3(4,2,1), dim3(3,2,1) >>> (); 48 threads

※ This example is the case of 2D (Z dimensions are 1)

Thread IDs in multi-dimensional cases

 For every thread,
gridDim.x=4, gridDim.y=2, gridDim.z=1
blockDim.x=3, blockDim.y=2, blockDim.z=1

 For the thread with blue mark,
blockIdx.x=1, blockIdx.y=1, blockIdx.z=0
threadIdx.x=2, threadIdx.y=0, threadIdx.z=0

4

In the case of func <<< dim3(4,2,1), dim3(3,2,1) >>> ();

Threads in mm2-cuda Sample
 The total number of threads are m*n
 How do we determine gridDim, blockDim?

 <<<m, n>>> does not work for constraints explained later

 Here, we use fixed blockDim (x=16, y=16 256 threads per block)
 Then gridDim is computed from M, N

 x is mapped to column index, y is mapped to row index (※)

5

M

N

C

N

M

※ A different mapping is possible,
but inefficient (explained later)

Code in mm2-cuda

6

matmul_kernel<<<dim3(m / BS, n / BS, 1), dim3(BS, BS, 1)>>>
(DA, DB, DC, m, n, k);

BS=16 in this sample
Actually, we use rounding up

In matmul_kernel function,
:

j = blockIdx.y * blockDim.y + threadIdx.y;
i = blockIdx.x * blockDim.x + threadIdx.x;

: This thread computes Cij Only 1 for-loop

gridDim blockDim

Comparing speed of
mm-acc, mm1-cuda, mm2-cuda
m=n
=k

mm-acc mm1-cuda
(thread
=row)

mm1-cuda
(thread
=col)

mm2-cuda
(x = row,
y = col)

mm2-cuda
(x = col,
y = row)

1000 143
(Gflops)

14
(Gflops)

14
(Gflops)

185
(Gflops)

105
(Gflops)

2000 173 27 24 232 ?

4000 164 50 29 246 ?

6000 138 70 31 240 ?

8000 137 85 32 243 ?

7

• Measured with a P100 GPU on TSUBAME3
• CUDA version is compiled with –arch=sm_60

option
• Data transfer costs are included

Please make this
version and compare
(optional in [G2])

CUDA Rules on Number of
Threads

8

func<<<dim3(gx, gy, gz), dim3(bx, by, bz)>>> (...);

≦ 231-1
≦ 65535

≦ 1024 ≦64
Also, bx*by*bz must be ≦1024

BlockDim has severe limitation

gridDim blockDim

Cf) <<<m, n>>> causes an error if n>1024

func<<<gs, bs>>> (...); is interpreted as
func<<<dim3(gs,1,1), dim3(bs,1,1)>>> (...);

9

Discussion on parallel “diffusion”
(related to [G1])

 Speed is improved by assignment: 1 Thread = 1 Point
(optional)

Double
buffering

An Array for “even” steps An Array for “odd” steps

NX

NY

Considering gridDim/blockDim
 Points [1, NX-1)×[1, NY-1), excluded

boundary, should be computed.
There are choices:
(A) Create NX x NY threads
(B) Create (NX-2) x (NY-2) threads

 For gridDim/blockDim, using “dim3” type
would be a good idea

Actually, we need rounding up and
excluding extra threads
“mm2-cuda” sample is a hint

 Again, <<<NX, NY>>> causes error
 BS must be 1024 or less

10

int BS =16
…<<< dim3(NX/BS, NY/BS, 1),
dim3(BS,BS,1)>>>…

bs

bs
(A)

(B)

Mapping between Threads and
Data

C

N

M

mm
Matrices has
column-major format

diffusion:
2D array has
row-major format

CUDA threads

??

j = blockIdx.y * blockDim.y +
threadIdx.y;
i = blockIdx.x * blockDim.x +
threadIdx.x;
: This thread computes Cij

NX

NY

y = blockIdx.y * blockDim.y +
threadIdx.y;
x = blockIdx.x * blockDim.x +
threadIdx.x;
: This thread computes[y][x]

[Q] What if the dimensions are exchanged?

Discussions on CUDA Speed
 How should block-size determined?

 How should each thread access memory?
 In mm2-cuda, (x = row,y = col) and (x = col, y = row)

shows different speed

12

When creating 1,000,000 threads,
• <<<1, 1000000>>> causes an error

• blockDim must be <= 1024
• <<<1000000, 1>>> can work, but slowWhy?

Knowledge of GPU architecture helps understanding
of speeds

Why Do We Have to Specify both
gridDim and blockDim?

13

 and why did NVIDIA decide so?
 Hierarchical structure of GPU processor is considered

1 GPU = 56 SMX
1 SMX = 64 CUDA core

 1GPU=3,584 CUDA cores

Structure of P100 GPU
(16nm, 15Billion transistors)

Mapping between Threads and
Cores

14

 1 thread blocks (or more) run on 1 SMX
 At least 56 blocks are needed to use all SMXs on P100
 gridDim (gx*gy*gz) should be ≧56

 1 thread (or more) run on a CUDA core
 At least 56*64=3584 threads in total are needed to use all CUDA

cores on P100
 Total threads (gx*gy*gz * bx*by*bz) should be ≧3584

 32 consective threads (in a block) are batched (called a
warp) and scheduled
 At least 32 threads per block are needed for performance
 blockDim (bx*by*bz) should be ≧32

Warp: Internal Execution Unit

Threads in a thread block are internally divided into “warp”, a group of
contiguous 32 threads
32 threads in a warp always are executed synchronously

They execute the same instruction simultaneously
There is only one program counter for 32 threads! Structure of a GPU core
is simplified

15

thread < warp < thread block < grid

ThreadIdx.x 0 1 31 32 33 63

Time

Observations due to Warps
 If number of threads per block (blockDim) is not 32 x n, it

is inefficient
 Even if blockDim=1, the system creates a warp for it

 Characteristics in memory addresses accessed by
threads in a warp affect the performance
 Coalesced accesses are fast

16

※ In multi-dimensional cases (blockDim.y>1 or
blockDim.z>1), “neighborhood” is defined by x-
dimension

Coalesced Access
 When threads in a warp access “neighbor” address

on memory (coalesced access), it is more efficient

Coalesced access
 Faster

Non-coalesced access
 Slower

Accesses in mm2-cuda Sample
 In mm2-cuda,

 (x = row,y = col) coalesced and fast
 (x = col, y = row) non-coalesced and slow

18

We should see “what data are accessed by threads in a
warp simultaneously

matrices in column-major format

Fast Slow

More Things to Study
 Overlapping data transfer and computation by using

cudaMemcpyAsync()
 Performance impact by divergent branch
 Using CUDA shared memory

 fast and small memory than device memory
 Unified memory in recent CUDA

 cudaMemcpy can be omitted for automatic data transfer
 Using multiple GPUs towards petascale computation

 MPI+CUDA!
 More and more…

19

Official Documents

20

CUDA
https://docs.nvidia.com/cuda/
OpenACC
https://www.openacc.org
 Resources
 Spec

We Have Learned
 Part 1: Shared memory parallel programming with

OpenMP
 Part 2: Distributed memory parallel programming with

MPI
 Part 3: GPU programming with OpenACC and CUDA

Many common strategies for speed-up
 To understand source of bottleneck
 Reducing computation and communication
 Overlapping computation and communication
 To understand property of architecture

21

22

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” (mm1-
cuda and mm2-cuda) in detail

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

23

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

24

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 14
	Parallelization of mm Sample�(related to [G2])
	Creating Threads with 2D/3D IDs
	Thread IDs in multi-dimensional cases
	Threads in mm2-cuda Sample
	Code in mm2-cuda
	Comparing speed of �mm-acc, mm1-cuda, mm2-cuda
	CUDA Rules on Number of Threads
	Discussion on parallel “diffusion” �(related to [G1])
	Considering gridDim/blockDim
	Mapping between Threads and Data
	Discussions on CUDA Speed
	Why Do We Have to Specify both gridDim and blockDim?
	Mapping between Threads and Cores
	Warp: Internal Execution Unit
	Observations due to Warps
	Coalesced Access
	Accesses in mm2-cuda Sample
	More Things to Study
	Official Documents
	We Have Learned
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Information

