
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 14

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (4)

Parallelization of mm Sample
(related to [G2])

2

In mm, we can compute different C elements in parallel

CUDA (mm1-cuda)
We can create many many threads
1 thread computes 1 row

 We use m threads

B

CA

※ This is not the unique way

We have seen that this is
slower than OpenACC version
 -- Why?

• The number of threads (m)
is still insufficient on GPUs

• If (1thread = 1element), we
can use m*n threadsm

Creating Threads with 2D/3D IDs
 Now we want to make m*n (may be >1,000,000) threads

 <<<(m*n)/BS, BS>>> is ok, but coding is bothersome
 On CUDA, gridDim and blockDim may have “dim3” type,

3D vector structure with x, y, z fields

3

cf) func <<< dim3(4,2,1), dim3(3,2,1) >>> (); 48 threads

※ This example is the case of 2D (Z dimensions are 1)

Thread IDs in multi-dimensional cases

 For every thread,
gridDim.x=4, gridDim.y=2, gridDim.z=1
blockDim.x=3, blockDim.y=2, blockDim.z=1

 For the thread with blue mark,
blockIdx.x=1, blockIdx.y=1, blockIdx.z=0
threadIdx.x=2, threadIdx.y=0, threadIdx.z=0

4

In the case of func <<< dim3(4,2,1), dim3(3,2,1) >>> ();

Threads in mm2-cuda Sample
 The total number of threads are m*n
 How do we determine gridDim, blockDim?

 <<<m, n>>> does not work for constraints explained later

 Here, we use fixed blockDim (x=16, y=16  256 threads per block)
 Then gridDim is computed from M, N

 x is mapped to column index, y is mapped to row index (※)

5

M

N

C

N

M

※ A different mapping is possible,
but inefficient (explained later)

Code in mm2-cuda

6

matmul_kernel<<<dim3(m / BS, n / BS, 1), dim3(BS, BS, 1)>>>
(DA, DB, DC, m, n, k);

BS=16 in this sample
Actually, we use rounding up

In matmul_kernel function,
:

j = blockIdx.y * blockDim.y + threadIdx.y;
i = blockIdx.x * blockDim.x + threadIdx.x;

: This thread computes Cij  Only 1 for-loop

gridDim blockDim

Comparing speed of
mm-acc, mm1-cuda, mm2-cuda
m=n
=k

mm-acc mm1-cuda
(thread
=row)

mm1-cuda
(thread
=col)

mm2-cuda
(x = row,
y = col)

mm2-cuda
(x = col,
y = row)

1000 143
(Gflops)

14
(Gflops)

14
(Gflops)

185
(Gflops)

105
(Gflops)

2000 173 27 24 232 ?

4000 164 50 29 246 ?

6000 138 70 31 240 ?

8000 137 85 32 243 ?

7

• Measured with a P100 GPU on TSUBAME3
• CUDA version is compiled with –arch=sm_60

option
• Data transfer costs are included

Please make this
version and compare
(optional in [G2])

CUDA Rules on Number of
Threads

8

func<<<dim3(gx, gy, gz), dim3(bx, by, bz)>>> (...);

≦ 231-1
≦ 65535

≦ 1024 ≦64
Also, bx*by*bz must be ≦1024

BlockDim has severe limitation 

gridDim blockDim

Cf) <<<m, n>>> causes an error if n>1024 

func<<<gs, bs>>> (...); is interpreted as
func<<<dim3(gs,1,1), dim3(bs,1,1)>>> (...);

9

Discussion on parallel “diffusion”
(related to [G1])

 Speed is improved by assignment: 1 Thread = 1 Point
(optional)

Double
buffering

An Array for “even” steps An Array for “odd” steps

NX

NY

Considering gridDim/blockDim
 Points [1, NX-1)×[1, NY-1), excluded

boundary, should be computed.
There are choices:
(A) Create NX x NY threads
(B) Create (NX-2) x (NY-2) threads

 For gridDim/blockDim, using “dim3” type
would be a good idea

Actually, we need rounding up and
excluding extra threads
“mm2-cuda” sample is a hint

 Again, <<<NX, NY>>> causes error
 BS must be 1024 or less

10

int BS =16
…<<< dim3(NX/BS, NY/BS, 1),
dim3(BS,BS,1)>>>…

bs

bs
(A)

(B)

Mapping between Threads and
Data

C

N

M

mm
Matrices has
column-major format

diffusion:
2D array has
row-major format

CUDA threads

??

j = blockIdx.y * blockDim.y +
threadIdx.y;
i = blockIdx.x * blockDim.x +
threadIdx.x;
: This thread computes Cij

NX

NY

y = blockIdx.y * blockDim.y +
threadIdx.y;
x = blockIdx.x * blockDim.x +
threadIdx.x;
: This thread computes[y][x]

[Q] What if the dimensions are exchanged?

Discussions on CUDA Speed
 How should block-size determined?

 How should each thread access memory?
 In mm2-cuda, (x = row,y = col) and (x = col, y = row)

shows different speed

12

When creating 1,000,000 threads,
• <<<1, 1000000>>> causes an error

• blockDim must be <= 1024
• <<<1000000, 1>>> can work, but slowWhy?

Knowledge of GPU architecture helps understanding
of speeds

Why Do We Have to Specify both
gridDim and blockDim?

13

 and why did NVIDIA decide so?
 Hierarchical structure of GPU processor is considered

1 GPU = 56 SMX
1 SMX = 64 CUDA core

 1GPU=3,584 CUDA cores

Structure of P100 GPU
(16nm, 15Billion transistors)

Mapping between Threads and
Cores

14

 1 thread blocks (or more) run on 1 SMX
 At least 56 blocks are needed to use all SMXs on P100
 gridDim (gx*gy*gz) should be ≧56

 1 thread (or more) run on a CUDA core
 At least 56*64=3584 threads in total are needed to use all CUDA

cores on P100
 Total threads (gx*gy*gz * bx*by*bz) should be ≧3584

 32 consective threads (in a block) are batched (called a
warp) and scheduled
 At least 32 threads per block are needed for performance
 blockDim (bx*by*bz) should be ≧32

Warp: Internal Execution Unit

Threads in a thread block are internally divided into “warp”, a group of
contiguous 32 threads
32 threads in a warp always are executed synchronously

They execute the same instruction simultaneously
There is only one program counter for 32 threads!  Structure of a GPU core
is simplified

15

thread < warp < thread block < grid

ThreadIdx.x 0 1 31 32 33 63

Time

Observations due to Warps
 If number of threads per block (blockDim) is not 32 x n, it

is inefficient
 Even if blockDim=1, the system creates a warp for it

 Characteristics in memory addresses accessed by
threads in a warp affect the performance
 Coalesced accesses are fast

16

※ In multi-dimensional cases (blockDim.y>1 or
blockDim.z>1), “neighborhood” is defined by x-
dimension

Coalesced Access
 When threads in a warp access “neighbor” address

on memory (coalesced access), it is more efficient

Coalesced access
 Faster

Non-coalesced access
 Slower

Accesses in mm2-cuda Sample
 In mm2-cuda,

 (x = row,y = col)  coalesced and fast
 (x = col, y = row)  non-coalesced and slow

18

We should see “what data are accessed by threads in a
warp simultaneously

matrices in column-major format

Fast Slow

More Things to Study
 Overlapping data transfer and computation by using

cudaMemcpyAsync()
 Performance impact by divergent branch
 Using CUDA shared memory

 fast and small memory than device memory
 Unified memory in recent CUDA

 cudaMemcpy can be omitted for automatic data transfer
 Using multiple GPUs towards petascale computation

 MPI+CUDA!
 More and more…

19

Official Documents

20

CUDA
https://docs.nvidia.com/cuda/
OpenACC
https://www.openacc.org
 Resources
 Spec

We Have Learned
 Part 1: Shared memory parallel programming with

OpenMP
 Part 2: Distributed memory parallel programming with

MPI
 Part 3: GPU programming with OpenACC and CUDA

Many common strategies for speed-up
 To understand source of bottleneck
 Reducing computation and communication
 Overlapping computation and communication
 To understand property of architecture

21

22

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” (mm1-
cuda and mm2-cuda) in detail

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

23

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

24

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 14
	Parallelization of mm Sample�(related to [G2])
	Creating Threads with 2D/3D IDs
	Thread IDs in multi-dimensional cases
	Threads in mm2-cuda Sample
	Code in mm2-cuda
	Comparing speed of �mm-acc, mm1-cuda, mm2-cuda
	CUDA Rules on Number of Threads
	Discussion on parallel “diffusion” �(related to [G1])
	Considering gridDim/blockDim
	Mapping between Threads and Data
	Discussions on CUDA Speed
	Why Do We Have to Specify both gridDim and blockDim?
	Mapping between Threads and Cores
	Warp: Internal Execution Unit
	Observations due to Warps
	Coalesced Access
	Accesses in mm2-cuda Sample
	More Things to Study
	Official Documents
	We Have Learned
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Information

