
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 13

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (3)

Comparing OpenMP/OpenACC/CUDA
OpenMP OpenACC CUDA

Processors CPU CPU+GPU CPU+GPU
File extension .c, .cc .c, .cc .cu

To start parallel
(GPU) region

#pragma omp
parallel

#pragma acc kernels func<<<…, …>>>()

To specify # of
threads

export OMP_NUM
_THREADS=…

(num_gangs,
vector_length etc)

func<<<…, …>>>()

Derisable # of
threads

of CPU cores or
less

of GPU cores or “more”

To get thread ID omp_thread_num() - blockIdx, threadIdx
Parallel for loop #pragma omp for #pragma acc loop -

Task parallel #pragma omp task - -
To allocate device

memory
- #pragma acc data cudaMalloc()

To copy to/from
device memory

- #pragma acc data cudaMemcpy()

Function on GPU - #pragma acc routine __global__,__device__
2

※ “# of XXX” = “The number of XXX”

Calling A GPU Kernel Function
from CPU
 A region executed by GPU must be a distinct function

 called a GPU kernel function

3

[CPU side]

func<<<20, 5>>>(…); __global__ void func(…)
{

:
return;

}

[GPU side]call

return
of thread blocks
of threads per block
In this case, 20x5=100
threads run on GPU

Threads in CUDA

cf) func <<< 4, 3 >>> ();  12 threads

4

A thread blockA grid A thread

Number of thread blocks
= gridDim

Number of threads per block
= blockDim

CUDA: Specify 2 numbers (at least) for number of threads,
when calling a GPU kernel function

The reason is related to GPU hardware
Thread block ⇔ SMX, Thread ⇔ CUDA core

To See Who am I
 By reading the following special variables, each thread can

see its thread ID, etc.
 My ID

 blockIdx.x: Index of the block the thread belong to (≧0)
 threadIdx.x: Index of the thread (inside the block) (≧0)

 Number of thread/blocks
 gridDim.x: How many blocks are running
 blockDim.x: How many threads (per block) are running

5

Thread Block ID, Thread ID

6

A thread block
A grid

A thread

blockIdx.x = 1
threadIdx.x = 0

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

blockIdx.x = 2
threadIdx.x = 2

For every thread, gridDim.x = 4, blockDim.x = 3

Note: In order to see the entire sequential ID, we should compute
blockIdx.x * blockDim.x + threadIdx.x

How Number of Threads is
Designed?
On CUDA, Different strategy is required from on OpenMP
On OpenMP, number of threads (OMP_NUM_THREADS) should be ≦
CPU cores

 ≦4 on q_core node, ≦28 on f_node
On CUDA, it is better to use number of thread ≧ GPU cores

 ≧ 3584 on TSUBAME3’s P100 GPU
 You can use >1,000,000 threads!

We have to deicide 2 numbers <<<block number, block size>>>
(1)We decide total number of threads P
(2)We tune each block size BS

 Good candidates are 16, 32, 64, … 1024

(3)Block number is P/BS
 We consider indivisible cases later 7

8

“mm” sample: Matrix Multiply
(related to [G2])

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B

 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format
 Execution:./mm [m] [n] [k]

CA

B

m

k

k

n

CUDA version available at ~endo-t-ac/ppcomp/18/mm1-cuda/

On CUDA, We need to design
(1) How we parallelize computation
(2) How we put data on host memory & device memory

How We Parallelize Computation

OpenMP
Parallelize column-loop
(or row-loop)

9

A

B

C

j

In mm, we can compute different C elements in parallel
•On the other hand, it is harder to parallelize dot-product loop

CUDA (mm1-cuda)
We can create many many threads
1 thread computes 1 row

 We use m threads

B

CA

※ This is not the unique way

Parallelism in mm1-cuda
 It is ok to make >1000, >10000 threads on CUDA
 We use m threads for m rows computation

add<<<m/BS, BS>>>(.....);

gridDim blockDim (BS=16 in this sample)

Note1: <<<m, 1>>> also works, but speed is not good
<<<1, m>>> causes an error if m>1024 (CUDA’s rule)

Note2: To support the case m is indivisible by BS, we should use
<<<(m+BS-1)/BS, BS>>>
But # of threads may be larger m. “Extra” threads (id≧m) should
not work. See mm1-cuda.c/mm.c

1 element for 1 row  No need of “i” loop in this sample

Data Transfer in mm1-cuda
 A, B, C are copied from CPU to

GPU before computation
 cudaMemcpy(…

cudaMemcpyHostToDevice)
 C is copied from GPU to CPU

after computation
 cudaMemcpy(…

cudaMemcpyDeviceToHost)

11

CPU GPU

Comp

Transfer A
B
C

C

Notes in Time Measurement

 clock(), gettimeofday() must be called from CPU
 For accurate measurement, we should call

cudaDeviceSynchronize() before measurement
 Actually GPU kernel function call and

cudaMemcpy(HostToDevice) are non-blocking
 “non-blocking” like MPI_Isend, MPI_Irecv

Comparing speed of mm1-cuda
m=n=k mm-acc mm1-cuda

(thread=row)
mm1-cuda

(thread=column)
1000 143(Gflops) 14(Gflops) 14(Gflops)

2000 173 27 24

4000 164 50 29

6000 138 70 31

8000 137 85 32

13

• Measured with a P100 GPU on TSUBAME3
• CUDA version is compiled with –arch=sm_60 option, for

better speed (see mm1-cuda/Makefile)
• Data transfer costs are included

Discussion on Speed
(related to [G2])

 mm1-cuda is slower than mm-acc
 In mm-acc, i-loop and j-loop has “loop independent”
 m n elements are computed in parallel

 In mm1-cuda, we use m (or n) threads are used
 We need more parallelism on a GPU!

 We see 4000 or 6000 threads are still insufficient
 Will be improved in the next class

 (thread=row) and (thread=column) have different speed
 Due to “coalesced memory access”, explained in the next class

14

Rules for Memory/Variables
 Variables declared in GPU kernel functions are

“thread private”

 Device memory is shared by all CUDA threads
 Be careful to avoid race condition problem (multiple

threads write same address)
 Reading same address is ok

 Do not forget host memory and device memory
are distributed

z is
15

z is
4

z is
7

z is
4

z is
21

z is
9

Two Types of GPU Kernel Functions
1) Functions with __global__ keyword

 “Gateway” from CPU
 Return value type must be “void”

2) Function with __device__ keyword
 Callable only from GPU
 Can have return values
 Recursive call is OK

Host
Function

on CPU on GPU

Function with
__global__

Function with
__device__

f(x); f(x);
f(x);f<<<gs,bs>>>(x);

In OpenACC,
#pragma acc routine

What Can be Done in GPU
Functions?
 Basic computations (+, -, *, /, %, &&, ||...) are OK
 if, for, while, return are OK
 Device memory access is OK
 Host memory access is NG
 Calling host functions is NG
 Calling most of functions in libc or other libraries for CPUs

are NG
 Several mathematical functions, sin(), sqrt()… are OK

 like OpenACC
 Exceptionally, printf() is OK

 unlike OpenACC 
 Calling malloc()/free() on GPU is OK, if the size is small

 If we need large regions on device memory, call cudaMalloc()
from CPU

Discussion on diffusion
sample (related to [G1])

18

An Array for “even” steps An Array for “odd” steps

NX

NY

CUDA Parallelization of
diffusion
 t-loop cannot be parallelized (as usual)
 Computation of one time step should be a GPU kernel

 How do we design threads on CUDA?
 1thread = 1row

 We use NY threads in total  only x-loop in the kernel
 1thread = 1column

 We use NX threads in total  only y-loop in the kernel
 1thread = 1element (optional in [G1])

 We use NX NY threads in total  No loop in kernel !
 Discussed in next class

19

20

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” (mm1-
cuda and mm2-cuda) in detail

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

21

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

22

Next Class:
 June 3: TSUBAME3.0 tour
 Please come to this room (W242)
 Then a staff will bring you to GSIC building

 June 6: GPU Programming (4)

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

23

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 13
	Comparing OpenMP/OpenACC/CUDA
	Calling A GPU Kernel Function from CPU
	Threads in CUDA
	To See Who am I
	Thread Block ID, Thread ID
	How Number of Threads is Designed?
	“mm” sample: Matrix Multiply�(related to [G2])
	How We Parallelize Computation
	Parallelism in mm1-cuda
	Data Transfer in mm1-cuda
	Notes in Time Measurement
	Comparing speed of mm1-cuda
	Discussion on Speed�(related to [G2])
	Rules for Memory/Variables
	Two Types of GPU Kernel Functions
	What Can be Done in GPU Functions?
	Discussion on diffusion sample (related to [G1])
	CUDA Parallelization of diffusion
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class:
	Information

