2019

Practical Parallel Computing
(EERMIEFH A E1—T12))
No. 13

GPU Programming (3)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

00
. 0000
Comparing OpenMP/OpenACC/CUDA | 22:°
OpenACC
Processors CPU CPU+GPU CPU+GPU
File extension .C, .CC .C, .CC .CU
To start parallel #pragma omp #pragma acc kernels func<<<..., ...>>>()
(GPU) region parallel
To specify # of export OMP_NUM (num_gangs, func<<<..., ...>>>()
threads _THREADS-=... vector_length etc)
Derisable # of # of CPU cores or # of GPU cores or “more”
threads less
To get thread ID omp_thread_num() - blockldx, threadldx
Parallel for loop #pragma omp for #pragma acc loop -
Task parallel #pragma omp task - -
To allocate device - #pragma acc data cudaMalloc()
memory
To copy to/from - #pragma acc data cudaMemcpy()
device memory
Function on GPU - #pragma acc routine | global , device

2

> “# of XXX” = “The number of XXX”

Calling A GPU Kernel Function
from CPU

e A region executed by GPU must be a distinct function
o called a GPU kernel function

[CPU side] call [GPU side]
func<<<20, 5>>>(...); _global__ void func(--)
// T ’ {
of thread blocks / :
of threads per block retu > return;
In this case, 20x5=100 }

threads run on GPU

eo0o
. o000
Threads in CUDA 13
CUDA: Specify 2 numbers (at least) for number of threads,
when calling a GPU kernel function
/,
A grid A thread block A thread
cf)func<<< 4, 3 >>>(); = 12 threads
e AN
Number of thread blocks Number of threads per block
= gridDim = blockDim

The reason is related to GPU hardware
Thread block & SMX, Thread <& CUDA core 4

To See Who am |

e By reading the following special variables, each thread can
see its thread ID, etc.
e MyID
blockldx.x: Index of the block the thread belong to (20)
threadldx.x: Index of the thread (inside the block) (2 0)

e Number of thread/blocks
gridDim.x: How many blocks are running
blockDim.x: How many threads (per block) are running

Thread Block ID, Thread ID
(blockldx.x = 1] blockldx.x = 2 J
threadldx.x =0 threadldx.x = 2
|\
(298|eaalegsd @@@\
blockldx.x = Of { blockidx.x = 1} { lockldx.x = 2 <\»ck|dx X =
O I\ VAN AN //
/
A grid \ \
A thread block A thread

For every thread, gridDim.x = 4, blockDim.x = 3

Note: In order to see the entire sequential ID, we should compute
blockldx.x * blockDim.x + threadldx.x

How Number of Threads is
Designed?

On CUDA, Different strategy is required from on OpenMP

eOn OpenMP, number of threads (OMP_NUM_THREADS) should be =
CPU cores

e =4 onq_core node, =28 onf node
eOn CUDA, it is better to use number of thread = GPU cores

e = 3584 on TSUBAMEZ3’s P100 GPU

e You can use >1,000,000 threads!

We have to deicide 2 numbers <<<block number, block size>>>

(HWe decide total number of threads P ”
2)We tune each block size BS e
e Good candidates are 16, 32, 64, ... 1024 n

3)Block number is P/BS

e We consider indivisible cases later 7

000
1 J) . - - 0000
mm” sample: Matrix Multiply | se::
(related to [G2]) oc
CUDA version available at ~endo-t-ac/ppcomp/18/mm1-cuda/
A: a (m X k) matrix, B: a (k X n) matrix
C: a (m X n) matrix B
C—AXB] >
e Supports variable matrix size. E \>
o Each matrix is expressed as a 1D mi| A C
array by column-major format |
e Execution:./mm [m] [n] [K] K n

On CUDA, We need to design
(1) How we parallelize computation
(2) How we put data on host memory & device memory

How We Parallelize Computation

In mm, we can compute different C elements in parallel
*On the other hand, it is harder to parallelize dot-product loop

OpenMP CUDA (mm1-cuda)
eParallelize column-loop e\We can create many many threads
(or row-loop) , ¢1 thread computes 1 row
J We use m threads
B 5 f
g { .
A | || S -
e % - R
FaYaapa o LS :

>¢ This is not the unique way

000
:.
Parallelism in mm1-cuda
e Itis ok to make >1000, >10000 threads on CUDA
e \We use m threads for m rows computation
add<<<m/BS, BS>>>(.....);
gridDim blockDim (BS=16 in this sample)

1 element for 1 row - No need of “I” loop in this sample

Note1: <<<m, 1>>> also works, but speed is not good
<<<1, m>>> causes an error if m>1024 (CUDA's rule)

Note2: To support the case m is indivisible by BS, we should use
<<<(m+BS-1)/BS, BS>>>

—>But # of threads may be larger m. “Extra” threads (id=m) should
not work. See mm1-cuda.c/mm.c

Data Transfer in mm1-cuda s

e A, B, C are copied from CPU to
CPU GPU GPU before computation
Transfer| 5

e cudaMemcpy(...
cudaMemcpyHostToDevice)

e C is copied from GPU to CPU
after computation

e cudaMemcpy(...
cudaMemcpyDeviceToHost)

11

Notes in Time Measurement

e clock(), gettimeofday() must be called from CPU

e For accurate measurement, we should call
cudaDeviceSynchronize() before measurement

o Actually GPU kernel function call and
cudaMemcpy(HostToDevice) are non-blocking
“non-blocking” like MPI_Isend, MPI_Irecv

Comparing speed of mm1-cuda

m=n=Kk mm-acc mm1-cuda mm1-cuda
(thread=row) (thread=column)
1000 143(Gflops) 14(Gflops) 14(Gflops)
2000 173 27 24
4000 164 50 29
6000 138 70 31
8000 137 85 32

* Measured with a P100 GPU on TSUBAME3

« CUDA version is compiled with —arch=sm_60 option, for
better speed (see mm1-cuda/Makefile)

« Data transfer costs are included

13

Discussion on Speed .
(related to [G2])

e mm1-cuda is slower than mm-acc
In mm-acc, i-loop and j-loop has “loop independent”
- m n elements are computed in parallel

e In mm1-cuda, we use m (or n) threads are used

> We need more parallelism on a GPU!
We see 4000 or 6000 threads are still insufficient
Will be improved in the next class

e (thread=row) and (thread=column) have different speed
Due to “coalesced memory access”, explained in the next class

14

Rules for Memory/Variables

e Variables declared in GPU kernel functions are
“thread private” ,@ ,@ ,@ ,@ ,@ ,@

zis | zis zis zis zis | zis
4 15 7 4 21 9
e Device memory is shared by all CUDA threads

Be careful to avoid race condition problem (multiple
threads write same address)

Reading same address is ok

e Do not forget host memory and device memory
are distributed

Two Types of GPU Kernel Functions |

1) Functions with _ global keyword
o “Gateway” from CPU
e Return value type must be “void”

2) Function with ___device keyword =~ — In OpenACC,
 Callable only from GPU #pragma acc routine
e Can have return values
e Recursive call is OK

on CPU | on GPU

Host !
f; Function :?' zr),
) f<<<gs,bs>>>(x);

What Can be Done in GPU e
Functions?

Basic computations (+, -, *, /, %, &&, ||...) are OK
if, for, while, return are OK

Device memory access is OK

Host memory access is NG

Calling host functions is NG

Calling most of functions in libc or other libraries for CPUs
are NG
Several mathematical functions, sin(), sqrt()... are OK
like OpenACC
Exceptionally, printf() is OK
unlike OpenACC ©

Calling malloc()/free() on GPU is OK, if the size is small

If we need large regions on device memory, call cudaMalloc()
from CPU

Discussion on diffusion
sample (related to [G1])

An Array for “even” steps An Array for “odd” steps

I '..........

NY

.Q....'.*‘_.J *.Q.
Q02900 KAXYIT
0009900

18

CUDA Parallelization of et
diffusion

e t-loop cannot be parallelized (as usual)
e Computation of one time step should be a GPU kernel

e How do we design threads on CUDA?
1thread = 1row
We use NY threads in total = only x-loop in the kernel
1thread = 1column
We use NX threads in total = only y-loop in the kernel
1thread = 1element (optional in [G1])
We use NX NY threads in total = No loop in kernel !
Discussed in next class

19

Assignments in GPU Part

(Abstract)

Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

(G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “'mm-cuda” (mm1-
cuda and mmz2-cuda) in detail

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

20

Notes in Submission

e Submit the followings via OCW-i
(1) A report document
A PDF or MS-Word file, 2 pages or more
in English or Japanese (B A&+ 0k)
(2) Source code files of your program
If you use multiple files, you can use “.zip” or “.tgz”
e Report should include:
Which problem you have chosen
How you parallelized

It is even better if you mention efforts for high performance or new
functions

Performance evaluation on TSUBAME
With varying number of processor cores
With varying problem sizes
Discussion with your findings
Other machines than TSUBAME are ok, if available

21

Next Class:
e June 3: TSUBAMEZ3.0 tour

Please come to this room (\W242)
Then a staff will bring you to GSIC building

e June 6: GPU Programming (4)

22

Information

Lecture
eSlides are uploaded in OCW
www.ocw.titech.ac.jp = search “2019 practical parallel computing”
eAssignments information/submission site are in OCW-i
Login portal.titech.ac.jp > OCW/OCW:-i
elnquiry
ppcomp@el.gsic.titech.ac.jp
eSample programs
Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

TSUBAME
e Official web including Users guide
www.t3.gsic.titech.ac.jp

e Your account information
Login portal.titech.ac.jp > TSUBAME portal

23

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 13
	Comparing OpenMP/OpenACC/CUDA
	Calling A GPU Kernel Function from CPU
	Threads in CUDA
	To See Who am I
	Thread Block ID, Thread ID
	How Number of Threads is Designed?
	“mm” sample: Matrix Multiply�(related to [G2])
	How We Parallelize Computation
	Parallelism in mm1-cuda
	Data Transfer in mm1-cuda
	Notes in Time Measurement
	Comparing speed of mm1-cuda
	Discussion on Speed�(related to [G2])
	Rules for Memory/Variables
	Two Types of GPU Kernel Functions
	What Can be Done in GPU Functions?
	Discussion on diffusion sample (related to [G1])
	CUDA Parallelization of diffusion
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class:
	Information

