
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 13

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (3)

Comparing OpenMP/OpenACC/CUDA
OpenMP OpenACC CUDA

Processors CPU CPU+GPU CPU+GPU
File extension .c, .cc .c, .cc .cu

To start parallel
(GPU) region

#pragma omp
parallel

#pragma acc kernels func<<<…, …>>>()

To specify # of
threads

export OMP_NUM
_THREADS=…

(num_gangs,
vector_length etc)

func<<<…, …>>>()

Derisable # of
threads

of CPU cores or
less

of GPU cores or “more”

To get thread ID omp_thread_num() - blockIdx, threadIdx
Parallel for loop #pragma omp for #pragma acc loop -

Task parallel #pragma omp task - -
To allocate device

memory
- #pragma acc data cudaMalloc()

To copy to/from
device memory

- #pragma acc data cudaMemcpy()

Function on GPU - #pragma acc routine __global__,__device__
2

※ “# of XXX” = “The number of XXX”

Calling A GPU Kernel Function
from CPU
 A region executed by GPU must be a distinct function

 called a GPU kernel function

3

[CPU side]

func<<<20, 5>>>(…); __global__ void func(…)
{

:
return;

}

[GPU side]call

return
of thread blocks
of threads per block
In this case, 20x5=100
threads run on GPU

Threads in CUDA

cf) func <<< 4, 3 >>> (); 12 threads

4

A thread blockA grid A thread

Number of thread blocks
= gridDim

Number of threads per block
= blockDim

CUDA: Specify 2 numbers (at least) for number of threads,
when calling a GPU kernel function

The reason is related to GPU hardware
Thread block ⇔ SMX, Thread ⇔ CUDA core

To See Who am I
 By reading the following special variables, each thread can

see its thread ID, etc.
 My ID

 blockIdx.x: Index of the block the thread belong to (≧0)
 threadIdx.x: Index of the thread (inside the block) (≧0)

 Number of thread/blocks
 gridDim.x: How many blocks are running
 blockDim.x: How many threads (per block) are running

5

Thread Block ID, Thread ID

6

A thread block
A grid

A thread

blockIdx.x = 1
threadIdx.x = 0

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

blockIdx.x = 2
threadIdx.x = 2

For every thread, gridDim.x = 4, blockDim.x = 3

Note: In order to see the entire sequential ID, we should compute
blockIdx.x * blockDim.x + threadIdx.x

How Number of Threads is
Designed?
On CUDA, Different strategy is required from on OpenMP
On OpenMP, number of threads (OMP_NUM_THREADS) should be ≦
CPU cores

 ≦4 on q_core node, ≦28 on f_node
On CUDA, it is better to use number of thread ≧ GPU cores

 ≧ 3584 on TSUBAME3’s P100 GPU
 You can use >1,000,000 threads!

We have to deicide 2 numbers <<<block number, block size>>>
(1)We decide total number of threads P
(2)We tune each block size BS

 Good candidates are 16, 32, 64, … 1024

(3)Block number is P/BS
 We consider indivisible cases later 7

8

“mm” sample: Matrix Multiply
(related to [G2])

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B

 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format
 Execution:./mm [m] [n] [k]

CA

B

m

k

k

n

CUDA version available at ~endo-t-ac/ppcomp/18/mm1-cuda/

On CUDA, We need to design
(1) How we parallelize computation
(2) How we put data on host memory & device memory

How We Parallelize Computation

OpenMP
Parallelize column-loop
(or row-loop)

9

A

B

C

j

In mm, we can compute different C elements in parallel
•On the other hand, it is harder to parallelize dot-product loop

CUDA (mm1-cuda)
We can create many many threads
1 thread computes 1 row

 We use m threads

B

CA

※ This is not the unique way

Parallelism in mm1-cuda
 It is ok to make >1000, >10000 threads on CUDA
 We use m threads for m rows computation

add<<<m/BS, BS>>>(.....);

gridDim blockDim (BS=16 in this sample)

Note1: <<<m, 1>>> also works, but speed is not good
<<<1, m>>> causes an error if m>1024 (CUDA’s rule)

Note2: To support the case m is indivisible by BS, we should use
<<<(m+BS-1)/BS, BS>>>
But # of threads may be larger m. “Extra” threads (id≧m) should
not work. See mm1-cuda.c/mm.c

1 element for 1 row No need of “i” loop in this sample

Data Transfer in mm1-cuda
 A, B, C are copied from CPU to

GPU before computation
 cudaMemcpy(…

cudaMemcpyHostToDevice)
 C is copied from GPU to CPU

after computation
 cudaMemcpy(…

cudaMemcpyDeviceToHost)

11

CPU GPU

Comp

Transfer A
B
C

C

Notes in Time Measurement

 clock(), gettimeofday() must be called from CPU
 For accurate measurement, we should call

cudaDeviceSynchronize() before measurement
 Actually GPU kernel function call and

cudaMemcpy(HostToDevice) are non-blocking
 “non-blocking” like MPI_Isend, MPI_Irecv

Comparing speed of mm1-cuda
m=n=k mm-acc mm1-cuda

(thread=row)
mm1-cuda

(thread=column)
1000 143(Gflops) 14(Gflops) 14(Gflops)

2000 173 27 24

4000 164 50 29

6000 138 70 31

8000 137 85 32

13

• Measured with a P100 GPU on TSUBAME3
• CUDA version is compiled with –arch=sm_60 option, for

better speed (see mm1-cuda/Makefile)
• Data transfer costs are included

Discussion on Speed
(related to [G2])

 mm1-cuda is slower than mm-acc
 In mm-acc, i-loop and j-loop has “loop independent”
 m n elements are computed in parallel

 In mm1-cuda, we use m (or n) threads are used
 We need more parallelism on a GPU!

 We see 4000 or 6000 threads are still insufficient
 Will be improved in the next class

 (thread=row) and (thread=column) have different speed
 Due to “coalesced memory access”, explained in the next class

14

Rules for Memory/Variables
 Variables declared in GPU kernel functions are

“thread private”

 Device memory is shared by all CUDA threads
 Be careful to avoid race condition problem (multiple

threads write same address)
 Reading same address is ok

 Do not forget host memory and device memory
are distributed

z is
15

z is
4

z is
7

z is
4

z is
21

z is
9

Two Types of GPU Kernel Functions
1) Functions with __global__ keyword

 “Gateway” from CPU
 Return value type must be “void”

2) Function with __device__ keyword
 Callable only from GPU
 Can have return values
 Recursive call is OK

Host
Function

on CPU on GPU

Function with
__global__

Function with
__device__

f(x); f(x);
f(x);f<<<gs,bs>>>(x);

In OpenACC,
#pragma acc routine

What Can be Done in GPU
Functions?
 Basic computations (+, -, *, /, %, &&, ||...) are OK
 if, for, while, return are OK
 Device memory access is OK
 Host memory access is NG
 Calling host functions is NG
 Calling most of functions in libc or other libraries for CPUs

are NG
 Several mathematical functions, sin(), sqrt()… are OK

 like OpenACC
 Exceptionally, printf() is OK

 unlike OpenACC
 Calling malloc()/free() on GPU is OK, if the size is small

 If we need large regions on device memory, call cudaMalloc()
from CPU

Discussion on diffusion
sample (related to [G1])

18

An Array for “even” steps An Array for “odd” steps

NX

NY

CUDA Parallelization of
diffusion
 t-loop cannot be parallelized (as usual)
 Computation of one time step should be a GPU kernel

 How do we design threads on CUDA?
 1thread = 1row

 We use NY threads in total only x-loop in the kernel
 1thread = 1column

 We use NX threads in total only y-loop in the kernel
 1thread = 1element (optional in [G1])

 We use NX NY threads in total No loop in kernel !
 Discussed in next class

19

20

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” (mm1-
cuda and mm2-cuda) in detail

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

21

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

22

Next Class:
 June 3: TSUBAME3.0 tour
 Please come to this room (W242)
 Then a staff will bring you to GSIC building

 June 6: GPU Programming (4)

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

23

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 13
	Comparing OpenMP/OpenACC/CUDA
	Calling A GPU Kernel Function from CPU
	Threads in CUDA
	To See Who am I
	Thread Block ID, Thread ID
	How Number of Threads is Designed?
	“mm” sample: Matrix Multiply�(related to [G2])
	How We Parallelize Computation
	Parallelism in mm1-cuda
	Data Transfer in mm1-cuda
	Notes in Time Measurement
	Comparing speed of mm1-cuda
	Discussion on Speed�(related to [G2])
	Rules for Memory/Variables
	Two Types of GPU Kernel Functions
	What Can be Done in GPU Functions?
	Discussion on diffusion sample (related to [G1])
	CUDA Parallelization of diffusion
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class:
	Information

