
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 12

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (2)

Data Region and Kernel
Region in OpenACC

 Data region may contain 1 or more kernel regions
 Data movement occurs at beginning and end of data region 2

int main()
{

A;
#pragma acc data copy(x,y)

{
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;

}
E;

}

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Data
Region

Kernel
regions

“diffusion” Sample Program
related to [G1]
An example of diffusion phenomena:

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

Available at ~endo-t-ac/ppcomp/19/diffusion/

• Execution：./diffusion [nt]
• nt: Number of time steps

4

Data Structure in “diffusion”
An Array for “even” steps An Array for “odd” steps

NX

NY

Parallelizing Diffusion with
OpenACC
 x, y loops are parallelized
 We can use “#pragma acc loop” twice

 t loop cannot be parallelized

5

for (t = 0; t < nt; t++) {

for (y = 1; y < NY-1; y++) {

for (x = 1; x < NX-1; x++) {

:
}

}

}

Kernel region on GPU
Parallel x, y loops

It’s better to transfer
data out of t-loop

[Data transfer from CPU to GPU]

[Data transfer from GPU to CPU]

To See Messages from
Compiler
 We often want to see “what compiler did”

 Is the loop really parallelized?

6

% pgcc -O2 -acc -Minfo mm.c
:

24, Generating copyin(A[:m*k])
Generating copy(C[:m*n])
Generating copyin(B[:k*n])

:
29, Loop is parallelizable
31, Loop is parallelizable

Generating Tesla code
27, #pragma acc loop seq
29, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
31, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */

Line numbers in source code

Another Description Way for
Data Copy
 With “data” directive, copy timing is restricted

7

// x,y are on CPU

#pragma acc data copy(x,y)
{

// x,y are on GPU
}

// x,y are on CPU

// x,y are on CPU

#pragma acc enter data copyin(x,y)

// x,y are on GPU

#pragma acc exit data copyout(x,y)
// x,y are on CPU

We can copy data anytime by “enter”, ”exit” directives

Data Transfer in mm-acc
sample related to [G2]

 Data transfer between CPU and GPU
is not free 
 T = M / B + L

 Data transfer in mm-acc
 A, B, C: CPU  GPU

Amount of data transfer: O(mk+kn+mn)
 Computation: O(mnk)
 C: GPU  CPU

Amount of data transfer: O(mn)

8

CPU GPU

Computation

Transfer
A, B, C

Transfer
C

Initialization
Data size Bandwidth between

CPU/GPU (~16GB/s)

~endo-t-ac/ppcomp/19/mm-meas-acc sample outputs
time for copyin, computation, copyout

data Clause for Multi-
Dimensional arrays
float A[2000][1000];  2-dim array

…. data copyin(A[0:2000][0:1000])
 OK, all elements of A are copied

…. data copyin(A[500:600][0:1000])
 OK, rows[500,1100) are copied

…. data copyin(A[0:2000][300:400])
 NG in current OpenACC

9

※ Currently, OpenACC does not support non-consecutive transfer

Function Calls from GPU
 Kernel region can call functions, but be careful

10

int main()
{

#pragma acc kernels
{

… func(A[i]) …

}

}

#pragma acc routine
int func(int arg)
{

:
:
return …;

}

 “routine” directive is required by compiler to generate GPU code

How about Library Functions?
 Available library functions is very limited 
 We cannot use strlen(), memcpy(), fopen… 

 Exceptionally, some mathematical functions are ok 
 fabs, sqrt, fmax…
 #include <math.h> is needed

 Very recently, printf() in kernel regions is ok! 

11

Reduction in loop Directive
 “OpenMP-like” reduction is ok

12

#pragma acc data …
#pragma acc kernels …

#pragma acc loop independent reduction(+:sum)
for (i = 0; i < n; i++) {

A[i] = … + B[i] + …;
…
sum += … ;

}

Variable name

operator

※ “operator” is one of +, *, max, min, &, |

Now explanation of OpenACC is finished; we go to CUDA

OpenACC and CUDA for GPUs
 OpenACC

 C/Fortran + directives (#pragma acc …), Easier programming
 PGI compiler works

 module load pgi
 pgcc –acc … XXX.c

 Basically for data parallel programs with for-loops
 Less freedom in algorithms 

 CUDA
 Most popular and suitable for higher performance
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

Programming is harder, but more general
13

An OpenACC Program Look Like

14

int A[100], B[100];
int i;

#pragma acc data copy(A,B)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
A[i] += B[i];

}

// CPU can access to A[i],B[i]

Executed on GPU
in parallel

A CUDA Program Look Like

15

int A[100], B[100];
int *DA, *DB;
int i;
cudaMalloc(&DA, sizeof(int)*100);
cudaMalloc(&DB, sizeof(int)*100);
cudaMemcpy(DA,A,sizeof(int)*100,

cudaMemcpyHostToDevice);
cudaMemcpy(DB,B,sizeof(int)*100,

cudaMemcpyHostToDevice);

add<<<20, 5>>>(DA, DB);

cudaMemcpy(A,DA,sizeof(int)*100,
cudaMemcpyDeviceToHost);

__global__ void add
(int *DA, int *DB)

{
int i = blockIdx.x*blockDim.x

+ threadIdx.x;
DA[i] += DB[i];

}

Executed on GPU
(called a kernel function)

Sample:
~endo-t-ac/ppcomp/19/add-cuda/

We have to separate code regions executed on CPU and GPU

16

Compiling CUDA Programs/
Submitting GPU Jobs
 Compile .cu file using the NVIDIA CUDA toolkit

 module load cuda
 and then use nvcc

Also see Makefile in the sample directory

 Job submission method is same as OpenACC version

#!/bin/sh
#$ -cwd
#$ -l q_node=1
#$ -l h_rt=00:10:00

./add

add-cuda/job.sh

qsub job.sh

Preparing Data on Device
Memory
(1) Allocate a region on device memory
cf) cudaMalloc((void**)&DA, size);

(2) Copy data from host to device
cf) cudaMemcpy(DA, A, size, cudaMemcpyHostToDevice);

17

CPU GPU

A (1) DA
Host memory Device memory

(2)

Note: cudaMalloc and cudaMemcpy must be called on CPU, NOT on GPU

Comparing OpenACC and
CUDA

18

OpenACC CUDA
Both allocation and copy are
done by … data copyin

cudaMalloc and cudaMemcpy
are separated

One variable name A may
represent both
• A on host memory
• A on device memory

Programmer have to prepare
two pointers, such as A and DA

int A[100];
#pragma acc data copy(A)
#pragma acc kernels
{
… A[i] …

} on GPU

on CPU int A[100];
int *DA;
cudaMalloc(&DA, …);
cudaMemcpy(DA, A, …, …);
// Here CPU cannot access DA[i]

func<<<…, …>>>(DA, …);

Calling A GPU Kernel Function
from CPU
 A region executed by GPU must be a distinct function

 called a GPU kernel function

19

[CPU side]

func<<<20, 5>>>(…); __global__ void func(…)
{

:
return;

}

[GPU side]call

return

A GPU kernel function (called from CPU)
needs __global__ keyword
can take parameters
can NOT return value; return type must be void

of thread blocks
of threads per block
In this case, 20x5=100
threads run on GPU

Copying Back Data from GPU

 Copy data using cudaMemcpy
 cf) cudaMemcpy(A, DA, size, cudaMemcpyDeviceToHost);
 4th argument is one of

 cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevice, cudaMemcpyHostToHost
 cudaMemcpyDefault  Detect memory type automatically 

 When a memory area is unnecessary, free it
 cf) cudaFree(DA);

20

A DA
Host memory Device memory

21

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in
detail

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

22

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

23

Next Class:
 May 27: Cancelled (休講)
 May 30: GPU Programming (3)
 Parallelization with CUDA

 June 3: TSUBAME3.0 tour
 June 6: GPU Programming (4)

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

24

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 12
	Data Region and Kernel Region in OpenACC
	“diffusion” Sample Program�related to [G1]
	Data Structure in “diffusion”
	Parallelizing Diffusion with OpenACC
	To See Messages from Compiler
	Another Description Way for Data Copy
	Data Transfer in mm-acc sample related to [G2]
	data Clause for Multi-Dimensional arrays
	Function Calls from GPU
	How about Library Functions?
	Reduction in loop Directive
	OpenACC and CUDA for GPUs
	An OpenACC Program Look Like
	A CUDA Program Look Like
	Compiling CUDA Programs/�Submitting GPU Jobs
	Preparing Data on Device Memory
	Comparing OpenACC and CUDA
	Calling A GPU Kernel Function from CPU
	Copying Back Data from GPU
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class:
	Information

