
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 12

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (2)



Data Region and Kernel 
Region in OpenACC

 Data region may contain 1 or more kernel regions
 Data movement occurs at beginning and end of data region 2

int main()
{

A;
#pragma acc data copy(x,y)

{
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;

}
E;

}

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Data
Region

Kernel
regions



“diffusion” Sample Program
related to [G1]
An example of diffusion phenomena:

The ink spreads gradually, and finally the density 
becomes uniform   (Figure by Prof. T. Aoki)

Available at ~endo-t-ac/ppcomp/19/diffusion/

• Execution：./diffusion [nt]
• nt: Number of time steps



4

Data Structure in “diffusion”
An Array for “even” steps An Array for “odd” steps

NX

NY



Parallelizing Diffusion with 
OpenACC
 x, y loops are parallelized
 We can use “#pragma acc loop” twice

 t loop cannot be parallelized

5

for (t = 0; t < nt; t++) {

for (y = 1; y < NY-1; y++) {

for (x = 1; x < NX-1; x++) {

:
}

}

}

Kernel region on GPU
Parallel x, y loops

It’s better to transfer
data out of t-loop

[Data transfer from CPU to GPU]

[Data transfer from GPU to CPU]



To See Messages from 
Compiler
 We often want to see “what compiler did”

 Is the loop really parallelized?

6

% pgcc -O2 -acc -Minfo mm.c
:

24, Generating copyin(A[:m*k])
Generating copy(C[:m*n])
Generating copyin(B[:k*n])

:
29, Loop is parallelizable
31, Loop is parallelizable

Generating Tesla code
27, #pragma acc loop seq
29, #pragma acc loop gang, vector(4) /* blockIdx.y threadIdx.y */
31, #pragma acc loop gang, vector(32) /* blockIdx.x threadIdx.x */

Line numbers in source code



Another Description Way for 
Data Copy
 With “data” directive, copy timing is restricted

7

// x,y are on CPU

#pragma acc data copy(x,y)
{

// x,y are on GPU
}

// x,y are on CPU

// x,y are on CPU

#pragma acc enter data copyin(x,y)

// x,y are on GPU

#pragma acc exit data copyout(x,y)
// x,y are on CPU

We can copy data anytime by “enter”, ”exit” directives



Data Transfer in mm-acc 
sample related to [G2]

 Data transfer between CPU and GPU 
is not free 
 T = M / B + L

 Data transfer in mm-acc
 A, B, C: CPU  GPU

Amount of data transfer: O(mk+kn+mn)
 Computation: O(mnk)
 C: GPU  CPU

Amount of data transfer: O(mn)

8

CPU GPU

Computation

Transfer
A, B, C

Transfer
C

Initialization
Data size Bandwidth between 

CPU/GPU (~16GB/s)

~endo-t-ac/ppcomp/19/mm-meas-acc sample outputs 
time for copyin, computation, copyout



data Clause for Multi-
Dimensional arrays
float A[2000][1000];  2-dim array

…. data copyin(A[0:2000][0:1000])
 OK, all elements of A are copied

…. data copyin(A[500:600][0:1000])
 OK, rows[500,1100) are copied

…. data copyin(A[0:2000][300:400])
 NG in current OpenACC

9

※ Currently, OpenACC does not support non-consecutive transfer



Function Calls from GPU
 Kernel region can call functions, but be careful

10

int main()
{

#pragma acc kernels
{

… func(A[i]) …

}

}

#pragma acc routine
int func(int arg)
{

:
:
return …;

}

 “routine” directive is required by compiler to generate GPU code 



How about Library Functions?
 Available library functions is very limited 
 We cannot use strlen(), memcpy(), fopen… 

 Exceptionally, some mathematical functions are ok 
 fabs, sqrt, fmax…
 #include <math.h> is needed

 Very recently, printf() in kernel regions is ok! 

11



Reduction in loop Directive
 “OpenMP-like” reduction is ok

12

#pragma acc data …
#pragma acc kernels …

#pragma acc loop independent reduction(+:sum)
for (i = 0; i < n; i++) {

A[i] = … + B[i] + …;
…
sum += … ;

}

Variable name

operator

※ “operator” is one of +, *, max, min, &, |

Now explanation of OpenACC is finished; we go to CUDA



OpenACC and CUDA for GPUs
 OpenACC

 C/Fortran + directives (#pragma acc …), Easier programming
 PGI compiler works

 module load pgi
 pgcc –acc … XXX.c

 Basically for data parallel programs with for-loops 
 Less freedom in algorithms 

 CUDA
 Most popular and suitable for higher performance
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

Programming is harder, but more general
13



An OpenACC Program Look Like

14

int A[100], B[100];
int i;

#pragma acc data copy(A,B)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
A[i] += B[i];

}

// CPU can access to A[i],B[i]

Executed on GPU
in parallel



A CUDA Program Look Like

15

int A[100], B[100];
int *DA, *DB;
int i;
cudaMalloc(&DA, sizeof(int)*100);
cudaMalloc(&DB, sizeof(int)*100);
cudaMemcpy(DA,A,sizeof(int)*100,

cudaMemcpyHostToDevice);
cudaMemcpy(DB,B,sizeof(int)*100,

cudaMemcpyHostToDevice);

add<<<20, 5>>>(DA, DB);

cudaMemcpy(A,DA,sizeof(int)*100,
cudaMemcpyDeviceToHost);

__global__ void add
(int *DA, int *DB)

{
int i = blockIdx.x*blockDim.x

+ threadIdx.x;
DA[i] += DB[i];

}

Executed on GPU
(called a kernel function)

Sample:
~endo-t-ac/ppcomp/19/add-cuda/

We have to separate code regions executed on CPU and GPU



16

Compiling CUDA Programs/
Submitting GPU Jobs
 Compile .cu file using the NVIDIA CUDA toolkit

 module load cuda
 and then use nvcc

Also see Makefile in the sample directory

 Job submission method is same as OpenACC version

#!/bin/sh
#$ -cwd
#$ -l q_node=1
#$ -l h_rt=00:10:00

./add

add-cuda/job.sh

qsub job.sh



Preparing Data on Device 
Memory
(1) Allocate a region on device memory
cf) cudaMalloc((void**)&DA, size);

(2) Copy data from host to device
cf) cudaMemcpy(DA, A, size, cudaMemcpyHostToDevice);

17

CPU GPU

A (1) DA
Host memory Device memory

(2)

Note: cudaMalloc and cudaMemcpy must be called on CPU, NOT on GPU



Comparing OpenACC and 
CUDA

18

OpenACC CUDA
Both allocation and copy are
done by … data copyin

cudaMalloc and cudaMemcpy
are separated

One variable name A may
represent both
• A on host memory
• A on device memory

Programmer have to prepare
two pointers, such as A and DA

int A[100];
#pragma acc data copy(A)
#pragma acc kernels
{
… A[i] …

} on GPU

on CPU int A[100];
int *DA;
cudaMalloc(&DA, …);
cudaMemcpy(DA, A, …, …);
// Here CPU cannot access DA[i]

func<<<…, …>>>(DA, …);



Calling A GPU Kernel Function 
from CPU
 A region executed by GPU must be a distinct function

 called a GPU kernel function

19

[CPU side]

func<<<20, 5>>>(…); __global__ void func(…)
{

:
return;

}

[GPU side]call

return

A GPU kernel function (called from CPU)
needs __global__ keyword
can take parameters
can NOT return value; return type must be void

# of thread blocks
# of threads per block
In this case, 20x5=100
threads run on GPU



Copying Back Data from GPU

 Copy data using cudaMemcpy
 cf) cudaMemcpy(A, DA, size, cudaMemcpyDeviceToHost);
 4th argument is one of

 cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevice, cudaMemcpyHostToHost
 cudaMemcpyDefault    Detect memory type automatically 

 When a memory area is unnecessary, free it
 cf) cudaFree(DA);

20

A DA
Host memory Device memory



21

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

[G1] Parallelize “diffusion” sample program by 
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in 
detail

[G3] (Freestyle) Parallelize any program by OpenACC 
or CUDA.



22

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new 
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available



23

Next Class:
 May 27: Cancelled (休講)
 May 30: GPU Programming (3)
 Parallelization with CUDA

 June 3: TSUBAME3.0 tour
 June 6: GPU Programming (4)



Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

24

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal


	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 12
	Data Region and Kernel Region in OpenACC
	“diffusion” Sample Program�related to [G1]
	Data Structure in “diffusion”
	Parallelizing Diffusion with OpenACC
	To See Messages from Compiler
	Another Description Way for Data Copy
	Data Transfer in mm-acc sample related to [G2]
	data Clause for Multi-Dimensional arrays
	Function Calls from GPU
	How about Library Functions?
	Reduction in loop Directive
	OpenACC and CUDA for GPUs
	An OpenACC Program Look Like
	A CUDA Program Look Like
	Compiling CUDA Programs/�Submitting GPU Jobs
	Preparing Data on Device Memory
	Comparing OpenACC and CUDA
	Calling A GPU Kernel Function from CPU
	Copying Back Data from GPU
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class:
	Information

