2019

Practical Parallel Computing
(EERMIEFH A E1—T12))
No. 12

GPU Programming (2)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp




Data Region and Kernel ses.
Region in OpenACC +-
CPU GPU
i T nn
#prgéma acc data copy(x,y) i %
#prégma acc kernels : \
t : C Data
) > % y?egion
C, I
#pragg? acc kernels i %%%% < ‘Kernel
L CO . regions
) - E % CPU 2.GPU

e Data region may contain 1 or more kernel regions
e Data movement occurs at beginning and end of data region



“diffusion” Sample Program
related to [G1]

An example of diffusion phenomena:

BIMIEIE

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

Available at ~endo-t-ac/ppcomp/19/diffusion/

« Execution:./diffusion [nt]
* nt: Number of time steps



Data Structure in “diffusion”

An Array for even’ steps An Array for “odd” steps

NY




Parallelizing Diffusion with
OpenACC

e X, Yy loops are parallelized
o We can use “#pragma acc loop” twice

e t loop cannot be parallelized

[Data transfer from CPU to GPU]
for (t =0; t <nt; t+) { \

for (y = 1; y < NY-1; y++)
for (x = 1; x < NX-1; x++

}

1 It's better to transfer

} data out of t-loop
[Data transfer from GPU to CPU] 5

{
) { Kernel region on GPU
Parallel x, y loops




To See Messages from
Compiler

e We often want to see “what compiler did”
e Is the loop really parallelized?

% pgcc —02 —acc -Minfo mm.c
24, Generating copyin(A[:m*k])

Generating copy(C[:m*n])
Generating copyin(B[:k*n])

29, Loop is parallelizable

31, Loop is parallelizable

Generating Tesla code

2/, #pragma acc loop seq

///129, #pragma acc loop gang, vector(4) /* blockldx.y threadldx.y */

31, #pragma acc loop gang, vector(32) /* blockldx.x threadldx.x */

. . 6
Line numbers in source code



Another Description Way for
Data Copy

e \With “data” directive, copy timing is restricted

7 )

- We can copy data anytime by “enter”, "exit” directives

/] x,y are on CPU /] x,y are on CPU

#ipragma acc data copy(x,y) #pragma acc enter data copyin(x,y)
{ // x,y are on GPU /] x,y are on GPU
} #pragma acc exit data copyout(x.y]

// x,y are on CPU // x,y are on CPU



000
Data Transfer in mm-acc eels
o0
sample related to [G2] .
Data transfer between CPU and GPU
is not free ® CPU GPU
e T=M/B+L
/ \ Initigi@ation
Data size Bandwidth between Transfer
CPU/GPU (~16GB/s) A B C
Data transfer in mm-acc
e A B,C: CPU-> GPU CO tation
Amount of data transfer: O(mk+kn+mn)
e
Amount of data transfer: O(mn) C

~endo-t-ac/ppcomp/19/mm-meas-acc sample outputs
time for copyin, computation, copyout




data Clause for Multi- HE
Dimensional arrays 3

float A[2000][1000]; = 2-dim array

.... data copyin(A[0:2000][0:1000])

- OK, all elements of A are copied
.... data copyin(A[500:600][0:1000])

- OK, rows[500,1100) are copied
.... data copyin(A[0:2000][300:400])

- NG in current OpenACC

¢ Currently, OpenACC does not support non-consecutive transfer



Function Calls from GPU

e Kernel region can call functions, but be careful

int main()

{

#pragma acc routine

#Horagma acc kernels

{
-+ func(Ali])

]

s 00
<

int func(int arg)
/{

— return ---;

e ‘“routine” directive is required by compiler to generate GPU code

10



How about Library Functions?

e Available library functions is very limited ®
e \We cannot use strlen(), memcpy(), fopen... ®

e Exceptionally, some mathematical functions are ok ©

fabs, sqrt, fmax...
#include <math.h> is needed

e Very recently, printf() in kernel regions is ok! ©

11



Reduction in loop Directive

e “OpenMP-like” reduction is ok

#pragma acc data ...
#pragma acc kernels ... operator

#pragma acc loop independent reduction(+:sum)

for (i =0;i <n; i++){ /
'.A.\FI] = ...+ B+ .. Variable name
sum += ...

}

> “operator” is one of +, *, max, min, &, |

Now explanation of OpenACC is finished; we go to CUDA

12



OpenACC and CUDA for GPUs :

e OpenACC

o C/Fortran + directives (#pragma acc ...), Easier programming

e PGI compiler works
module load pgi
pgcc —acc ... XXX.c

o Basically for data parallel programs with for-loops
- Less freedom in algorithms ®

e CUDA

e Most popular and suitable for higher performance

o Use “nvcc” command for compile
module load cuda
nvce ... XXX.cu

Programming is harder, but more general

13



An OpenACC Program Look Like | ¢

int A[100], B[100];

int i,
#pragma acc data copy(A,B)
#pragma acc kernels

ffipragma acc_loop_independent __ Executed on GPU
o for (i =0; i <1005 i++) { | -

A[i] 4= Bli]: : In parallel

) :

// CPU can access to Al[i],B[i]

14



000
0000
i
A CUDA Program Look Like :
Sample:
int A[100], B[100]; ~endo t-ac/ppcomp/19/add-cuda/
int *DA, *DB; 0 remmmmmmmmmmmmmmmmmmmmmmmmmmme-
int i; __global__ void add

cudaMal loc(&DA, sizeof(int)*100); i (int DA, int *DB) i
cudaMal loc(&0B, sizeof(int)*100); '{ S
cudaMemcpy (DA, A,sizeof (int)*100, | int i = blockldx.x*blockDim.x!

cudaMemcpyHostToDevice) ; + threadldx.x;

cudaMemcpy (DB,B,sizeof (int)*100, DALi] +=DB[i];
cudaMemcpyHostToDevice); }

add<<<20, 5>>>(DA, DB); ]

cudalemcpy (A, DA, s zeof (int)*100, Executed on GPU
cudaMemcpyDeviceToHost ) ; (called a kernel function)

We have to separate code regions executed on CPU and GPU *




Compiling CUDA Programs/ | ¢:
Submitting GPU Jobs

e Compile .cu file using the NVIDIA CUDA toolkit

module load cuda
and then use nvcc

Also see Makefile in the sample directory

e Job submission method is same as OpenACC version

add-cuda/job.sh
#1/bin/sh

#$ -cwd

#$ -1 q_node=1 _
#$ -1 h_rt=00:10:00 [—> qgsub job.sh

Jadd

16



Preparing Data on Device
Memory

(1) Allocate a region on device memory
cf) cudaMalloc((void**)&DA, size);
(2) Copy data from host to device
cf) cudaMemcpy(DA, A, size, cudaMemcpyHostToDevice);

Host memory Device memory

Note: cudaMalloc and cudaMemcpy must be called on CPU, NOT on GPU

17



Comparing OpenACC and

CUDA

OpenACC

Both allocation and copy are
done by ... data copyin

One variable name A may
represent both

« Aon host memory

* Aon device memory

int A[100];«— on CPU
#pragma acc data copy(A)

CUDA

cudaMalloc and cudaMemcpy
are separated

Programmer have to prepare
two pointers, such as A and DA

int A[100];

int *DA;

cudaMal loc(&A, --+);
cudaMemcpy (DA, A, =, -=);

// Here CPU cannot access DA[i]

func<<<:+-, --->>>(DA, --+); 18



Calling A GPU Kernel Function
from CPU

e A region executed by GPU must be a distinct function
o called a GPU kernel function

[CPU side] call [GPU side]
— / { .
# of thread blocks :
# of threads per block retu > return;
In this case, 20x5=100 }

threads run on GPU

A GPU kernel function (called from CPU)
eneeds global  keyword

ecan take parameters

ecan NOT return value; return type must be void

19




Copying Back Data from GPU

A i DA

Host memory Device memory
e Copy data using cudaMemcpy
e cf) cudaMemcpy(A, DA, size, cudaMemcpyDeviceToHost);

e 4% argumentis one of
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice, cudaMemcpyHostToHost
cudaMemcpyDefault € Detect memory type automatically ©

e \When a memory area is unnecessary, free it
o cf) cudaFree(DA);

20



Assignments in GPU Part

(Abstract)

Choose one of [G1]—[G3], and submit a report
Due date: June 17 (Monday)

(G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Evaluate speed of “mm-acc” or “mm-cuda” in
detall

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

21



Notes in Submission

e Submit the followings via OCW-i
(1) A report document
A PDF or MS-Word file, 2 pages or more
in English or Japanese (B A&+ 0k)
(2) Source code files of your program
If you use multiple files, you can use “.zip” or “.tgz”
e Report should include:
Which problem you have chosen
How you parallelized

It is even better if you mention efforts for high performance or new
functions

Performance evaluation on TSUBAME
With varying number of processor cores
With varying problem sizes
Discussion with your findings
Other machines than TSUBAME are ok, if available

22



Next Class:

e May 27: Cancelled ({K:%)

e May 30: GPU Programming (3)
o Parallelization with CUDA

e June 3: TSUBAMES3.O tour
e June 6: GPU Programming (4)

23



Information

Lecture
eSlides are uploaded in OCW
www.ocw.titech.ac.jp = search “2019 practical parallel computing”
eAssignments information/submission site are in OCW-i
Login portal.titech.ac.jp > OCW/OCW:-i
elnquiry
ppcomp@el.gsic.titech.ac.jp
eSample programs
Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

TSUBAME
e Official web including Users guide
www.t3.gsic.titech.ac.jp

e Your account information
Login portal.titech.ac.jp > TSUBAME portal

24




	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 12
	Data Region and Kernel Region in OpenACC
	“diffusion” Sample Program�related to [G1]
	Data Structure in “diffusion”
	Parallelizing Diffusion with OpenACC
	To See Messages from Compiler
	Another Description Way for Data Copy
	Data Transfer in mm-acc sample related to [G2]
	data Clause for Multi-Dimensional arrays
	Function Calls from GPU
	How about Library Functions?
	Reduction in loop Directive
	OpenACC and CUDA for GPUs
	An OpenACC Program Look Like
	A CUDA Program Look Like
	Compiling CUDA Programs/�Submitting GPU Jobs
	Preparing Data on Device Memory
	Comparing OpenACC and CUDA
	Calling A GPU Kernel Function from CPU
	Copying Back Data from GPU
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class:
	Information

