
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 10

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Distributed Memory Parallel
Programming with MPI (4)

Considering Performance of
MPI Programs
(Simplified) Execution time of an MPI program =

Computation time
+ Communication time
+ Others

2

Comp

Comm

Comp

Comm

Behavior of
“diffusion”

on MPI
Comp

Comm

Comp

Comm

A time
step

Comp

Comm

Comp

Comm

Comp

Comm

Comp

Comm

← including memory access

← load imbalance, I/O…
← including congestion

Computation Time &
Communication Time (1)
How are they determined? (very simplified discussion)
1. Aspect of software

3

Computation time ∝ computation costs per process
Communication time ∝ communication costs per process

Computation costs
(per process)

Communication costs
(per process)

diffusion O(NX NY NT / p) O(NX NT)
mm O(mnk / p) 0
mm (memory
reduced)

O(mnk / p) O(mk)

per process

※ Communication costs depend on data distribution methods
The table shows representative examples

Computation Time &
Communication Time (2)

4

Computation time Communication time
• Shorter if processor speed

is faster
• 850GFlops per node on

TSUBAME3

• Shorter if network speed
is faster
• 400Gbps per node on

TSUBAME3

2. Aspect of hardware

425GFlops x 2CPUs
= 850GFlops

100Gbps
Omnipath

100Gbps x 4
=400Gbps

425GFlops x 2CPUs
= 850GFlops

Speed of actual software is slower than the “peak” performance

Parameters for Network Speed
What parameters describes network speed?
 Bandwidth：Data amounts that network can transport per

unit time Larger is better
 bps: X bits per second
 B/s: X Bytes per second
 On TSUBAME3, 400Gbps = 50GB/s per node

 Network latency：Time to transport minimum data (1bit,
for example) Smaller is better
 On TSUBAME3, <10us

5

[Q] Is “latency” reciprocal of “bandwidth”?
 No, because data are transported in “pipe-lined” style

Model of Communication Time

6

T = M / B + L

T: Communication time
M: Data size
B: Bandwidth
L: Network latency

Time

Rank 0 Rank 1

L

M/B

※ Be aware of difference between
“Byte” and “bit”: 1Byte=8bit

※ Actually it is more complex for effects of network topology,
congestion, packet size, error correction…

Illustration of communication of data size M

Why Latency L > 0?
1. Overhead when data passes network switches

2. Software overhead
 Cf) Socket library and MPI library perform data copy

internally
３. Transfer speed of data cannot exceed speed
of light! (3x108 m/s)

Considering T = M / B + L,
batching communication may improve communication time
cf) Sending 1Gbytes at once is much faster than
sending 1Kbytes for 1,000,000 times

How to Improve Performance
of MPI Programs?
 To reduce computation time

 Reduce computation amount
 Use cache memory efficiently

 To reduce communication time
 Reduce communication amount
 Batch communication
 Using collective communication is also good

 To reduce other time
 Improve load balancing
 Reconsider I/O

 To overlap computation and communication

8

Idea of Overlapping

T=TN+TP 9

Comm

Comp

Comm

Comp

Without overlap With overlap

Comp
2

Comp
1

Comp
2

Comp
1

Start
Comm

Finish
Comm

TN

TP

If “some computations” do not require contents
of message, we may start them beforehand

TP is divided into
 TP1: can be overlapped
 TP2: cannot be overlapped

T=max(TN,TP1)+TP2

Case of diffusion

T

T: Execution time of 1 step
TN: Communication time
TP: Computation time ∝NX NY/p

T
TP2

TP1

10

Overlapping in Stencil Computation
(related to [M1], but not mandatory)

Rows C, D, E do not need
data from other processesA

B
C
D
E
F
G

When we consider data dependency in detail, we can find
computations that do not need data from other processes

On the other hand, rows
B, F need received data

Non-blocking communications (MPI_Isend, MPI_Irecv…)
are used for 2 purposes
1．To avoid deadlock problem (see No.8 slides)
2. To overlap

 They can be computed
without waiting for finishing
communication

Diffusion Algorithm without
Overlapping

11

for (t = 0; t < nt; t++) {

Start to Send B to rank-1 (MPI_Isend)

Start to Send F to rank+1 (MPI_Isend)

Start to Recv A from rank-1 (MPI_Irecv)

Start to Recv G from rank-1 (MPI_Irecv)

Finish all communications (MPI_Wait x 4)

Compute rows B--F

Switch old and new arrays

}

T=TN+TP

TN

TP

※ This algorithm is different from
one in No.8 slide; both avoid deadlock

Comm

Comp

TN

TP

Diffusion Algorithm with
Overlapping

12

for (t = 0; t < nt; t++) {

Start to Send B to rank-1 (MPI_Isend)

Start to Send F to rank+1 (MPI_Isend)

Start to Recv A from rank-1 (MPI_Irecv)

Start to Recv G from rank-1 (MPI_Irecv)

Compute rows C — E (TP1)

Finish all communications (MPI_Wait x 4)

Compute rows B, F (TP2)

Switch old and new arrays

}

T=max(TN,TP1)+TP2

Computations are
divided into 2 parts

Comp
2

Comp
1

TP2

TP1

Another Improvement:
Reducing Communication Amounts

13

 Comp: O(NY NX/p)
 Comm: O(NX)
per 1 process, 1 iteration

Multi-dimensional (MD) division can reduce communication

 Comp: O(NY NX/p)
 Comm: O((NY+NX)/p1/2)
per 1 process, 1 iteration
 Comm is reduced

Each process communicate with
upper/lower/right/left processes

NY

NX

Multi-dimensional division and
Non-contiguous data (1)
 MD division may need communication of non-

contiguous data

14

Comm
In Row-major format,
we need send/recv of
non-contiguous data for
left/right bordersComm Comm

Comm

But “fragmented communication” degrades
performance! (since Latency > 0)
How do we do?

Multi-dimensional division and
Non-contiguous data (2)
Solution (1):
 Before sending, copy non-contiguous data into another
contiguous buffer
 After receiving, copy contiguous buffer to non-contiguous
area
Solution (2):
 Use MPI_Datatype

 Skipped in the class; please use Google

Both solutions suffer from costs for access to non-
contiguous data
 MD division tends to be slower than theory  15

On Collective Communications

16

0

100

200

300

400

500

0 10 20 30 40

Ti
m

e
(m

s)

Number of Processes

64MB message

Send&Recv

MPI_Bcast

0

100

200

300

400

500

0 20 40 60 80

Ti
m

e
(m

s)

Message size (MB)

32 processes

Send&Recv

MPI_Bcast

 In most cases, MPI_Bcast is faster

faster faster

 Comparing MPI_Bcast and MPI_Send&Recv
1 process per node is invoked on TSUBAME2
In the latter, rank 0 called MPI_Send for p-1 times to other processes

Why are Collective
Communications Fast?

 Since MPI library uses scalable communication algorithms
 Case of “broadcast” of size M data

 p: number of processes, B: network bandwidth, L: network latency

p(M/B+L)
 Slow

(log p)(M/B+L)

Flat tree algorithm Binomial tree algorithm

M/B+L M/B+L log p
steps

One of Scalable Broadcast
Algorithms
 Scatter&Allgather algorithm

 Message is divided into p parts
 Better than “binomial tree” if M is larger

18

M/B + pL +
M/B + (log p)L

R. Thakur and W. Gropp. Improving
the performance of collective
operations in mpich. EuroPVM/MPI
conference, 2003.

Scatter

All-
gather

Scatter

All-gather

M/p

Comparison of Broadcast
Algorithms
 Consider two extreme cases
 If M is sufficiently large: M/B+L  M/B
 If M is close to zero: M/B+L  L

19

Flat Tree Binomial Tree Scatter&
All-gather

Cost (General) p(M/B+L) (log p) (M/B+L) 2M/B + (p + log p)L

Cost with
very large M

p M/B (log p) M/B 2 M/B
 Fastest

Cost with
very small M

p L (log p) L
 Fastest

(p + log p) L

Many MPI libraries implement multiple algorithms
They switch them automatically according to message size M 

 We have finished
 Part 1: OpenMP for shared memory parallel

programming
 Part 2: MPI for distributed memory parallel

programming

 Why are “parallel programs” slower than
expectation?
 “p times speed-up with p processor cores” (linear

scaling) is ideal, but…
 Parallel software is often less scalable

20

Where We are Now

How Should We Tackle
Performance Limiting Factors?

 It is important to know “why it is slow now”
 Consider what should be measured in order to specify

current problem
 Measuring time part by part may be helpful
 Comparing computation time and communication time separately
 Comparing 1-node performance and multi-node performance

may be helpful
 It is good to use knowledge of computer hardware

21

Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: May 30 (Thursday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see No. 7 slides or OCW-i.

22

23

Next Class
 Part 3 starts
 GPU parallel programming
 OpenACC is planned

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

24

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 10
	Considering Performance of MPI Programs
	Computation Time &�Communication Time (1)
	Computation Time &�Communication Time (2)
	Parameters for Network Speed
	Model of Communication Time
	Why Latency L > 0?
	How to Improve Performance of MPI Programs?
	Idea of Overlapping
	Overlapping in Stencil Computation�(related to [M1], but not mandatory)
	Diffusion Algorithm without Overlapping
	Diffusion Algorithm with Overlapping
	Another Improvement:�Reducing Communication Amounts
	Multi-dimensional division and Non-contiguous data (1)
	Multi-dimensional division and Non-contiguous data (2)
	On Collective Communications
	Why are Collective Communications Fast?
	One of Scalable Broadcast Algorithms
	Comparison of Broadcast Algorithms
	Where We are Now
	How Should We Tackle Performance Limiting Factors?
	Assignments in MPI Part�(Abstract)
	Next Class
	Information

