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Considering Performance of 
MPI Programs
(Simplified) Execution time of an MPI program =

Computation time
+ Communication time
+ Others
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← including memory access

← load imbalance, I/O…
← including congestion



Computation Time &
Communication Time (1)
How are they determined? (very simplified discussion)
1. Aspect of software
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Computation time ∝ computation costs per process
Communication time ∝ communication costs per process

Computation costs
(per process)

Communication costs
(per process)

diffusion O(NX NY NT / p) O(NX NT)
mm O(mnk / p) 0
mm (memory
reduced)

O(mnk / p) O(mk)

per process

※ Communication costs depend on data distribution methods
The table shows representative examples



Computation Time &
Communication Time (2)
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Computation time Communication time
• Shorter if processor speed 

is faster
• 850GFlops per node on 

TSUBAME3

• Shorter if network speed 
is faster
• 400Gbps per node on 

TSUBAME3

2. Aspect of hardware

425GFlops x 2CPUs 
= 850GFlops

100Gbps
Omnipath

100Gbps x 4
=400Gbps

425GFlops x 2CPUs 
= 850GFlops

Speed of actual software is slower than the “peak” performance



Parameters for Network Speed
What parameters describes network speed?
 Bandwidth：Data amounts that network can transport per 

unit time Larger is better
 bps: X bits per second
 B/s: X Bytes per second
 On TSUBAME3, 400Gbps = 50GB/s per node

 Network latency：Time to transport minimum data (1bit, 
for example) Smaller is better
 On TSUBAME3, <10us
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[Q] Is “latency” reciprocal of “bandwidth”?
 No, because data are transported in “pipe-lined” style



Model of Communication Time
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T  =  M  /  B  +  L

T: Communication time
M: Data size
B: Bandwidth
L: Network latency

Time

Rank 0 Rank 1

L

M/B

※ Be aware of difference between 
“Byte” and “bit”: 1Byte=8bit

※ Actually it is more complex for effects of network topology, 
congestion, packet size, error correction…

Illustration of communication of data size M



Why Latency L > 0?
1. Overhead when data passes network switches

2. Software overhead
 Cf) Socket library and MPI library perform data copy 

internally
３. Transfer speed of data cannot exceed speed 
of light! (3x108 m/s)

Considering T  =  M  /  B  +  L,
batching communication may improve communication time
cf) Sending 1Gbytes at once is much faster than
sending 1Kbytes for 1,000,000 times



How to Improve Performance 
of MPI Programs?
 To reduce computation time

 Reduce computation amount
 Use cache memory efficiently

 To reduce communication time
 Reduce communication amount
 Batch communication
 Using collective communication is also good

 To reduce other time
 Improve load balancing
 Reconsider I/O

 To overlap computation and communication
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Idea of Overlapping

T=TN+TP 9
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If “some computations” do not require contents
of message, we may start them beforehand

TP is divided into
 TP1: can be overlapped
 TP2: cannot be overlapped

T=max(TN,TP1)+TP2

Case of diffusion

T

T: Execution time of 1 step
TN: Communication time
TP: Computation time ∝NX NY/p

T
TP2

TP1
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Overlapping in Stencil Computation
(related to [M1], but not mandatory)

Rows C, D, E do not need
data from other processesA

B
C
D
E
F
G

When we consider data dependency in detail, we can find 
computations that do not need data from other processes

On the other hand, rows
B, F need received data

Non-blocking communications (MPI_Isend, MPI_Irecv…) 
are used for 2 purposes
1．To avoid deadlock problem (see No.8 slides)
2. To overlap

 They can be computed
without waiting for finishing
communication



Diffusion Algorithm without
Overlapping
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for (t = 0; t < nt; t++) {

Start to Send B to rank-1 (MPI_Isend)

Start to Send F to rank+1 (MPI_Isend)

Start to Recv A from rank-1 (MPI_Irecv)

Start to Recv G from rank-1 (MPI_Irecv)

Finish all communications (MPI_Wait x 4)

Compute rows B--F

Switch old and new arrays

}

T=TN+TP

TN

TP

※ This algorithm is different from
one in No.8 slide; both avoid deadlock

Comm

Comp

TN

TP



Diffusion Algorithm with
Overlapping

12

for (t = 0; t < nt; t++) {

Start to Send B to rank-1 (MPI_Isend)

Start to Send F to rank+1 (MPI_Isend)

Start to Recv A from rank-1 (MPI_Irecv)

Start to Recv G from rank-1 (MPI_Irecv)

Compute rows C — E (TP1) 

Finish all communications (MPI_Wait x 4)

Compute rows B, F (TP2)

Switch old and new arrays

}

T=max(TN,TP1)+TP2

Computations are
divided into 2 parts

Comp
2

Comp
1

TP2

TP1



Another Improvement:
Reducing Communication Amounts
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 Comp: O(NY NX/p)
 Comm: O(NX) 
per 1 process, 1 iteration

Multi-dimensional (MD) division can reduce communication

 Comp: O(NY NX/p)
 Comm: O((NY+NX)/p1/2) 
per 1 process, 1 iteration
 Comm is reduced

Each process communicate with 
upper/lower/right/left processes

NY

NX



Multi-dimensional division and 
Non-contiguous data (1)
 MD division may need communication of non-

contiguous data
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Comm
In Row-major format,
we need send/recv of 
non-contiguous data for 
left/right bordersComm Comm

Comm

But “fragmented communication” degrades 
performance! (since Latency > 0)
How do we do?



Multi-dimensional division and 
Non-contiguous data (2)
Solution (1):
 Before sending, copy non-contiguous data into another 
contiguous buffer
 After receiving, copy contiguous buffer to non-contiguous 
area
Solution (2):
 Use MPI_Datatype

 Skipped in the class; please use Google

Both solutions suffer from costs for access to non-
contiguous data
 MD division tends to be slower than theory  15



On Collective Communications
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 In most cases, MPI_Bcast is faster

faster faster

 Comparing MPI_Bcast and MPI_Send&Recv
1 process per node is invoked on TSUBAME2
In the latter, rank 0 called MPI_Send for p-1 times to other processes



Why are Collective 
Communications Fast?

 Since MPI library uses scalable communication algorithms
 Case of “broadcast” of size M data

 p: number of processes, B: network bandwidth, L: network latency

p(M/B+L)
 Slow

(log p)(M/B+L)

Flat tree algorithm Binomial tree algorithm

M/B+L M/B+L log p
steps



One of Scalable Broadcast 
Algorithms
 Scatter&Allgather algorithm

 Message is divided into p parts
 Better than “binomial tree” if M is larger
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M/B + pL +
M/B + (log p)L

R. Thakur and W. Gropp. Improving 
the performance of collective 
operations in mpich. EuroPVM/MPI 
conference, 2003.

Scatter

All-
gather

Scatter

All-gather

M/p



Comparison of Broadcast 
Algorithms
 Consider two extreme cases
 If M is sufficiently large: M/B+L  M/B
 If M is close to zero: M/B+L  L
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Flat Tree Binomial Tree Scatter&
All-gather

Cost (General) p(M/B+L) (log p) (M/B+L) 2M/B + (p + log p)L

Cost with
very large M

p M/B (log p) M/B 2 M/B
 Fastest

Cost with
very small M

p L (log p) L
 Fastest

(p + log p) L

Many MPI libraries implement multiple algorithms
They switch them automatically according to message size M 



 We have finished
 Part 1: OpenMP for shared memory parallel 

programming
 Part 2: MPI for distributed memory parallel 

programming

 Why are “parallel programs” slower than 
expectation?
 “p times speed-up with p processor cores” (linear 

scaling) is ideal, but…
 Parallel software is often less scalable
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Where We are Now



How Should We Tackle 
Performance Limiting Factors?

 It is important to know “why it is slow now”
 Consider what should be measured in order to specify 

current problem
 Measuring time part by part may be helpful
 Comparing computation time and communication time separately
 Comparing 1-node performance and multi-node performance 

may be helpful
 It is good to use knowledge of computer hardware

21



Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: May 30 (Thursday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory 

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see No. 7 slides or OCW-i.

22



23

Next Class
 Part 3 starts
 GPU parallel programming
 OpenACC is planned



Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory
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TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal
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