
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. ７

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Distributed Memory Parallel
Programming with MPI (1)

How to Use Many Nodes in
Supercomputers
1. Submit several jobs into job scheduler

 cf) Program executions with different parameters
Parameter Sweep

 Jobs are dependent, and no cooperation

2

2. Use distributed memory programming A single job
can use multiple nodes

 Socket programming, Hadoop, Spark…
 And MPI

compute node

3

Classification of Parallel
Programming Models

Sequential

Process/
Thread

Data

Shared memory
prog. model

Distributed memory
prog. model

Threads have access
to shared data
• OpenMP
• pthread
• Java thread…

Need communication
among processes
• MPI
• socket
• Hadoop, Spark…

Programming
without
parallelsim

4

MPI (message-passing
interface)
 Parallel programming interface based on

distributed memory model
 Used by C, C++, Fortran programs
 Programs call MPI library functions, for message

passing etc.
 There are several MPI libraries
 OpenMPI (default) OpenMPI ≠ OpenMP
 Intel MPI, SGI MPE, MVAPICH, MPICH…

Differences from OpenMP

In MPI,
 An execution consists of multiple processes (not threads)

 We can use multiple nodes
 The number of running processes is basically constant

 No variables are shared. Instead message passing is used
 Data distribution has to be programmed

 No smart syntaxes such as “omp for” or “omp task”
 Task distribution has to be programmed

5

6

Sample MPI Programs on
TSUBAME (case of OpenMPI)

 Preparation for MPI environment
 module load cuda openmpi

Now you can use mpicc command, until you log-out
from TSUBAME

 MPI programs are compiled with mpicc
command
 In sample directories, “make” command will be ok

 Execution
 mpirun –n 2 ./mpitest
 Executed on login nodes. Please use qsub usually

Samples at ~endo-t-ac/ppcomp/19/mpitest/
~endo-t-ac/ppcomp/19/mm-mpi/ on TSUBAME

Please copy them to your directory as usual

for module dependency

Number of processes

7

Submit an MPI Job
(case of OpenMPI)

(1) Make a script file: job.sh
(2) Submit the job with “qsub”

qsub job.sh

qsub –g tga-ppcomp job.sh
(if you use the group)

 Here program name is “a.out”. We are going to execute it
with 4 processes × 2 nodes = 8 processes

Number of
processes
per node

#!/bin/sh
#$ -cwd
#$ -l q_core=2
#$ -l h_rt=00:10:00

. /etc/profile.d/modules.sh
module load cuda openmpi

mpirun –n 8 –npernode 4 ./a.out a b

Number of
processes

4core node x 2

Program name
(and option)

Module
preparation

Notes on Job Submission

 Please specify maximum run time (h_rt) properly
 If h_rt is larger than 0:10:00, you need to specify “TSUBAME group

name” (charged/有料)
qsub –g tga-ppcomp job.sh

 Use tga-ppcomp group only for this lecture
(tga-ppcompグループは、本授業の課題とそのテスト専用に使ってください)

 Without TSUBAME group, you can only use ≦2 nodes
(グループ無しの無料利用は2ノードまで)
 If you use “-l f_node=2”, you can use ≦56 cores
 If number of nodes > 2, group name is required (and charged)

8

For the assignments:
• Please use ≦2 nodes, basically
• If you want, you can try ≦448 cores (-l f_node=16), but do

not consume TSUBAME points too much

Nodes, Cores, MPI Processes

9

:
#$ -l q_core=2

:
mpirun –n 8 –npernode 4

…

2 (virtual) nodes are prepared
Each node has 4 cores (q_core)

4 processes are created per
node. Totally 8 are created
 2 nodes are used

:
#$ -l s_core=8

:
mpirun –n 8 –npernode 1

…

8 (virtual) nodes are prepared
Each node has 1 cores (s_core)

1 processes are created per
node. Totally 8 are created
 8 nodes are used

:
#$ -l q_node=2

:
mpirun –n 11 –npernode 6

…

2 (virtual) nodes are prepared
Each node has 7 cores (q_node)

6 processes are created per
node. Totally 11 are created
 2 nodes are used
(There are idle cores)

10

An MPI Program Looks Like
#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

(Computation/communication)

MPI_Finalize();

}

 Initialize MPI

 Finalize MPI

If number of
processes=4

11

ID of Each MPI Process
 Each process has its ID (0, 1, 2…), called rank
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 Get its rank
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 Get the number of total processes
 0 ≦ rank < size
 The rank is used as target of message passing

rank=0 rank=1 rank=2 rank=3

size=4

12

“mm” sample: Matrix Multiply

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B
 Algorithm with a triple for loop
 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format

 Execution: mpirun –n [np]
–npernode [nn] ./mm [m] [n] [k]

CA

B

m

k

k

n

MPI version available at ~endo-t-ac/ppcomp/19/mm-mpi/

13

Why Distributed Programming is
More Difficult (case of mm-mpi)

Shared memory with OpenMP:
Programmers consider how
computations are divided

A

B

C A

B0

A

Distributed memory with MPI:
Programmers consider how data and
computations are divided

In this case, matrix A is accessed
by all threads
 Programmers do not have to
know that

Programmers have to design
which data is accessed by
each process

C0

B1

C1 A

B2

C2

14

Programming Data Distribution
(case of mm-mpi)

A

B0

AC0

B1

C1 A

B2

C2 A

B3

C3

A

B

C

Design distribution
method:

I will divide B, C
vertically.
I will put replicas of
A on every process...

Programming actual location:

15

Programming Actual Data
Distribution
 We want to distribute a m×n

matrix among p processes
 We assume n is divisible by p

 Each process has a partial
matrix of size m×(n/p)
 We need to “malloc”

m*(n/p)*sizeof(data-type) size
 We need to be aware of relation

between partial matrix and entire
matrix
 (i,j) element in partial matrix

owned by Process r ⇔
(i, n/p*r + j) element in entire

matrix

Entire matrix

m

n
Actual matrix
per process

m

n/p

(0,0)

local index

global index

16

What is Done for Indivisible Cases
 What if data size n is indivisible by p?
 We let n=11, p=4
 How many data each process take?
 n/p = 2 is not good (C division uses round down). Instead, we

should use round up division
 (n+p-1)/p = 3 works well
Note that the “final” process takes less than others

(n+p-1)/p
See divide_length() function in mm-mpi/mm.c
It calculates the range the process should take
(first index s and last index e)

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required

17

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion
[M2] mm
[M3] free

[G1]
[G2]
[G3]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

18

Assignments in MPI Part (1)
Choose one of [M1]—[M3], and submit a report
Due date: May 30 (Thursday)

[M1] Parallelize “diffusion” sample program by MPI.
 Do not forget to change Makefile and job.sh appropriately
 Use deadlock-free communication

 see neicomm_safe() in neicomm sample

Optional：
 To make array sizes (NX, NY) variable parameters
 To consider the case with NY is indivisible by p

 see divide_length() in mm_mpi sample
 To improve performance further. Blocking, 2D division, etc

19

Assignments in MPI Part(2)
[M2] Improve “mm-mpi” sample in order to reduce

memory consumption

Optional:
 To consider indivisible cases
 To try advanced algorithms, such as SUMMA
 the paper “SUMMA: Scalable Universal Matrix

Multiplication Algorithm” by Van de Geijn
 http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

20

Assignments in MPI Part (3)
[M3] (Freestyle) Parallelize any program by MPI.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other

21

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes (if possible)
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

22

Next Class: on May 9 (Thu)
 MPI (2)
 How to parallelize diffusion sample with MPI

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

23

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. ７
	How to Use Many Nodes in Supercomputers
	Classification of Parallel Programming Models
	MPI (message-passing interface)
	Differences from OpenMP
	Sample MPI Programs on TSUBAME (case of OpenMPI)
	Submit an MPI Job�(case of OpenMPI)
	Notes on Job Submission
	Nodes, Cores, MPI Processes�
	An MPI Program Looks Like
	ID of Each MPI Process
	“mm” sample: Matrix Multiply
	Why Distributed Programming is More Difficult (case of mm-mpi)
	Programming Data Distribution�(case of mm-mpi)
	Programming Actual Data Distribution
	What is Done for Indivisible Cases
	Assignments in this Course
	Assignments in MPI Part (1)
	Assignments in MPI Part(2)
	Assignments in MPI Part (3)
	Notes in Submission
	Next Class: on May 9 (Thu)
	Information

