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Today’s Topic：Task Parallelism
~Comparison with Data Parallelism~
 Data Parallelism：

 Every thread does uniform/similar tasks for different part of large data

 Task Parallelism：
 Each thread does different tasks

 Sometimes the number of tasks is unknown beforehand
 Sometimes tasks are generated recursively
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cf) mm, diffusion 
samples

cf) fib, sort 
samples today



Data Parallelism/Task Parallelism
in OpenMP
 #pragma omp for

 Used for data parallelism (basically)
 Number of tasks is known before starting for-loop

 for (i = 0; i < n; i++) …  n tasks are divided among threads
 #pragma omp task

 Used for task parallelism (basically)
 Number of tasks may change during execution

※ You may write data parallel algorithm with “omp task” if you want, or 
vice versa
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task/taskwait syntaxes
#pragma omp parallel
#pragma omp single
{
#pragma omp task
{

A;
}

#pragma omp task
B;

#pragma omp taskwait
} 4

“task” syntax generates a task
(called a child task) that executes 
the following block/sentence
 A task is executed by one of threads 

who is idle (has nothing to do)

 Children tasks and parent task may be 
executed in parallel

 Recursive task generation is ok

“taskwait” syntax waits end of all 
children tasks



Differences between 
“Tasks” and “Threads”

 So, what is the difference?
 Number of threads is (basically) constant during a parallel region

 OMP_NUM_THREADS, usually no more than number of processor cores
 Number of tasks may be changed frequently

 may be >>number of processor cores
 When a thread becomes idle, it takes one of tasks and executes it
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Threads

Tasks

Task A and task B are 
executed in parallel

Thread A and thread B 
are executed in parallel



“fib” Sample Program
 Available at ~endo-t-ac/ppcomp/19/fib/
 Calculates the Fibonacci number

 fib(n) = fib(n-1) + fib(n-2)
 1, 1, 2, 3, 5, 8, 13…

 Execution: ./fib [n]
 ./fib 40  outputs 40th Fibonacci number

 Recursive function call is used
 It uses an inefficient algorithm as a sample

 Computational complexity: O(fib(n)) 
 (We do not know it before the calculation)
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OpenMP Version of fib (version 1)

Available at 
~endo-t-ac/ppcomp/19/fib-slow-omp/
 In this version, 

a task = recursive call
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long fib_r(int n)
{
long f1, f2;
if (n <= 1) return n;

#pragma omp task shared(f1)
f1 = fib_r(n-1);

#pragma omp task shared(f2)
f2 = fib_r(n-2);

#pragma omp taskwait

return f1+f2;
}

Tasks are generated

We wait for completion of
the above 2 tasks

[Q] What if we omit “omp taskwait”?



Note on Using “task” Syntax
 In OpenMP, tasks are taken and executed by idle threads
We need to prepare idle threads before creating tasks
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long fib(int n)
{
long ans;

#pragma omp parallel
#pragma omp single
{
ans = fib_r(n);

}
return ans;

}

←Multiple threads start
←Only a single thread executes followings

(other threads become idle)

[Q] What if we omit “omp single”?
Every thread execute “fib_r(n)” redundantly
No speed up!

←Parallel region finishes



Rules about Variables
In default, copies of variables are created for each child task
 The value of “n” is brought from parent to a child task 

 OK 
 But a child has a only copy  update to “f1” or “f2” is not 

visible to parent. NG! 

“shared(var)” option makes the variable “var” be shared 
between parent and the child
 Using it, update to “f1” or “f2” is visible to parent
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The First Version is Too Slow

1 2 4 8

33 ~300 ~360 ~480
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1

0.60
fib

Execution time of ./fib 40
• TSUBAME3.0 node, compiled with “gcc –O –fopenmp”

fib-slow
-omp

threads

seconds

threads

seconds

• OpenMP version is much slower than original fib
• With 1 thread, 40x slower

• Also it is much slower with multi-threads
 How can we improve?



Pitfall in “task” Syntax
 While OpenMP allows to generate many tasks, task 

generation cost is not negligible
Rough comparison：

Function call cost << Task generation cost
<< Thread generation cost

 In version 1, “./fib n” generates O(fib(n) ) tasks 
 Too much!
 How can we reduce the number of tasks?
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OpenMP Version of fib (version 2)

Available at
~endo-t-ac/ppcomp/19/fib-omp/

To avoid generating too 
many tasks, we check n

 Changing threshold (=30) 
would affect performance

If n is large, we generate 
tasks
If n is small, we do not 
generate
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long fib_r(int n)
{
long f1, f2;
if (n <= 1) return n;

if (n <= 30) {
f1 = fib_r(n-1);
f2 = fib_r(n-2);

}
else {

#pragma omp task shared(f1)
f1 = fib_r(n-1);

#pragma omp task shared(f2)
f2 = fib_r(n-2);

#pragma omp taskwait
}
return f1+f2;

}

if n is “sufficiently” 
small, we do not 
generate tasks



Performance of Version 2

1 2 4 8

33 ~300 ~360 ~480
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1

0.6
fib

Execution time of ./fib 40

fib-slow
-omp

threads

seconds

threads

seconds

• Performance of Version 2 is largely improved and 
more stable
• With 1 thread, still 25% slower than sequential fib

 Restricting task generation is important for speed

1 2 4 8

0.75 0.46 0.29 0.21
fib-omp

threads

seconds



“sort” Sample Program
Related to Assignment [O2]

Available at ~endo-t-ac/ppcomp/19/sort/
 Execution: ./sort [n]
 It sorts an array of length n by the quick sort algorithm

 Array elements have double type
 Compute Complexity: O(n log n) on average

 More efficient than O(n2) algorithm such as bubble sort
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0.84 0.39 0.78 0.80 0.91 0.20 0.34 0.77

n

0.20 0.34 0.39 0.77 0.78 0.80 0.84 0.91



Quick Sort
 A recursive algorithm
 Take a value, called “pivot” from the array
 Partition array into two parts, “small” and “large”
 “small” part and “large” part are sorted recursively
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Smaller values than “pivot” Larger values than “pivot”

O(log n)
depth

on average



Structure of Sort Sample
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int sort(double *data, int s, int e)
{
int i, j;
double pivot;
if (e-s <= 1)  return 0;

/* pivot selection */
:

/* partition data[] into 2 parts */
:

/* Here “i” is boundary of 2 parts */

sort(data, s, i);   /* Sort left part recursively*/
sort(data, i, e);  /* Sort right part recursively */

}

Harder to parallelize
(not impossible)

Generating 2 tasks
would be a good idea

[Q] Should we restrict too much task generation? And how?

s i e

left right
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[Revisited]
When We Can Use “omp for”
 Loops with some (complex) forms cannot be supported, 

unfortunately 
 The target loop must be in the following form
#pragma omp for

for (i = value; i op value; incr-part)

body

“op”: <, >, <=, >=, etc.

“incr-part”: i++, i--, i+=c, i-=c, etc.

OK : for (x = n; x >= 0; x-=4)

NG : for (i = 0; test(i); i++)

NG : for (p = head; p != NULL; p = p->next)

Instead, we can parallelize it with “task” syntax



Parallelize Irregular Loops with 
“task” Syntax
 In list search, number of iterations cannot be 

known before execution we can use “task”
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#pragma omp parallel
#pragma omp single

{
for (p = head; p != NULL;  

p = p->next) {
#pragma omp task

[Do something with p]
}

#pragma omp taskwait
}

• A task for one list node
= one OpenMP task

Note：
• The number of generated tasks = 

List length.
 Task generation costs may be large



Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: May 9 (Thursday)

[O1] Parallelize “diffusion” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see No.3 slides or OCW-i.
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Next Class:
 OpenMP(4)
 Mutual exclusion for correct programs
 Bottlenecks in parallel programs



Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory
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TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal
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