
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 5

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Shared Memory Parallel
Programming with OpenMP (3)

Today’s Topic：Task Parallelism
~Comparison with Data Parallelism~
 Data Parallelism：

 Every thread does uniform/similar tasks for different part of large data

 Task Parallelism：
 Each thread does different tasks

 Sometimes the number of tasks is unknown beforehand
 Sometimes tasks are generated recursively

2

cf) mm, diffusion
samples

cf) fib, sort
samples today

Data Parallelism/Task Parallelism
in OpenMP
 #pragma omp for

 Used for data parallelism (basically)
 Number of tasks is known before starting for-loop

 for (i = 0; i < n; i++) …  n tasks are divided among threads
 #pragma omp task

 Used for task parallelism (basically)
 Number of tasks may change during execution

※ You may write data parallel algorithm with “omp task” if you want, or
vice versa

3

task/taskwait syntaxes
#pragma omp parallel
#pragma omp single
{
#pragma omp task
{

A;
}

#pragma omp task
B;

#pragma omp taskwait
} 4

“task” syntax generates a task
(called a child task) that executes
the following block/sentence
 A task is executed by one of threads

who is idle (has nothing to do)

 Children tasks and parent task may be
executed in parallel

 Recursive task generation is ok

“taskwait” syntax waits end of all
children tasks

Differences between
“Tasks” and “Threads”

 So, what is the difference?
 Number of threads is (basically) constant during a parallel region

 OMP_NUM_THREADS, usually no more than number of processor cores
 Number of tasks may be changed frequently

 may be >>number of processor cores
 When a thread becomes idle, it takes one of tasks and executes it

5

Threads

Tasks

Task A and task B are
executed in parallel

Thread A and thread B
are executed in parallel

“fib” Sample Program
 Available at ~endo-t-ac/ppcomp/19/fib/
 Calculates the Fibonacci number

 fib(n) = fib(n-1) + fib(n-2)
 1, 1, 2, 3, 5, 8, 13…

 Execution: ./fib [n]
 ./fib 40  outputs 40th Fibonacci number

 Recursive function call is used
 It uses an inefficient algorithm as a sample

 Computational complexity: O(fib(n))
 (We do not know it before the calculation)

6

OpenMP Version of fib (version 1)

Available at
~endo-t-ac/ppcomp/19/fib-slow-omp/
 In this version,

a task = recursive call

7

long fib_r(int n)
{
long f1, f2;
if (n <= 1) return n;

#pragma omp task shared(f1)
f1 = fib_r(n-1);

#pragma omp task shared(f2)
f2 = fib_r(n-2);

#pragma omp taskwait

return f1+f2;
}

Tasks are generated

We wait for completion of
the above 2 tasks

[Q] What if we omit “omp taskwait”?

Note on Using “task” Syntax
 In OpenMP, tasks are taken and executed by idle threads
We need to prepare idle threads before creating tasks

8

long fib(int n)
{
long ans;

#pragma omp parallel
#pragma omp single
{
ans = fib_r(n);

}
return ans;

}

←Multiple threads start
←Only a single thread executes followings

(other threads become idle)

[Q] What if we omit “omp single”?
Every thread execute “fib_r(n)” redundantly
No speed up!

←Parallel region finishes

Rules about Variables
In default, copies of variables are created for each child task
 The value of “n” is brought from parent to a child task

 OK 
 But a child has a only copy  update to “f1” or “f2” is not

visible to parent. NG! 

“shared(var)” option makes the variable “var” be shared
between parent and the child
 Using it, update to “f1” or “f2” is visible to parent

9

The First Version is Too Slow

1 2 4 8

33 ~300 ~360 ~480

10

1

0.60
fib

Execution time of ./fib 40
• TSUBAME3.0 node, compiled with “gcc –O –fopenmp”

fib-slow
-omp

threads

seconds

threads

seconds

• OpenMP version is much slower than original fib
• With 1 thread, 40x slower

• Also it is much slower with multi-threads
 How can we improve?

Pitfall in “task” Syntax
 While OpenMP allows to generate many tasks, task

generation cost is not negligible
Rough comparison：

Function call cost << Task generation cost
<< Thread generation cost

 In version 1, “./fib n” generates O(fib(n)) tasks
 Too much!
 How can we reduce the number of tasks?

11

OpenMP Version of fib (version 2)

Available at
~endo-t-ac/ppcomp/19/fib-omp/

To avoid generating too
many tasks, we check n

 Changing threshold (=30)
would affect performance

If n is large, we generate
tasks
If n is small, we do not
generate

12

long fib_r(int n)
{
long f1, f2;
if (n <= 1) return n;

if (n <= 30) {
f1 = fib_r(n-1);
f2 = fib_r(n-2);

}
else {

#pragma omp task shared(f1)
f1 = fib_r(n-1);

#pragma omp task shared(f2)
f2 = fib_r(n-2);

#pragma omp taskwait
}
return f1+f2;

}

if n is “sufficiently”
small, we do not
generate tasks

Performance of Version 2

1 2 4 8

33 ~300 ~360 ~480

13

1

0.6
fib

Execution time of ./fib 40

fib-slow
-omp

threads

seconds

threads

seconds

• Performance of Version 2 is largely improved and
more stable
• With 1 thread, still 25% slower than sequential fib

 Restricting task generation is important for speed

1 2 4 8

0.75 0.46 0.29 0.21
fib-omp

threads

seconds

“sort” Sample Program
Related to Assignment [O2]

Available at ~endo-t-ac/ppcomp/19/sort/
 Execution: ./sort [n]
 It sorts an array of length n by the quick sort algorithm

 Array elements have double type
 Compute Complexity: O(n log n) on average

 More efficient than O(n2) algorithm such as bubble sort

14

0.84 0.39 0.78 0.80 0.91 0.20 0.34 0.77

n

0.20 0.34 0.39 0.77 0.78 0.80 0.84 0.91

Quick Sort
 A recursive algorithm
 Take a value, called “pivot” from the array
 Partition array into two parts, “small” and “large”
 “small” part and “large” part are sorted recursively

15

Smaller values than “pivot” Larger values than “pivot”

O(log n)
depth

on average

Structure of Sort Sample

16

int sort(double *data, int s, int e)
{
int i, j;
double pivot;
if (e-s <= 1) return 0;

/* pivot selection */
:

/* partition data[] into 2 parts */
:

/* Here “i” is boundary of 2 parts */

sort(data, s, i); /* Sort left part recursively*/
sort(data, i, e); /* Sort right part recursively */

}

Harder to parallelize
(not impossible)

Generating 2 tasks
would be a good idea

[Q] Should we restrict too much task generation? And how?

s i e

left right

17

[Revisited]
When We Can Use “omp for”
 Loops with some (complex) forms cannot be supported,

unfortunately 
 The target loop must be in the following form
#pragma omp for

for (i = value; i op value; incr-part)

body

“op”: <, >, <=, >=, etc.

“incr-part”: i++, i--, i+=c, i-=c, etc.

OK : for (x = n; x >= 0; x-=4)

NG : for (i = 0; test(i); i++)

NG : for (p = head; p != NULL; p = p->next)

Instead, we can parallelize it with “task” syntax

Parallelize Irregular Loops with
“task” Syntax
 In list search, number of iterations cannot be

known before execution we can use “task”

18

#pragma omp parallel
#pragma omp single

{
for (p = head; p != NULL;

p = p->next) {
#pragma omp task

[Do something with p]
}

#pragma omp taskwait
}

• A task for one list node
= one OpenMP task

Note：
• The number of generated tasks =

List length.
 Task generation costs may be large

Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: May 9 (Thursday)

[O1] Parallelize “diffusion” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see No.3 slides or OCW-i.
19

20

Next Class:
 OpenMP(4)
 Mutual exclusion for correct programs
 Bottlenecks in parallel programs

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

21

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 5
	Today’s Topic：Task Parallelism�~Comparison with Data Parallelism~
	Data Parallelism/Task Parallelism�in OpenMP
	task/taskwait syntaxes
	Differences between �“Tasks” and “Threads”
	“fib” Sample Program
	OpenMP Version of fib (version 1)
	Note on Using “task” Syntax
	Rules about Variables
	The First Version is Too Slow
	Pitfall in “task” Syntax
	OpenMP Version of fib (version 2)
	Performance of Version 2
	“sort” Sample Program�Related to Assignment [O2]
	Quick Sort
	Structure of Sort Sample
	[Revisited]�When We Can Use “omp for”
	Parallelize Irregular Loops with “task” Syntax
	Assignments in OpenMP Part�(Abstract)
	Next Class:
	Information

