
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 3

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Shared Memory Parallel
Programming with OpenMP (1)

What is OpenMP?
 One of programming APIs based on shared-memory

parallel model
 Multiple threads work cooperatively
 Threads can share data

2

Processor
cores

Memory

Hardware

Threads

Data

Thread

Data

Simple C software OpenMP software

OpenMP Programs Look Like

3

int a[100], b[100], c[100];
int i;

#pragma omp parallel for
for (i = 0; i < 100; i++) {

a[i] = b[i]+c[i];
}

An example of OpenMP
directive
In this case, a directive has
an effect on the following
block/sentence

 OpenMP defines extensions to C/C++/Fortran
 Directive syntaxes & library functions

 Directives look like: #pragma omp ~~

4

Sample Programs
See ~endo-t-ac/ppcomp/19/ on TSUBAME
(1) There are several sub directories
 Pi (pi, pi-omp)
 Matrix multiply (mm, mm-omp)

(1) Copy them to (anywhere in) your own home directory
 Cf) cp –r ~endo-t-ac/ppcomp/19/pi-omp .

(2) Executable binaries are generated by “make” command in
each sub-directory

5

Compiling OpenMP Programs
All famous compilers support OpenMP (fortunately), but

require different options (unfortunately)
 gcc

 -fopenmp option in compiling and linking
 PGI compiler

 module load pgi, and then use pgcc
 -mp option in compiling and linking

 Intel compiler
 module load intel, and then use icc
 -openmp option in compiling and linking

Also see outputs of “make” in OpenMP sample directory

6

1

x

y

dx

Estimate approximation of π (circumference/diameter) by
approximation of integration

 Sequential version in “pi”, OpenMP version in “pi-omp”
 Method

 Let SUM be approximation of the yellow area
 4 x PR  π

 Execution：./pi [n]
 n: Number of division
 Cf) ./pi 100000000

 Compute complexity： O(n)

“pi” sample

Note: This program is only for a simple sample.
π is usually computed by different algorithms.

dx = 1/n
y = sqrt(1-x*x)

#!/bin/sh
#$ -cwd
#$ -l s_core=1
#$ -l h_rt=00:10:00

./pi 100000000

Submitting a Job to TSUBAME
~ in case of pi sample ~

 OpenMP version
 see pi-omp directory
 in the case with 4 threads (4 processor

cores)

7

#!/bin/sh
#$ -cwd
#$ -l q_core=1
#$ -l h_rt=00:10:00

export OMP_NUM_THREADS=4
./pi 100000000

pi-omp/job.sh

 Job submission
 qsub job.sh

resource type
and count

maximum
run time

 Sequential version
 see pi directory

pi/job.sh

Notes on Job Submission (1)

There are several notes since TSUBAME is a
shared system
Please specify the resource type properly,
according to the number of threads (CPU cores)

 s_core: 1 core
 q_core: 4 cores
 q_node: 7 cores (+ 1GPU)
 h_node: 14 cores (+ 2GPUs)
 f_node: 28 nores (+ 4GPUs)
For detail, see TSUBAME3.0 User’s Guide (利用の手引き) Section 5.1

8

Notes on Job Submission

 Please specify maximum run time (h_rt) properly
 If h_rt is larger than 0:10:00, you need to specify “TSUBAME group

name” for accounting (charged/有料)
qsub –g tga-ppcomp job.sh

 Use tga-ppcomp group only for this lecture / tga-ppcompグループは、本
授業の課題とそのテスト専用に使ってください

 Please do not execute CPU intensive programs on login
nodes
 It is OK to edit programs, compile programs, and submit jobs, and so on

9

10

Basic Parallelism in OpenMP：
Parallel Region
#include <omp.h>

int main()
{

A;
#pragma omp parallel

{
B;

}
C;

#pragma omp parallel
D;
E;

}

Sentence/block immediately after #pragma omp parallel
is called parallel region, executed by multiple threads
 Here a “block” is a region surrounded by braces {}
 Functions called from parallel region are also in parallel region

A

B

C

D

E

Parallel
region

11

Number of Threads
 Specify number of threads by OMP_NUM_THREADS

environment variable (this is done out of program)
 cf) export OMP_NUM_THREADS=4

in command line

 Obtain number of threads
 cf) n = omp_get_num_threads();

 Obtain “my ID” of calling thread
 cf) id = omp_get_thread_num();
 0 ≦ id < n (total number)

12

#pragma omp for
for Easy Parallel Programming
“for” loop with simple forms can parallelized easily

{
int s = 0;

#pragma omp parallel
{
int i;

#pragma omp for
for (i = 0; i < 100; i++) {

a[i] = b[i]+c[i];
}

}
}

• “for” loop right after “omp for”
is parallelized, with work
distribution

• When this sample is
executed with 4 threads,
each thread take 100/4=25
iterations  speed up!!
・ Indivisible cases are ok, such
as 7 threads

• Abbreviation: omp parallel + omp for = omp parallel for

Why “omp for” Reduces
Execution Time

 What if we use “omp parallel”, but forget to write “omp for”?

13

thread
Without OpenMP

With “omp parallel” &
“omp for”

i=0 i=99 i=0 i=99

Every thread would work
for all iterations
No speed up 
Answer will be wrong 

14

When We Can Use “omp for”
 Loops with some (complex) forms cannot be supported,

unfortunately 
 The target loop must be in the following form
#pragma omp for

for (i = value; i op value; incr-part)

body

“op”: <, >, <=, >=, etc.

“incr-part”: i++, i--, i+=c, i-=c, etc.

OK : for (x = n; x >= 0; x-=4)

NG : for (i = 0; test(i); i++)

NG : for (p = head; p != NULL; p = p->next)

15

Advanced Topic on “omp for”
(1): reduction
 Typical code pattern in for loop: Aggregate result of each

iteration into a single variable, called reduction variable
 cf) We add +1 to “count” variable in pi-omp sample
 For such cases, “reduction” option is required

int count = 0;
#pragma omp parallel

{
#pragma omp for reduction (+:count)

for (i = 0; i < 100; i++) {
count += f(i);

}
}

Operator is one of
+, -, *, &&, ||, etc

If we forget to write “reduction” option  The answer
would be wrong

Name of reduction
variable

16

Advanced Topic on “omp for”
(2): schedule
 Usually, each thread takes iterations uniformly

 cf) 1000 iterations / 4 threads = 250 iteration per thread

 For some computations (execution times per iteration are
varying), the default schedule may degrade performance
#pragma omp for schedule(・・・) may improve

 schedule(static)
uniform (default)

 schedule(static, n)
block cyclic distribution

 schedule(dynamic, n)
idle thread takes next “chunk”

 schedule(guided, n)
“chunk” size gets smaller as the advance

n

n

17

Time Measurement in Samples
 gettimeofday() function is used
 It provides wall-clock time, not CPU time
 Time resolution is better than clock()
#include <stdio.h>
#include <sys/time.h>

:
{

struct timeval st, et;
long us;
gettimeofday(&st, NULL); /* Starting time */

・・・Part for measurement ・・・
gettimeofday(&et, NULL); /* Finishing time */
us = (et.tv_sec-st.tv_sec)*1000000+

(et.tv_usec-st.tv_usec);
/* us is difference between st & et in microseconds */

}

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

18

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1]
[M2]
[M3]

[G1]
[G2]
[G3]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

19

Assignments in OpenMP Part (1)
Choose one of [O1]—[O3], and submit a report
Due date: May 9 (Thursday)

[O1] Parallelize “diffusion” sample program by
OpenMP.
(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)

Optional：
 Make array sizes variable parameters, which are

specified by execution options. “malloc” will be
needed.

 Improve performance further. Blocking, SIMD
instructions, etc, may help.

20

Assignments in OpenMP Part (2)
[O2] Parallelize “sort” sample program by OpenMP.

(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

Optional：
 Comparison with other algorithms than quick sort
 Heap sort? Merge sort?

21

Assignments in OpenMP Part (3)
[O3] (Freestyle) Parallelize any program by OpenMP.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other
 cf) Uniform task division is not good for load balancing

22

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 PDF, MS-Word or text file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 The report document should include:

 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

23

Next Class:
 OpenMP(2)
 mm: matrix multiply sample
 diffusion：heat diffusion sample using stencil

computation
 Related to assignment [O1]

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp  search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp  OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

24

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp  TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 3
	What is OpenMP?
	OpenMP Programs Look Like
	Sample Programs
	Compiling OpenMP Programs
	“pi” sample
	Submitting a Job to TSUBAME�~ in case of pi sample ~
	Notes on Job Submission (1)
	Notes on Job Submission
	Basic Parallelism in OpenMP：�Parallel Region
	Number of Threads
	#pragma omp for�for Easy Parallel Programming
	Why “omp for” Reduces Execution Time
	When We Can Use “omp for”
	Advanced Topic on “omp for” (1): reduction
	Advanced Topic on “omp for” (2): schedule
	Time Measurement in Samples
	Assignments in this Course
	Assignments in OpenMP Part (1)
	Assignments in OpenMP Part (2)
	Assignments in OpenMP Part (3)
	Notes in Submission
	Next Class:
	Information

