
1

2019
Practical Parallel Computing
(実践的並列コンピューティング)

No. 3

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Shared Memory Parallel
Programming with OpenMP (1)

What is OpenMP?
 One of programming APIs based on shared-memory

parallel model
 Multiple threads work cooperatively
 Threads can share data

2

Processor
cores

Memory

Hardware

Threads

Data

Thread

Data

Simple C software OpenMP software

OpenMP Programs Look Like

3

int a[100], b[100], c[100];
int i;

#pragma omp parallel for
for (i = 0; i < 100; i++) {

a[i] = b[i]+c[i];
}

An example of OpenMP
directive
In this case, a directive has
an effect on the following
block/sentence

 OpenMP defines extensions to C/C++/Fortran
 Directive syntaxes & library functions

 Directives look like: #pragma omp ~~

4

Sample Programs
See ~endo-t-ac/ppcomp/19/ on TSUBAME
(1) There are several sub directories
 Pi (pi, pi-omp)
 Matrix multiply (mm, mm-omp)

(1) Copy them to (anywhere in) your own home directory
 Cf) cp –r ~endo-t-ac/ppcomp/19/pi-omp .

(2) Executable binaries are generated by “make” command in
each sub-directory

5

Compiling OpenMP Programs
All famous compilers support OpenMP (fortunately), but

require different options (unfortunately)
 gcc

 -fopenmp option in compiling and linking
 PGI compiler

 module load pgi, and then use pgcc
 -mp option in compiling and linking

 Intel compiler
 module load intel, and then use icc
 -openmp option in compiling and linking

Also see outputs of “make” in OpenMP sample directory

6

1

x

y

dx

Estimate approximation of π (circumference/diameter) by
approximation of integration

 Sequential version in “pi”, OpenMP version in “pi-omp”
 Method

 Let SUM be approximation of the yellow area
 4 x PR π

 Execution：./pi [n]
 n: Number of division
 Cf) ./pi 100000000

 Compute complexity： O(n)

“pi” sample

Note: This program is only for a simple sample.
π is usually computed by different algorithms.

dx = 1/n
y = sqrt(1-x*x)

#!/bin/sh
#$ -cwd
#$ -l s_core=1
#$ -l h_rt=00:10:00

./pi 100000000

Submitting a Job to TSUBAME
~ in case of pi sample ~

 OpenMP version
 see pi-omp directory
 in the case with 4 threads (4 processor

cores)

7

#!/bin/sh
#$ -cwd
#$ -l q_core=1
#$ -l h_rt=00:10:00

export OMP_NUM_THREADS=4
./pi 100000000

pi-omp/job.sh

 Job submission
 qsub job.sh

resource type
and count

maximum
run time

 Sequential version
 see pi directory

pi/job.sh

Notes on Job Submission (1)

There are several notes since TSUBAME is a
shared system
Please specify the resource type properly,
according to the number of threads (CPU cores)

 s_core: 1 core
 q_core: 4 cores
 q_node: 7 cores (+ 1GPU)
 h_node: 14 cores (+ 2GPUs)
 f_node: 28 nores (+ 4GPUs)
For detail, see TSUBAME3.0 User’s Guide (利用の手引き) Section 5.1

8

Notes on Job Submission

 Please specify maximum run time (h_rt) properly
 If h_rt is larger than 0:10:00, you need to specify “TSUBAME group

name” for accounting (charged/有料)
qsub –g tga-ppcomp job.sh

 Use tga-ppcomp group only for this lecture / tga-ppcompグループは、本
授業の課題とそのテスト専用に使ってください

 Please do not execute CPU intensive programs on login
nodes
 It is OK to edit programs, compile programs, and submit jobs, and so on

9

10

Basic Parallelism in OpenMP：
Parallel Region
#include <omp.h>

int main()
{

A;
#pragma omp parallel

{
B;

}
C;

#pragma omp parallel
D;
E;

}

Sentence/block immediately after #pragma omp parallel
is called parallel region, executed by multiple threads
 Here a “block” is a region surrounded by braces {}
 Functions called from parallel region are also in parallel region

A

B

C

D

E

Parallel
region

11

Number of Threads
 Specify number of threads by OMP_NUM_THREADS

environment variable (this is done out of program)
 cf) export OMP_NUM_THREADS=4

in command line

 Obtain number of threads
 cf) n = omp_get_num_threads();

 Obtain “my ID” of calling thread
 cf) id = omp_get_thread_num();
 0 ≦ id < n (total number)

12

#pragma omp for
for Easy Parallel Programming
“for” loop with simple forms can parallelized easily

{
int s = 0;

#pragma omp parallel
{
int i;

#pragma omp for
for (i = 0; i < 100; i++) {

a[i] = b[i]+c[i];
}

}
}

• “for” loop right after “omp for”
is parallelized, with work
distribution

• When this sample is
executed with 4 threads,
each thread take 100/4=25
iterations speed up!!
・ Indivisible cases are ok, such
as 7 threads

• Abbreviation: omp parallel + omp for = omp parallel for

Why “omp for” Reduces
Execution Time

 What if we use “omp parallel”, but forget to write “omp for”?

13

thread
Without OpenMP

With “omp parallel” &
“omp for”

i=0 i=99 i=0 i=99

Every thread would work
for all iterations
No speed up
Answer will be wrong

14

When We Can Use “omp for”
 Loops with some (complex) forms cannot be supported,

unfortunately
 The target loop must be in the following form
#pragma omp for

for (i = value; i op value; incr-part)

body

“op”: <, >, <=, >=, etc.

“incr-part”: i++, i--, i+=c, i-=c, etc.

OK : for (x = n; x >= 0; x-=4)

NG : for (i = 0; test(i); i++)

NG : for (p = head; p != NULL; p = p->next)

15

Advanced Topic on “omp for”
(1): reduction
 Typical code pattern in for loop: Aggregate result of each

iteration into a single variable, called reduction variable
 cf) We add +1 to “count” variable in pi-omp sample
 For such cases, “reduction” option is required

int count = 0;
#pragma omp parallel

{
#pragma omp for reduction (+:count)

for (i = 0; i < 100; i++) {
count += f(i);

}
}

Operator is one of
+, -, *, &&, ||, etc

If we forget to write “reduction” option The answer
would be wrong

Name of reduction
variable

16

Advanced Topic on “omp for”
(2): schedule
 Usually, each thread takes iterations uniformly

 cf) 1000 iterations / 4 threads = 250 iteration per thread

 For some computations (execution times per iteration are
varying), the default schedule may degrade performance
#pragma omp for schedule(・・・) may improve

 schedule(static)
uniform (default)

 schedule(static, n)
block cyclic distribution

 schedule(dynamic, n)
idle thread takes next “chunk”

 schedule(guided, n)
“chunk” size gets smaller as the advance

n

n

17

Time Measurement in Samples
 gettimeofday() function is used
 It provides wall-clock time, not CPU time
 Time resolution is better than clock()
#include <stdio.h>
#include <sys/time.h>

:
{

struct timeval st, et;
long us;
gettimeofday(&st, NULL); /* Starting time */

・・・Part for measurement ・・・
gettimeofday(&et, NULL); /* Finishing time */
us = (et.tv_sec-st.tv_sec)*1000000+

(et.tv_usec-st.tv_usec);
/* us is difference between st & et in microseconds */

}

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

18

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1]
[M2]
[M3]

[G1]
[G2]
[G3]

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

19

Assignments in OpenMP Part (1)
Choose one of [O1]—[O3], and submit a report
Due date: May 9 (Thursday)

[O1] Parallelize “diffusion” sample program by
OpenMP.
(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)

Optional：
 Make array sizes variable parameters, which are

specified by execution options. “malloc” will be
needed.

 Improve performance further. Blocking, SIMD
instructions, etc, may help.

20

Assignments in OpenMP Part (2)
[O2] Parallelize “sort” sample program by OpenMP.

(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

Optional：
 Comparison with other algorithms than quick sort
 Heap sort? Merge sort?

21

Assignments in OpenMP Part (3)
[O3] (Freestyle) Parallelize any program by OpenMP.

 cf) A problem related to your research
 More challenging one for parallelization is better

 cf) Partial computations have dependency with each other
 cf) Uniform task division is not good for load balancing

22

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 PDF, MS-Word or text file
 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 The report document should include:

 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

23

Next Class:
 OpenMP(2)
 mm: matrix multiply sample
 diffusion：heat diffusion sample using stencil

computation
 Related to assignment [O1]

Information
Lecture
Slides are uploaded in OCW

 www.ocw.titech.ac.jp search “2019 practical parallel computing”
Assignments information/submission site are in OCW-i

 Login portal.titech.ac.jp OCW/OCW-i
Inquiry

 ppcomp@el.gsic.titech.ac.jp
Sample programs

 Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

24

TSUBAME
 Official web including Users guide

 www.t3.gsic.titech.ac.jp
 Your account information

 Login portal.titech.ac.jp TSUBAME portal

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 3
	What is OpenMP?
	OpenMP Programs Look Like
	Sample Programs
	Compiling OpenMP Programs
	“pi” sample
	Submitting a Job to TSUBAME�~ in case of pi sample ~
	Notes on Job Submission (1)
	Notes on Job Submission
	Basic Parallelism in OpenMP：�Parallel Region
	Number of Threads
	#pragma omp for�for Easy Parallel Programming
	Why “omp for” Reduces Execution Time
	When We Can Use “omp for”
	Advanced Topic on “omp for” (1): reduction
	Advanced Topic on “omp for” (2): schedule
	Time Measurement in Samples
	Assignments in this Course
	Assignments in OpenMP Part (1)
	Assignments in OpenMP Part (2)
	Assignments in OpenMP Part (3)
	Notes in Submission
	Next Class:
	Information

