2019
Practical Parallel Computing

(EEMILEFaAEL—T12T)
No. 3

Shared Memory Parallel
Programming with OpenMP (1)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

What is OpenMP? e

e One of programming APIs based on shared-memory
parallel model
e Multiple threads work cooperatively
e Threads can share data

Simple C software OpenMP software

Thread % Threads% % % %

Data I Data w

Hardware

Processor
cores

Memory

OpenMP Programs Look Like |:

e OpenMP defines extensions to C/C++/Fortran

e Directive syntaxes & library functions
e Directives look like: #pragma omp ~~

int a[100], b[100], c[100];
int i _— An example of OpenMP
#pragma omp parallel for — directive

for (i =0; i <100; i++) { | . L
alil = blil+c[il; In this case, a directive has

1 an effect on the following
block/sentence

Sample Programs :

See ~endo-t-ac/ppcomp/19/ on TSUBAME
(1) There are several sub directories
e Pi (pi, pi-omp)
e Matrix multiply (mm, mm-omp)
(1) Copy them to (anywhere in) your own home directory
o Cf) cp —r ~endo-t-ac/ppcomp/19/pi-omp .
(2) Executable binaries are generated by “make” command in
each sub-directory

Compiling OpenMP Programs |:

All famous compilers support OpenMP (fortunately©), but
require different options (unfortunately®)
e (CC
o -fopenmp option in compiling and linking
e PGI compiler
e module load pgi, and then use pgcc
e -mp option in compiling and linking
e Intel compiler
e module load intel, and then use icc
e -openmp option in compiling and linking

Also see outputs of “make” in OpenMP sample directory

“pi”’ sample

Estimate approximation of 11 (circumference/diameter) by
approximation of integration

e Sequential version in “pi”, OpenMP version in “pi-omp”
e Method

Let SUM be approximation of the yellow area
4xPR->T1

e Execution:./pi [n] 1 y

n: Number of division

Cf) ./pi 100000000
e Compute complexity: O(n) X dx

dx =1/n
y = sqrt(1-x*x)

Note: This program is only for a simple sample.
1T is usually computed by different algorithms.

Submitting a Job to TSUBAME | ::::

. . o0
~ in case of pi sample ~ o
e Sequential version e OpenMP version
o see pi directory e see pi-omp directory
e in the case with 4 threads (4 processor
cores)
pi/job.sh resource type pi-omp/job.sh
#!/bin/sh L~ and count #!/bin/sh
#$ -cwd / ‘ \ #3$ -cwd
#$ -l s _core=1 #$ -1 g _core=1
#$ -1 h_rt=00:10:00~——___ maximum #$ -1 h_rt=00:10:00
run time
./pi 100000000 export OMP_NUM_THREADS=4
‘ ./pi 100000000

e Job submission Q

e Qsub job.sh ;

Notes on Job Submission (1) |

There are several notes since TSUBAME is a
shared system

ePlease specify the resource type properly,

according to the number of threads (CPU cores)

s_core: 1 core
g_core: 4 cores
g_node: 7 cores (+ 1GPU)
h_node: 14 cores (+ 2GPUs)
f node: 28 nores (+ 4GPUs)
For detail, see TSUBAMES3.0 User’s Guide (FIFAMDF5|Z) Section 5.1

Notes on Job Submission oo

e Please specify maximum run time (h_rt) properly

e Ifh_rtislarger than 0:10:00, you need to specify “TSUBAME group
name” for accounting (charged/& %)

gsub —g tga-ppcomp job.sh
o Use tga-ppcomp group only for this lecture / tga-ppcompZ JL—T (L. &K
REDRELZOTAMEAIZE> TS
e Please do not execute CPU intensive programs on login
nodes
e ltis OK to edit programs, compile programs, and submit jobs, and so on

Basic Parallelism in OpenMP: | 33::

Parallel Region :

#include <omp.h>

A
int main()
{
A; / B
#Horagma omp parallel —
C

; Parallel
3: region
} AN
C; D
HFpragma omp parallel
D; ~
=5 E

}

Sentence/block immediately after #pragma omp parallel

Is called parallel region, executed by multiple threads
® Here a “block” is a region surrounded by braces {}

. . . . 10
® Functions called from parallel region are also in parallel region

Number of Threads

e Specify number of threads by OMP_NUM_ THREADS
environment variable (this is done out of program)

cf) export OMP_NUM_ THREADS=4
iIn command line

e Obtain number of threads
cf) n = omp_get num_threads();

e Obtain “my ID” of calling thread
cf) id = omp_get thread num();
0 = id < n (total number)

11

#pragma omp for

for Easy Parallel Programming

“for” loop with simple forms can parallelized easily

{

int s = 0;
#pragma omp parallel
{
int i;

#pragma omp for

}

for (i =0; i < 100; i++) {
ali] = blil+cli];
1

}

« “for” loop right after “omp for”
Is parallelized, with work
distribution

 When this sample is
executed with 4 threads,

each thread take 100/4=25

iterations = speed up!!

- Indivisible cases are ok, such
as 7 threads

« Abbreviation: omp parallel + omp for = omp parallel for

12

Why “omp for”’ Reduces eels
Execution Time :
With “omp parallel” &
Without OpenMP “omp for”
thread

—i 2522

=0 EEEEN] =99 i=0 EEEEE] i=99

e \What if we use “omp parallel”, but forget to write “omp for”?

,@ Every thread would work
< l@(_e~\—> foralliterations
- No speed up ®

— - Answer will be wrong &

13

When We Can Use “omp for”

e Loops with some (complex) forms cannot be supported,

unfortunately ®

e The target loop must be in the following form

#poragma omp for

for (i = value, i op value, incr-part)
body

“opt i <L, >, <=, >=, etc.

“Jncr-part” : i++, i—, i+=c, i—=c, etc.

0K ©: for (x =n; x > 0; x—=4)
NG ®: for (i = 0; test(i); i++)

NG ®: for (p = head; p != NULL; p = p—>next)

14

Advanced Topic on “omp for” | ::

(1): reduction

e Typical code pattern in for loop: Aggregate result of each
iteration into a single variable, called reduction variable
cf) We add +1 to “count” variable in pi-omp sample
For such cases, “reduction” option is required

int count = 0;
#pragma omp parallel

{

#pragma omp for reduction (+:count)

. Operator Is one of
+ -, 7, &&, ||, etc

for (i =0; i < 100; i++) {
count += f(i);
1
1

Name of reduction
variable

If we forget to write “reduction” option = The answer

would be wrong

15

Advanced Topic on “omp for” | s:::

(2): schedule :

e Usually, each thread takes iterations uniformly
e ¢f) 1000 iterations / 4 threads = 250 iteration per thread

e For some computations (execution times per iteration are
varying), the default schedule may degrade performance

#pragma omp for schedule(---) may improve

e schedule(static) 1]
uniform (default) n~_,

e schedule(static, n) BT [N [Y [e
block cyclic distribution

e schedule(dynamic, n) DO | D T
idle thread takes next “chunk” n~_,

e schedule(guided, n) 1 B | e

“chunk” size gets smaller as the advance "

Time Measurement in Samples

e gettimeofday() function is used
o It provides wall-clock time, not CPU time
o Time resolution is better than clock()

{

#include <stdio.h>
#include <sys/time.h>

struct timeval st, et;
long us;
gettimeofday(&st, NULL); /* Starting time =/

-« - Part for measurement - -

gettimeofday(&et, NULL); /* Finishing time =/
us = (et.tv_sec—st.tv_sec)*1000000+
(et.tv_usec—st.tv_usec);

/* us is difference between st & et in microseconds =/ [’

Assignments in this Course ses

e There is homework for each part. Submissions of reports
for 2 parts are required

e Also attendances will be considered

- TP N
Part 1 :8;: dlff:Slon Select
SO -
L~ 1 problem
\OpenMP (O3] free i P)
d M1] i b
Part 2 oy Select Select
MPI M3 [1 problem | [2 parts
N - - J
e — = ~
Part 3 :G1: Select
GPU G2 " 1 problem
L (G3] i)
— 18

Assignments in OpenMP Part (1) | ¢

Choose one of [O1]—[O3], and submit a report
Due date: May 9 (Thursday)

[O1] Parallelize “diffusion” sample program by
OpenMP.
(~endo-t-ac/ppcomp/19/diffusion/ on TSUBAME)
Optional:
o Make array sizes variable parameters, which are

specified by execution options. “malloc” will be
needed.

o Improve performance further. Blocking, SIMD
Instructions, etc, may help. 19

Assignments in OpenMP Part (2) |

[O2] Parallelize “sort” sample program by OpenMP.
(~endo-t-ac/ppcomp/19/sort/ on TSUBAME)

Optional:

o Comparison with other algorithms than quick sort
Heap sort? Merge sort?

20

Assignments in OpenMP Part (3)

(O3] (Freestyle) Parallelize any program by OpenMP.

cf) A problem related to your research

More challenging one for parallelization is better
cf) Partial computations have dependency with each other
cf) Uniform task division is not good for load balancing

21

Notes in Submission ’
e Submit the followings via OCW-i

(1) A report document
PDF, MS-Word or text file
2 pages or more
in English or Japanese (B A&i&+0k)
(2) Source code files of your program
e The report document should include:
Which problem you have chosen

How you parallelized

It is even better if you mention efforts for high performance or new
functions

Performance evaluation on TSUBAME
With varying number of processor cores
With varying problem sizes
Discussion with your findings
Other machines than TSUBAME are ok, if available 22

Next Class:

e OpenMP(2)
mm: matrix multiply sample

diffusion: heat diffusion sample using stencil
computation

Related to assignment [O1]

23

Information
Lecture

eSlides are uploaded in OCW
www.ocw.titech.ac.jp = search “2019 practical parallel computing”
eAssignments information/submission site are in OCW-i
Login portal.titech.ac.jp > OCW/OCW:-i
elnquiry
ppcomp@el.gsic.titech.ac.jp
eSample programs
Login TSUBAME, and see ~endo-t-ac/ppcomp/19/ directory

TSUBAME
e Official web including Users guide
www.t3.gsic.titech.ac.jp

e Your account information
Login portal.titech.ac.jp > TSUBAME portal 24

	2019�Practical Parallel Computing�(実践的並列コンピューティング)�No. 3
	What is OpenMP?
	OpenMP Programs Look Like
	Sample Programs
	Compiling OpenMP Programs
	“pi” sample
	Submitting a Job to TSUBAME�~ in case of pi sample ~
	Notes on Job Submission (1)
	Notes on Job Submission
	Basic Parallelism in OpenMP：�Parallel Region
	Number of Threads
	#pragma omp for�for Easy Parallel Programming
	Why “omp for” Reduces Execution Time
	When We Can Use “omp for”
	Advanced Topic on “omp for” (1): reduction
	Advanced Topic on “omp for” (2): schedule
	Time Measurement in Samples
	Assignments in this Course
	Assignments in OpenMP Part (1)
	Assignments in OpenMP Part (2)
	Assignments in OpenMP Part (3)
	Notes in Submission
	Next Class:
	Information

