
1 Regression Analysis

Training data: (x1, y1), . . . , (xn, yn), xi ∈ Rd, yi ∈ R．

y = f(x)
function

+ ε
r.v.: error

−→ estimate f(x)

• Simple model is not good to learn complex data structure.

−→ Complex model is desirable

• Too complex models =⇒ overfitting
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y Overfit to data

−→ low prediction accuracy

• It is crucial to tuning the model complexity properly.
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Linear Regression Model� �

• Map x to high-dimensional space:

x 7−→ ϕ(x) = (ϕ1(x), . . . , ϕD(x))
T

ϕk(x): (non-linear) basis functions

• Linear Regression Model:

f(x) =
D∑

k=1

akϕk(x) = aTϕ(x)

� �
Estimate the coefficient a from training data.

• Choose functions ϕ(x) having a “nice” property

−→ the computation is tractable.

• To avoid overfitting, regularization and cross validation are useful.
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— Kernel Regression Analysis —

• least square method with kernel-based modeling
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Estimation for Linear Regression Models

• Least Square Method (LSM):

n∑
i=1

(yi − ϕ(xi)
Ta)2 = ∥y −ΦTa∥2 → minimize w.r.t. a,

where Φ = (ϕ(x1), . . . ,ϕ(xn)) ∈ RD×n, y =

y1
...

yn

 ∈ Rn.

• rankΦ = D ⇒ â = (ΦΦT )−1Φy.
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Another expression of the solution:

min
a∈RD

n∑
i=1

(yi − ϕ(xi)
Ta)2

• the solution lies on span{ϕ(x1), . . . ,ϕ(xn)}.

Orthogonal component does not

affect the square error.
φ(x1)

. . .
φ(xn)

a

• a =
n∑

j=1

βjϕ(xj) = Φβ, β ∈ Rn.
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� �
n∑

i=1

(yi − ϕ(xi)
Ta)2 = ∥y −ΦTΦβ∥2 −→ min

β

Optimality conditions : ΦTΦΦT Φβ̂︸︷︷︸
â

= ΦTΦy

� �
Define n by n matrix K = (Kij) as

Kij = k(xi,xj)
def
= ϕ(xi)

Tϕ(xj) ∈ R,

=⇒ K = ΦTΦ

• k(x,x′) = ϕ(x)Tϕ(x′) is called kernel function

• K: Gram matrix

(the rigorous definition is given later)
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• Optimality condition:

ΦTΦΦTΦβ̂ = ΦTΦy ⇐⇒ K2β̂ = Ky

=⇒ calculate β̂ = (β̂1, . . . , β̂n)
T

• Estimated regression function: f̂(x) = ϕ(x)T â.

f̂(x) = ϕ(x)T
n∑

i=1

ϕ(xi)β̂i︸ ︷︷ ︸
â

=
n∑

i=1

k(x,xi)β̂i

• kernel function k(x,x′) =⇒ estimator f̂(x)
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Examples of kernel functions: x ∈ Rd 7−→ ϕ(x) ∈ RD.

• linear kernel: D = d.

k(x,x′) = xTx′, (ϕ(x) = x)

Model: y = aTϕ(x) + ε = aTx+ ε

8/24



• Polynomial kernel of degree ℓ ∈ N: D = (ℓ+d)!
ℓ! d!

k(x,x′) = (1 + xTx′)ℓ,

Model: y = aTϕ(x) + ε．

ϕ(x): all monominals of degree ≤ ℓ.

For d = 2, ℓ = 2 and x = (x1, x2)
T ∈ R2,

ϕ(x) = (1,
√
2x1,
√
2x2, x

2
1, x

2
2,
√
2x1x2)

T .

ϕ(x)Tϕ(z) = 1 + 2x1z1 + 2x2z2 + x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= (1 + x1z1 + x2z2)
2
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• Gaussian kernel: D =∞.

k(x,x′) = exp{−σ · ∥x− x′∥2}, σ > 0

For d = 1, σ = 1 and x ∈ R,

ϕ(x) =(ϕ0(x), ϕ1(x), ϕ2(x), · · · )T , ϕj(x) =
xje−x2/2

√
j!

, x ∈ R
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Overfiting to data

• simple model: hard to deal with complex data

−→ use the model with many parameters

• model with too many parameters does not work.

overfitting to data.

degree of freedom
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Regularization: tune the degree of freedom
� �

large model & appropriate constraint� �
linear regression model : y = aTϕ(x) + b+ ε

ex. ϕ(x) = (x, x2, x3, . . . , x100), ϕ(x) of Gaussian kernel, etc.

data: {(x1, y1), . . . , (xn, yn)}.� �

min
a, b

n∑
i=1

(yi − (ϕ(xi)
Ta+ b))2 + λ∥a∥2

regularization term

(Ridge regression)

=⇒ opt. sol. â, b̂. f̂(x) = âTϕ(x) + b̂
� �

min
a∈RD,b∈R

∥y − ΦTa− b1∥2 + λ∥a∥2, Φ = (ϕ(x1), . . . ,ϕ(xn))
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regularization parameter λ > 0.

λ: large λ: medium λ: small
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Kernel representation of Ridge regression:

min
a,b
∥y − ΦTa− b1∥2 + λ∥a∥2, Φ = (ϕ(x1), . . . ,ϕ(xn)).

In the same way as the standard LMS, the optimal â lies on the

subspace span{ϕ(x1), . . . ,ϕ(xn)}.

Substitute a =
n∑

i=1

ϕ(xi)βi = Φβ, then for K = ΦTΦ,

∥y − ΦTa− b1∥2 + λ∥a∥2 = ∥y −ΦTΦβ − b1∥2 + λβTΦTΦβ

= ∥y −Kβ − b1∥2 + λβTKβ −→ min
β,b
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Kernel-Ridge Regression

• Optimality condition

min
β,b
∥y −Kβ − b1∥2 + λβTKβ

=⇒

(
K + λI 1

1TK n

)(
β̂

b̂

)
=

(
y

1Ty

)

• estimated regression function:

f̂(x) = ϕ(x)T
n∑

i=1

ϕ(xi)β̂i + b̂ =
n∑

i=1

k(x,xi)β̂i + b̂
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Plot: estimated regression function

• kernel width: σ = 3

• regularization par.: λ = 1 ●
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— Model Selection —

How to choose regularization parameter λ ?

• Training error and Test error

• Cross Validation for model parameter tuning
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Kernel-Ridge Regression

Gaussian kernel : k(x,x′) = exp{−σ · ∥x− x′∥2}

We need to determine the following model parameters:

• Regularization par.: λ

• kernel parameter: σ
� �

How to choose λ and σ ?� �

Note. For the polynomial kernel, we need to determine λ and the degree ℓ.
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Training error and Test error

• training data: (x1, y1), . . . , (xn, yn) ∼i.i.d. p(x, y)

• estimated regression function f̂(x)

training error of f̂(x) :
1

n

n∑
i=1

(
f̂(xi)− yi

)2
(calculated from data)

test error of f̂(x) : E(x,y)∼P

[(
f̂(x)− y

)2]
(P is unknown)

Purpose of Regression Analysis� �
Find f̂(x) that achieves a small (or minimum) test error.� �
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Polynomial regression
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overfitting� �
• For high degree polynomial models, we have

• small training error

• large test error

• overfitting: large gap between training error and test error.� �
appropriate model complexity is required.

Cross validation: estimator of test error
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K-fold Cross Validation Method

Fixing a model parameter, say λ and σ, execute the following procedure.� �
1. Divide the training data into k parts.

2. Use k − 1 of the parts for training, and 1 for testing.

3. Repeat the procedure k times, rotating the test set.

4. Calculate an expected performance metric (mean square error/test error rate)

based on the results across the iterations� �

https://medium.com/@mtterribile/understanding-cross-validations-purpose-53490faf6a86
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Example: Kernel regression with Gaussian kernel

• kernel par. σ > 0 is determined by K-cv.

• regularization par. λ > 0 is fixed to 1.
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(σ, λ) = (0.1, 1) (σ, λ) = (2.5, 1) (σ, λ) = (30, 1)
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Median Heuristics for Gaussian Kernel

Gaussian kernel:

k(x,x′) = exp{−σ∥x− x′∥2}

• For computational stability, choose σ such that

σ∥xi − xj∥2 takes values around 1.

σ ←− 1

median{∥xi − xj∥2 | i < j}
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Example

• kernel parameter σ is determined by the heuristics.

• regularization par. λ: K-cv
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(sigma, λ) = (0.98, 0.15) (sigma, λ) = (0.98, 0.78) (sigma, λ) = (0.98, 10)
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