1 Regression Analysis

Training data: $\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right), \quad \boldsymbol{x}_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$.

$$
y=\underset{\text { function }}{f(\boldsymbol{x})}+\underset{\text { r.v.: e error }}{\varepsilon} \longrightarrow \quad \text { estimate } f(\boldsymbol{x})
$$

- Simple model is not good to learn complex data structure.
\longrightarrow Complex model is desirable
- Too complex models \Longrightarrow overfitting

Overfit to data
\longrightarrow low prediction accuracy

- It is crucial to tuning the model complexity properly.
- Map \boldsymbol{x} to high-dimensional space:

$$
\boldsymbol{x} \longmapsto \boldsymbol{\phi}(\boldsymbol{x})=\left(\phi_{1}(\boldsymbol{x}), \ldots, \phi_{D}(\boldsymbol{x})\right)^{T}
$$

$\phi_{k}(\boldsymbol{x})$: (non-linear) basis functions

- Linear Regression Model:

$$
f(\boldsymbol{x})=\sum_{k=1}^{D} a_{k} \phi_{k}(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{\phi}(\boldsymbol{x})
$$

Estimate the coefficient \boldsymbol{a} from training data.

- Choose functions $\phi(\boldsymbol{x})$ having a "nice" property \longrightarrow the computation is tractable.
- To avoid overfitting, regularization and cross validation are useful.
- Kernel Regression Analysis -
- least square method with kernel-based modeling

Estimation for Linear Regression Models

- Least Square Method (LSM):

$$
\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{a}\right)^{2}=\left\|\boldsymbol{y}-\boldsymbol{\Phi}^{T} \boldsymbol{a}\right\|^{2} \rightarrow \text { minimize w.r.t. } \boldsymbol{a}
$$

where $\boldsymbol{\Phi}=\left(\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right), \ldots, \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right) \in \mathbb{R}^{D \times n}, \quad \boldsymbol{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{R}^{n}$.

- $\operatorname{rank} \boldsymbol{\Phi}=D \Rightarrow \widehat{\boldsymbol{a}}=\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{T}\right)^{-1} \boldsymbol{\Phi} \boldsymbol{y}$.

Another expression of the solution:

$$
\min _{\boldsymbol{a} \in \mathbb{R}^{D}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{a}\right)^{2}
$$

- the solution lies on $\operatorname{span}\left\{\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right), \ldots, \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right\}$.

Orthogonal component does not affect the square error.

- $\boldsymbol{a}=\sum_{j=1}^{n} \beta_{j} \phi\left(\boldsymbol{x}_{j}\right)=\Phi \boldsymbol{\beta}, \quad \boldsymbol{\beta} \in \mathbb{R}^{n}$.

$$
\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{a}\right)^{2}=\left\|\boldsymbol{y}-\boldsymbol{\Phi}^{T} \mathbf{\Phi} \boldsymbol{\beta}\right\|^{2} \longrightarrow \min _{\boldsymbol{\beta}}
$$

$$
\text { Optimality conditions : } \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \underbrace{\boldsymbol{\Phi} \widehat{\boldsymbol{\beta}}}_{\widehat{\boldsymbol{a}}}=\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{y}
$$

Define n by n matrix $K=\left(K_{i j}\right)$ as

$$
\begin{aligned}
& K_{i j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \stackrel{\text { def }}{=} \phi\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{\phi}\left(\boldsymbol{x}_{j}\right) \in \mathbb{R}, \\
& \Longrightarrow K=\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}
\end{aligned}
$$

- $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{\phi}(\boldsymbol{x})^{T} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)$ is called kernel function
- K : Gram matrix
(the rigorous definition is given later)
- Optimality condition:

$$
\begin{aligned}
& \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \widehat{\boldsymbol{\beta}}=\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{y} \Longleftrightarrow K^{2} \widehat{\boldsymbol{\beta}}=K \boldsymbol{y} \\
& \Longrightarrow \text { calculate } \widehat{\boldsymbol{\beta}}=\left(\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{n}\right)^{T}
\end{aligned}
$$

- Estimated regression function: $\widehat{f}(\boldsymbol{x})=\boldsymbol{\phi}(\boldsymbol{x})^{T} \widehat{\boldsymbol{a}}$.

$$
\widehat{f}(\boldsymbol{x})=\boldsymbol{\phi}(\boldsymbol{x})^{T} \underbrace{\sum_{i=1}^{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right) \widehat{\beta}_{i}}_{\widehat{\boldsymbol{a}}}=\sum_{i=1}^{n} k\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right) \widehat{\beta}_{i}
$$

- kernel function $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \Longrightarrow$ estimator $\widehat{f}(\boldsymbol{x})$

Examples of kernel functions: $\boldsymbol{x} \in \mathbb{R}^{d} \longmapsto \boldsymbol{\phi}(\boldsymbol{x}) \in \mathbb{R}^{D}$.

- linear kernel: $D=d$.

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}, \quad(\boldsymbol{\phi}(\boldsymbol{x})=\boldsymbol{x})
$$

Model: $y=\boldsymbol{a}^{T} \boldsymbol{\phi}(\boldsymbol{x})+\varepsilon=\boldsymbol{a}^{T} \boldsymbol{x}+\varepsilon$

- Polynomial kernel of degree $\ell \in \mathbb{N}: D=\frac{(\ell+d)!}{\ell!d!}$

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(1+\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}\right)^{\ell},
$$

Model: $y=\boldsymbol{a}^{T} \boldsymbol{\phi}(\boldsymbol{x})+\varepsilon$.
$\phi(\boldsymbol{x})$: all monominals of degree $\leq \ell$.
For $d=2, \ell=2$ and $\boldsymbol{x}=\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}$,

$$
\begin{aligned}
\boldsymbol{\phi}(\boldsymbol{x}) & =\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)^{T} . \\
\boldsymbol{\phi}(\boldsymbol{x})^{T} \boldsymbol{\phi}(\boldsymbol{z}) & =1+2 x_{1} z_{1}+2 x_{2} z_{2}+x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}
\end{aligned}
$$

- Gaussian kernel: $D=\infty$.

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left\{-\sigma \cdot\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}\right\}, \quad \sigma>0
$$

For $d=1, \sigma=1$ and $x \in \mathbb{R}$,

$$
\phi(x)=\left(\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \cdots\right)^{T}, \quad \phi_{j}(x)=\frac{x^{j} e^{-x^{2} / 2}}{\sqrt{j!}}, \quad x \in \mathbb{R}
$$

Overfiting to data

- simple model: hard to deal with complex data
\longrightarrow use the model with many parameters
- model with too many parameters does not work. overfitting to data.
degree of freedom

Regularization: tune the degree of freedom

large model \& appropriate constraint

linear regression model : $y=\underline{\boldsymbol{a}^{T} \boldsymbol{\phi}(\boldsymbol{x})+b}+\varepsilon$
ex. $\boldsymbol{\phi}(x)=\left(x, x^{2}, x^{3}, \ldots, x^{100}\right), \boldsymbol{\phi}(\boldsymbol{x})$ of Gaussian kernel, etc. data: $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}$.

$$
\min _{\boldsymbol{a} \in \mathbb{R}^{D}, b \in \mathbb{R}}\left\|\boldsymbol{y}-\Phi^{T} \boldsymbol{a}-b \mathbf{1}\right\|^{2}+\lambda\|\boldsymbol{a}\|^{2}, \quad \Phi=\left(\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right), \ldots, \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right)
$$

$$
\begin{aligned}
& \Longrightarrow \text { opt. sol. } \widehat{\boldsymbol{a}}, \widehat{b} . \quad \widehat{f}(x)=\widehat{\boldsymbol{a}}^{T} \boldsymbol{\phi}(\boldsymbol{x})+\widehat{b}
\end{aligned}
$$

regularization parameter $\lambda>0$.
λ : large
lambda=10000

λ : medium
lambda=1

λ : small
lambda=1e-05

small \longleftarrow degree of freedom \longrightarrow large

Kernel representation of Ridge regression:

$$
\min _{\boldsymbol{a}, b}\left\|\boldsymbol{y}-\Phi^{T} \boldsymbol{a}-b \mathbf{1}\right\|^{2}+\lambda\|\boldsymbol{a}\|^{2}, \quad \Phi=\left(\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right), \ldots, \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right) .
$$

In the same way as the standard LMS, the optimal $\widehat{\boldsymbol{a}}$ lies on the subspace $\operatorname{span}\left\{\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right), \ldots, \phi\left(\boldsymbol{x}_{n}\right)\right\}$.
Substitute $\boldsymbol{a}=\sum_{i=1}^{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right) \beta_{i}=\boldsymbol{\Phi} \boldsymbol{\beta}$, then for $K=\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}$,

$$
\begin{aligned}
\left\|\boldsymbol{y}-\Phi^{T} \boldsymbol{a}-b \mathbf{1}\right\|^{2}+\lambda\|\boldsymbol{a}\|^{2} & =\left\|\boldsymbol{y}-\boldsymbol{\Phi}^{T} \mathbf{\Phi} \boldsymbol{\beta}-b \mathbf{1}\right\|^{2}+\lambda \boldsymbol{\beta}^{T} \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{\beta} \\
& =\|\boldsymbol{y}-K \boldsymbol{\beta}-b \mathbf{1}\|^{2}+\lambda \boldsymbol{\beta}^{T} K \boldsymbol{\beta} \longrightarrow \min _{\boldsymbol{\beta}, b}
\end{aligned}
$$

Kernel-Ridge Regression

- Optimality condition

$$
\begin{aligned}
& \min _{\boldsymbol{\beta}, b}\|\boldsymbol{y}-K \boldsymbol{\beta}-b \mathbf{1}\|^{2}+\lambda \boldsymbol{\beta}^{T} K \boldsymbol{\beta} \\
& \Longrightarrow\left(\begin{array}{cc}
K+\lambda I & \mathbf{1} \\
\mathbf{1}^{T} K & n
\end{array}\right)\binom{\widehat{\boldsymbol{\beta}}}{\widehat{b}}=\binom{\boldsymbol{y}}{\mathbf{1}^{T} \boldsymbol{y}}
\end{aligned}
$$

- estimated regression function:

$$
\widehat{f}(\boldsymbol{x})=\boldsymbol{\phi}(x)^{T} \sum_{i=1}^{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{i}\right) \widehat{\beta}_{i}+\widehat{b}=\sum_{i=1}^{n} k\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right) \widehat{\beta}_{i}+\widehat{b}
$$

Plot: estimated regression function

- kernel width: $\sigma=3$
- regularization par.: $\lambda=1$

— Model Selection -

How to choose regularization parameter λ ?

- Training error and Test error
- Cross Validation for model parameter tuning

Kernel-Ridge Regression

Gaussian kernel : $\quad k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left\{-\sigma \cdot\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}\right\}$

We need to determine the following model parameters:

- Regularization par.: λ
- kernel parameter: σ

How to choose λ and σ ?

Note. For the polynomial kernel, we need to determine λ and the degree ℓ.

Training error and Test error

- training data: $\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right) \sim_{\text {i.i.d. }} p(\boldsymbol{x}, y)$
- estimated regression function $\widehat{f}(x)$
training error of $\widehat{f}(\boldsymbol{x}): \frac{1}{n} \sum_{i=1}^{n}\left(\widehat{f}\left(\boldsymbol{x}_{i}\right)-y_{i}\right)^{2} \quad$ (calculated from data)
test error of $\widehat{f}(\boldsymbol{x}): \quad \mathbb{E}_{(\boldsymbol{x}, y) \sim P}\left[(\widehat{f}(\boldsymbol{x})-y)^{2}\right] \quad(P$ is unknown)

Purpose of Regression Analysis
Find $\widehat{f}(\boldsymbol{x})$ that achieves a small (or minimum) test error.

Polynomial regression

overfitting

- For high degree polynomial models, we have
- small training error
- large test error
- overfitting: large gap between training error and test error.
appropriate model complexity is required.
Cross validation: estimator of test error

K-fold Cross Validation Method

Fixing a model parameter, say λ and σ, execute the following procedure.

1. Divide the training data into k parts.
2. Use $k-1$ of the parts for training, and 1 for testing.
3. Repeat the procedure k times, rotating the test set.
4. Calculate an expected performance metric (mean square error/test error rate) based on the results across the iterations

https://medium.com/@mtterribile/understanding-cross-validations-purpose-53490faf6a86

Example: Kernel regression with Gaussian kernel

- kernel par. $\sigma>0$ is determined by K-cv.
- regularization par. $\lambda>0$ is fixed to 1 .

Median Heuristics for Gaussian Kernel

Gaussian kernel:

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left\{-\sigma\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}\right\}
$$

- For computational stability, choose σ such that

$$
\begin{aligned}
& \sigma\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} \text { takes values around } 1 . \\
& \sigma \longleftarrow \frac{1}{\operatorname{median}\left\{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} \mid i<j\right\}}
\end{aligned}
$$

Example

- kernel parameter σ is determined by the heuristics.
- regularization par. λ : $K-c v$

$(\operatorname{sigma}, \lambda)=\left(0.98,0.1^{5}\right)$

$(\operatorname{sigma}, \lambda)=(0.98,0.78)$

$(\operatorname{sigma}, \lambda)=(0.98,10)$

