Theory of Statistical Mathematics: Guidance

- Lecturer: T. Kanamori (e-mail: kanamori@c.titech.ac.jp) http://www.kana-lab.c.titech.ac.jp/2019-statmath.html
- Course Schedule
* Guidance. A brief review of Probability
* Regression and Classification: Kernel methods
* Statistical Learning theory
* Deep Learning
- Assessment criteria and methods
* Evaluated by report submission
- Reference books, course materials, etc.
* Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014.
* smoe handouts

- Framework of Machine Learning -

Purpose of Data Analysis: extract useful information from observed data.

- In this course, mainly we learn some statistical methods for regression and classification problems.

Problem Setup

Input: x, Output: y.

$$
\text { ex. } \quad x \longrightarrow ? ? \longrightarrow y
$$

- training samples $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are observed.
- predict the output y of a new input point x.
* Regression: y is continuous.
* Classification: y is discrete finite.

Regression

y can take a real number, i.e., y is a continuous random variable.

Classification

The candidate of y is finite, i.e., y is a discrete random variable.

- Character Recognision:

used in reading system of handwritten zip codes.
- Image segmentation:

Statistical Data Analysis and Probability

- Observed data is often contaminated by noise.
- Probability is useful for data analysis:

$$
\text { model }=[\text { non-random structure }]+[\text { random noise }]
$$

* In this course, we do not go into details of measure theory.
- A Review of Probability:
- random variable(r.v.): variable whose possible values are outcomes of a random phenomenon. Upper case characters such as X, Y are commonly used to denote r.v.
e.g. coin flipping
- Let X be a r.v. taking the value in the sample space Ω. The definition of the probability $\operatorname{Pr}(\cdot)$ is given by the following conditions.

Axiom of Probability:

1. For the subset $A \subset \Omega, 0 \leq \operatorname{Pr}(X \in A) \leq 1$.
2. The probability of the whole event Ω is 1 , i.e. $\operatorname{Pr}(X \in \Omega)=1$
3. For mutually disjoint events $A_{i}, i=1,2,3, \ldots$,

$$
\operatorname{Pr}\left(X \in \cup_{i} A_{i}\right)=\sum_{i} \operatorname{Pr}\left(X \in A_{i}\right)
$$

(mutually distjoint: $A_{i} \cap A_{j}=\phi$ for $i \neq j$)
$\operatorname{Pr}(X \in A)$ is often written as $\operatorname{Pr}(A)$ or $P(A)$.

Example 1 (coin flip). Let (X, Y) be r.v. corresponding to flipping two coins and, define $\Omega=\{(0,0),(0,1),(1,0),(1,1)\}$. For the fair coins,

$$
\begin{aligned}
\operatorname{Pr}((X, Y) & =(x, y))=\frac{1}{2^{2}}, \quad(x, y) \in \Omega \\
\operatorname{Pr}(X=1) & =\operatorname{Pr}((X, Y) \in\{(1,0),(1,1)\}) \\
& =\operatorname{Pr}((X, Y)=(1,0))+\operatorname{Pr}((X, Y)=(1,1))=\frac{1}{2}
\end{aligned}
$$

calculation of probability

The following equations are derived from axioms.

- $\operatorname{Pr}(A)+\operatorname{Pr}\left(A^{c}\right)=1$, where A^{c} is the complement of A, i.e., $A^{c}=\{x \in \Omega \mid x \notin A\}$.
- monotonicity: $A \subset B \subset \Omega \Longrightarrow \operatorname{Pr}(A) \leq \operatorname{Pr}(B)$.

Proof: if $A \subset B$, we have $B=A \cup\left(B \cap A^{c}\right)$, i.e., mutually disjoint.
Thus, $\operatorname{Pr}(B)=\operatorname{Pr}(A)+\operatorname{Pr}\left(B \cap A^{c}\right) \geq \operatorname{Pr}(A)$.

- Addition theorem: $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$ $\operatorname{Pr}\left(\cup_{i} A_{i}\right) \leq \sum_{i} \operatorname{Pr}\left(A_{i}\right)$.

Exercise 1. Prove $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$.

Example: 1-dim normal distribution (Gaussian distribution),

$$
\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x, \quad(\Omega=\mathbb{R})
$$

This is expressed as $X \sim N\left(\mu, \sigma^{2}\right)$.

area of $\square=\operatorname{Pr}(1 \leq X \leq 2)$

Probability Density Function (pdf)

For n random variables: $X_{1}, X_{2}, \ldots, X_{n}$ and a set $A \subset \mathbb{R}^{n}$,
Probability of $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in A$ is supposed to be given by

$$
\operatorname{Pr}(X \in A)=\int_{A} p\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

the function $p\left(x_{1}, \ldots, x_{n}\right)$ is called the (joint) probability density function.

- (joint)probability density function:

$$
\begin{aligned}
& p(\boldsymbol{x})=p\left(x_{1}, \ldots, x_{n}\right) \geq 0, \\
& \int_{\mathbb{R}^{n}} p(\boldsymbol{x}) d \boldsymbol{x}=1
\end{aligned}
$$

- marginal pdf: $p_{1}\left(x_{1}\right)=\int_{\mathbb{R}^{n-1}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{2} \cdots d x_{n}$ etc.

For discrete r.v., i.e., A is a countable set, $\int_{A} \cdots d \boldsymbol{x}$ is replaced with $\sum_{x \in A} \cdots$. $===2019-4-9$ (Tue): up to here $===$

Expectation and Variance of r.v.

Let $p\left(x_{1}, \ldots, x_{d}\right)$ be the pdf of $X=\left(X_{1}, \ldots, X_{d}\right)$.

- Expectation of X_{i} : barycenter

$$
\begin{aligned}
& \quad \mathbb{E}\left[X_{i}\right]=\int_{\mathbb{R}^{d}} x_{i} p\left(x_{1}, \ldots, x_{d}\right) d x_{1} \cdots d x_{d}=\int_{\mathbb{R}} x_{i} p_{i}\left(x_{i}\right) d x_{i} \in \mathbb{R} \\
& P\left(X_{1}=1\right)=0.5, P\left(X_{1}=2\right)=0.2, P\left(X_{1}=3\right)=0.3 \\
& \Rightarrow \mathbb{E}\left[X_{1}\right]=1 \times 0.5+2 \times 0.2+3 \times 0.3=1.8
\end{aligned}
$$

- Expectation of the d-dimensional r.v. $X=\left(X_{1}, \ldots, X_{d}\right)^{T}$:

$$
\mathbb{E}[X]=\left(\mathbb{E}\left[X_{1}\right], \ldots, \mathbb{E}\left[X_{d}\right]\right)^{T} \in \mathbb{R}^{d}
$$

$* a, b \in \mathbb{R}, \mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$ holds.

- Variance of 1-dim r.v. X : it measures how far a set of (random) numbers are spread out from their expectation.

$$
\mathbb{V}[X] \stackrel{\text { def }}{=} \mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

* For $a, b \in \mathbb{R}, \mathbb{V}[a X+b]=a^{2} \mathbb{V}[X]$ holds.

Example: $X \sim N\left(\mu, \sigma^{2}\right) \Longrightarrow \mathbb{E}[X]=\mu, \mathbb{V}[X]=\sigma^{2}$.

Exercise 2. For 1-dim r.v. X, prove $\min _{a \in \mathbb{R}} \mathbb{E}\left[(X-a)^{2}\right]=\mathbb{V}[X]$.

independent and identically distributed (i.i.d.) r.v.

For $X_{1}, X_{2}, \ldots, X_{n}$

- X_{1}, \ldots, X_{n} are independnet \Longleftrightarrow joint pdf is factorized as

$$
p\left(x_{1}, \ldots, x_{n}\right)=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) \cdots p_{n}\left(x_{n}\right)
$$

- X_{1}, \ldots, X_{n} are independent and identically distributed:

$$
p\left(x_{1}, \ldots, x_{n}\right)=q\left(x_{1}\right) q\left(x_{2}\right) \cdots q\left(x_{n}\right), \quad\left(q=p_{1}=\cdots=p_{n}\right)
$$

For independent r.v. X, Y, the following equations hold,

$$
\begin{aligned}
\mathbb{E}[X Y] & =\mathbb{E}[X] \mathbb{E}[Y], \\
\mathbb{V}[X+Y] & =\mathbb{V}[X]+\mathbb{V}[Y]
\end{aligned}
$$

note:
$\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$ holds even when X and Y are NOT independent.

- When X_{1}, \ldots, X_{n} are i.i.d. from the probability distribution P, we write

$$
X_{1}, \ldots, X_{n} \sim_{i . i . d .} P \quad \text { or } \quad\left(X_{1}, \ldots, X_{n}\right) \sim P^{n}
$$

For example, $X_{1}, \ldots, X_{n} \sim_{i . i . d .} N(0,1)$.
In this case, clearly we have

$$
\mathbb{E}\left[X_{1}\right]=\cdots=\mathbb{E}\left[X_{n}\right], \quad \mathbb{V}\left[X_{1}\right]=\cdots=\mathbb{V}\left[X_{n}\right]
$$

- When $X_{1}, \ldots, X_{n} \sim_{i . i . d .} P, \mu=E\left[X_{i}\right], \quad \sigma^{2}=V\left[X_{i}\right]$,

$$
Y=\frac{1}{n} \sum_{i=1}^{n} X_{i} \Longrightarrow \mathbb{E}[Y]=\mu, \quad \mathbb{V}[Y]=\frac{\sigma^{2}}{n}
$$

Exercise 3. Suppose $X_{1}, \ldots, X_{n} \quad \sim_{i . i . d .} P$ and $\mu=E\left[X_{i}\right], \quad \sigma^{2}=V\left[X_{i}\right]$.
For $Y=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, prove the following equations hold:

$$
\mathbb{E}[Y]=\mu, \quad \mathbb{V}[Y]=\frac{\sigma^{2}}{n}
$$

Conditional Probability \& Conditional pdf

- conditional probability: the probability of $Y \in B$ under the condition of $X \in A$.

Definition of the conditional probability $\operatorname{Pr}(Y \in B \mid X \in A)$:

$$
\operatorname{Pr}(Y \in B \mid X \in A)=\frac{\operatorname{Pr}(X \in A, Y \in B)}{\operatorname{Pr}(X \in A)}
$$

$P(B \mid A)=P(A \cap B) / P(A)$.

- conditional pdf of y for given x,

$$
p(y \mid x):=\frac{p(x, y)}{\int p(x, y) d y}=\frac{p(x, y)}{p_{1}(x)} . \quad\left(p_{1}(x): \text { marginal pdf of } x\right)
$$

The conditional pdf satisfies $\quad{ }^{\forall} x, y, p(y \mid x) \geq 0, \quad \int p(y \mid x) d y=1$.
probability of $Y \in[y, y+d y]$ under $X \in[x, x+d x]$

$$
\begin{aligned}
& =\frac{\operatorname{Pr}(X \in[x, x+d x], Y \in[y, y+d y])}{\operatorname{Pr}(X \in[x, x+d x])} \\
& \approx \frac{p(x, y) d x d y}{p_{1}(x) d x}=p(y \mid x) d y
\end{aligned}
$$

Bayes' theorem

$$
\operatorname{Pr}(X \in A \mid Y \in B)=\frac{\operatorname{Pr}(Y \in B \mid X \in A) \operatorname{Pr}(X \in A)}{\operatorname{Pr}(Y \in B)}
$$

proof:

$$
\begin{aligned}
\operatorname{Pr}(X \in A \mid Y \in B) \operatorname{Pr}(Y \in B) & =\operatorname{Pr}(X \in A, Y \in B) \\
& =\operatorname{Pr}(Y \in B \mid X \in A) \operatorname{Pr}(X \in A)
\end{aligned}
$$

Interpretation: for the cause X and the result Y,

- $\operatorname{Pr}(Y \mid X):$ For the cause X, the result Y occurs.
- $\operatorname{Pr}(X \mid Y)$: infer the cause X based on the result Y.

Asymptotic theory: the law of large numbers

For $X_{1}, \ldots, X_{n} \sim_{i . i . d .} P$, let $\mathbb{E}\left(X_{i}\right)=\mu \in \mathbb{R}$.

- The Law of Large Numbers:
for $\bar{X}_{n} \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \forall \varepsilon>0, \lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\bar{X}_{n}-\mu\right|>\varepsilon\right)=0$
* for sufficiently large n, \bar{X}_{n} is close to μ with high probability (w.h.p.).

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \sim_{i . i . d .} P \\
& P\left(X_{i}=1\right)=0.7, P\left(X_{i}=0\right)=0.3 . \\
& \Longrightarrow \frac{1}{n} \sum_{i=1}^{n} X_{i} \text { converges to } 0.7(\text { in probability })
\end{aligned}
$$

Definition
When

$$
\forall \varepsilon>0, \lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|Z_{n}-a\right|>\varepsilon\right)=0
$$

holds for the sequence of r.v. $\left\{Z_{n}\right\}_{n \in \mathbb{N}}$, we say,
" Z_{n} converges to $a \in \mathbb{R}$ in probability."
and we write $Z_{n} \xrightarrow{p} a$ for short.

- From the LAN, $\bar{X}_{n} \xrightarrow{p} \mu$.
- [Slutsky's theorem] For any continuous function $f(z)$,
$Z_{n} \xrightarrow{p} a \quad \Longrightarrow \quad f\left(Z_{n}\right) \xrightarrow{p} f(a)$.

