Theory of Statistical Mathematics: Guidance

Lecturer: T. Kanamori (e-mail: kanamori@c.titech.ac.jp)
 http://www.kana-lab.c.titech.ac.jp/2019-statmath.html

• Course Schedule

- * Guidance. A brief review of Probability
- * Regression and Classification: Kernel methods
- * Statistical Learning theory
- * Deep Learning
- Assessment criteria and methods
 - * Evaluated by report submission

- Reference books, course materials, etc.
 - * Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014.
 - * smoe handouts

— Framework of Machine Learning —

Purpose of Data Analysis: extract useful information from observed data.

• In this course, mainly we learn some statistical methods for regression and classification problems.

Problem Setup

Input: x, Output: y.

ex.
$$x \longrightarrow \boxed{??} \longrightarrow y$$

• training samples $(x_1, y_1), \ldots, (x_n, y_n)$ are observed.

- predict the output y of a new input point x.
 - * Regression: y is continuous.
 - * Classification: y is discrete finite.

Regression

y can take a real number, i.e., y is a continuous random variable.

Classification

The candidate of y is finite, i.e., y is a discrete random variable.

• Character Recognision:

ex.:
$$x \in \mathbb{R}^{64}, y \in \{0, 1, 2, \dots, 9\}$$
.

used in reading system of handwritten zip codes.

• Image segmentation:

Sky Building Road Sidewalk Fence Vegetation Pole Car Sign Pedestrian Cyclis

Statistical Data Analysis and Probability

- Observed data is often contaminated by noise.
- Probability is useful for data analysis:

model = [non-random structure] + [random noise]

* In this course, we do not go into details of measure theory.

— A Review of Probability: —

 random variable(r.v.): variable whose possible values are outcomes of a random phenomenon. Upper case characters such as X, Y are commonly used to denote r.v.

e.g. coin flipping

 Let X be a r.v. taking the value in the sample space Ω. The definition of the probability Pr(·) is given by the following conditions. Axiom of Probability:

- 1. For the subset $A \subset \Omega$, $0 \leq \Pr(X \in A) \leq 1$.
- 2. The probability of the whole event Ω is 1, i.e. $\Pr(X \in \Omega) = 1$
- 3. For mutually disjoint events A_i , i = 1, 2, 3, ...,

$$\Pr(X \in \bigcup_i A_i) = \sum_i \Pr(X \in A_i).$$

(mutually distjoint: $A_i \cap A_j = \phi$ for $i \neq j$)

 $Pr(X \in A)$ is often written as Pr(A) or P(A).

Example 1 (coin flip). Let (X, Y) be r.v. corresponding to flipping two coins and, define $\Omega = \{(0,0), (0,1), (1,0), (1,1)\}$. For the fair coins,

$$Pr((X,Y) = (x,y)) = \frac{1}{2^2}, \quad (x,y) \in \Omega,$$

$$Pr(X = 1) = Pr((X,Y) \in \{(1,0), (1,1)\})$$

$$= Pr((X,Y) = (1,0)) + Pr((X,Y) = (1,1)) = \frac{1}{2}$$

calculation of probability

The following equations are derived from axioms.

- $Pr(A) + Pr(A^c) = 1$, where A^c is the complement of A, i.e., $A^c = \{x \in \Omega \mid x \notin A\}.$
- monotonicity: $A \subset B \subset \Omega \implies \Pr(A) \leq \Pr(B)$. Proof: if $A \subset B$, we have $B = A \cup (B \cap A^c)$, i.e., mutually disjoint. Thus, $\Pr(B) = \Pr(A) + \Pr(B \cap A^c) \geq \Pr(A)$.
- Addition theorem: $\Pr(A \cup B) = \Pr(A) + \Pr(B) \Pr(A \cap B)$ $\Pr(\bigcup_i A_i) \le \sum_i \Pr(A_i).$

<u>Exercise</u> 1. Prove $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$.

Example: 1-dim normal distribution (Gaussian distribution),

$$\Pr(a \le X \le b) = \int_a^b \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx, \qquad (\Omega = \mathbb{R})$$

This is expressed as $X \sim N(\mu, \sigma^2)$.

Probability Density Function (pdf)

For *n* random variables: X_1, X_2, \ldots, X_n and a set $A \subset \mathbb{R}^n$, Probability of $X = (X_1, X_2, \ldots, X_n) \in A$ is supposed to be given by

$$\Pr(X \in A) = \int_{A} p(x_1, \dots, x_n) dx_1 \cdots dx_n$$

the function $p(x_1, \ldots, x_n)$ is called the (joint) probability density function.

• (joint)probability density function:

$$p(\boldsymbol{x}) = p(x_1, \dots, x_n) \ge 0,$$

 $\int_{\mathbb{R}^n} p(\boldsymbol{x}) d\boldsymbol{x} = 1$

• marginal pdf:
$$p_1(x_1) = \int_{\mathbb{R}^{n-1}} p(x_1, x_2, \dots, x_n) dx_2 \cdots dx_n$$
 etc.

For discrete r.v., i.e., A is a countable set, $\int_A \cdots d{m x}$ is replaced with $\sum_{{m x} \in A} \cdots$.

=== 2019-4-9(Tue): up to here ===

Expectation and Variance of r.v.

Let $p(x_1, \ldots, x_d)$ be the pdf of $X = (X_1, \ldots, X_d)$.

• Expectation of X_i : barycenter

 \Rightarrow

$$\mathbb{E}[X_i] = \int_{\mathbb{R}^d} x_i \, p(x_1, \dots, x_d) dx_1 \cdots dx_d = \int_{\mathbb{R}} x_i \, p_i(x_i) dx_i \in \mathbb{R}$$
$$P(X_1 = 1) = 0.5, P(X_1 = 2) = 0.2, P(X_1 = 3) = 0.3$$
$$\Rightarrow \mathbb{E}[X_1] = 1 \times 0.5 + 2 \times 0.2 + 3 \times 0.3 = 1.8$$

• Expectation of the *d*-dimensional r.v. $X = (X_1, \ldots, X_d)^T$:

$$\mathbb{E}[X] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_d])^T \in \mathbb{R}^d$$

* $a, b \in \mathbb{R}, \mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$ holds.

• Variance of 1-dim r.v.X: it measures how far a set of (random) numbers are spread out from their expectation.

$$\mathbb{V}[X] \stackrel{\text{\tiny def}}{=} \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

* For $a, b \in \mathbb{R}$, $\mathbb{V}[aX + b] = a^2 \mathbb{V}[X]$ holds.

Example:
$$X \sim N(\mu, \sigma^2) \implies \mathbb{E}[X] = \mu, \ \mathbb{V}[X] = \sigma^2.$$

Exercise 2. For 1-dim r.v. X, prove $\min_{a \in \mathbb{R}} \mathbb{E}[(X-a)^2] = \mathbb{V}[X]$.

independent and identically distributed (i.i.d.) r.v.

For X_1, X_2, \ldots, X_n

• X_1, \ldots, X_n are independent \iff joint pdf is factorized as

$$p(x_1,\ldots,x_n) = p_1(x_1)p_2(x_2)\cdots p_n(x_n)$$

• X_1, \ldots, X_n are independent and identically distributed:

$$p(x_1, \dots, x_n) = q(x_1)q(x_2)\cdots q(x_n), \quad (q = p_1 = \dots = p_n)$$

For independent r.v. X, Y, the following equations hold, $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y],$ $\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y]$

note:

 $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ holds even when X and Y are NOT independent.

• When X_1, \ldots, X_n are i.i.d. from the probability distribution P, we write

$$X_1, \ldots, X_n \sim_{i.i.d.} P$$
 or $(X_1, \ldots, X_n) \sim P^n$

For example, $X_1, \ldots, X_n \sim_{i.i.d.} N(0, 1)$.

In this case, clearly we have

$$\mathbb{E}[X_1] = \cdots = \mathbb{E}[X_n], \qquad \mathbb{V}[X_1] = \cdots = \mathbb{V}[X_n].$$

• When $X_1, \ldots, X_n \sim_{i.i.d.} P$, $\mu = E[X_i], \sigma^2 = V[X_i],$

$$Y = \frac{1}{n} \sum_{i=1}^{n} X_i \implies \mathbb{E}[Y] = \mu, \quad \mathbb{V}[Y] = \frac{\sigma^2}{n}$$

Exercise 3. Suppose $X_1, \ldots, X_n \sim_{i.i.d.} P$ and $\mu = E[X_i], \sigma^2 = V[X_i].$ For $Y = \frac{1}{n} \sum_{i=1}^n X_i$, prove the following equations hold:

$$\mathbb{E}[Y] = \mu, \quad \mathbb{V}[Y] = \frac{\sigma^2}{n}$$

Conditional Probability & Conditional pdf

• conditional probability: the probability of $Y \in B$ under the condition of $X \in A$.

Definition of the conditional probability $Pr(Y \in B \mid X \in A)$:

$$\Pr(Y \in B \mid X \in A) = \frac{\Pr(X \in A, Y \in B)}{\Pr(X \in A)}$$

 $P(B|A) = P(A \cap B)/P(A).$

• conditional pdf of y for given x,

$$p(y|x) := \frac{p(x,y)}{\int p(x,y)dy} = \frac{p(x,y)}{p_1(x)}.$$
 (p₁(x): marginal pdf of x)

The conditional pdf satisfies $\forall x, y, \ p(y|x) \ge 0, \ \int p(y|x)dy = 1.$

probability of
$$Y \in [y, y + dy]$$
 under $X \in [x, x + dx]$

$$= \frac{\Pr(X \in [x, x + dx], Y \in [y, y + dy])}{\Pr(X \in [x, x + dx])}$$

$$\approx \frac{p(x, y)dxdy}{p_1(x)dx} = p(y|x)dy$$

proof:

$$Pr(X \in A | Y \in B) Pr(Y \in B) = Pr(X \in A, Y \in B)$$
$$= Pr(Y \in B | X \in A) Pr(X \in A).$$

Interpretation: for the cause X and the result Y,

- $\Pr(Y|X)$: For the cause X, the result Y occurs.
- Pr(X|Y): infer the cause X based on the result Y.

Asymptotic theory: the law of large numbers

For $X_1, \ldots, X_n \sim_{i.i.d.} P$, let $\mathbb{E}(X_i) = \mu \in \mathbb{R}$.

• The Law of Large Numbers:

for
$$\bar{X}_n \stackrel{\text{\tiny def}}{=} \frac{1}{n} \sum_{i=1}^n X_i$$
, $\forall \varepsilon > 0$, $\lim_{n \to \infty} \Pr(|\bar{X}_n - \mu| > \varepsilon) = 0$

* for sufficiently large n, \overline{X}_n is close to μ with high probability (w.h.p.).

$$X_1, \dots, X_n \sim_{i.i.d.} P$$

$$P(X_i = 1) = 0.7, \ P(X_i = 0) = 0.3.$$

$$\implies \frac{1}{n} \sum_{i=1}^n X_i \text{ converges to } 0.7 \text{ (in probability)}$$

Definition When

$$\forall \varepsilon > 0, \lim_{n \to \infty} \Pr(|Z_n - a| > \varepsilon) = 0$$

holds for the sequence of r.v. $\{Z_n\}_{n\in\mathbb{N}}$, we say,

" Z_n converges to $a \in \mathbb{R}$ in probability." and we write $Z_n \xrightarrow{p} a$ for short.

• From the LAN,
$$\bar{X}_n \xrightarrow{p} \mu_{\bullet}$$

• [Slutsky's theorem] For any continuous function f(z),

$$Z_n \xrightarrow{p} a \implies f(Z_n) \xrightarrow{p} f(a).$$