応用線形代数――第1回レポート

東京工業大学 情報理工学院 数理·計算科学系 福田光浩

2019年度 第1クォーター

提出〆切 4月19日(金) 13時20分まで レポートボックス 1-3 応用線形代数

- 1. 実数を係数とする変数 x の多項式全体の集合 $\mathbb{R}[x]$ は通常の和と実数とのスカラー積でベクトル空間になることを定義に沿って示せ. (多項式全体の集合 $\mathbb{R}[x]$ には任意の次数の多項式が含まれていることに注意すること).
- 2. [問題 02-01] 以下の命題を証明せよ.

 $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$ が線形従属である

1

 a_1, a_2, \ldots, a_m の少なくとも 1 つが残りの m-1 個のベクトルの線形結合として表される.

- 3. $m \times n$ 次元の実行列空間を V とした時, $\langle \pmb{A}, \pmb{B} \rangle := \operatorname{tr}(\pmb{A}\pmb{B}^T)$ ただし $\pmb{A}, \pmb{B} \in V$ が V において内積になっていることを定義に沿って示せ. 但し、T は行列の転置、 tr は行列のトレースである.
- 4. $a \in \mathbb{R}^n$ において授業で用いたノルム $\|a\| = \sqrt{a^T a}$ が実際にノルムであることを定義に沿って示せ.