集合と位相第二 第11回 連結性 補足

2.5.1 連結性

 $\mathbf{M2.18}$ 連結であるが弧状連結でない集合としては、 \mathbb{R}^2 の部分集合

$$X \triangleq \{(0,y) \mid 0 < y \le 1\} \cup \{(x,0) \mid 0 < x \le 1\} \cup \left\{ \left(\frac{1}{n}, y\right) \mid n \in \mathbb{N}, \ 0 \le y \le 1 \right\}$$

がある.

まず, X が連結であることを示す.

$$A \triangleq \left\{ (x,0) \mid 0 < x \leq 1 \right\} \cup \left\{ \left(\frac{1}{n},y\right) \mid n \in \mathbb{N}, \ 0 \leq y \leq 1 \right\} = X \setminus \left\{ (0,y) \mid 0 < y \leq 1 \right\}$$

とおくと、Aは明らかに弧状連結なので、連結である。Aの \mathbb{R}^2 における閉包 \bar{A} が

$$\bar{A} = \{(0, y) \mid 0 \le y \le 1\} \cup \{(x, 0) \mid 0 < x \le 1\} \cup \left\{ \left(\frac{1}{n}, y\right) \mid n \in \mathbb{N}, \ 0 \le y \le 1 \right\}$$

となることは容易に分かる. $A \subset X \subset \bar{A}$ なので、教科書 p. 118 の補題 2.1 より、X は連結である.

次に、X が弧状連結でないことを背理法により示す、X が弧状連結であるとすると、

$$F(0) = (0, 1), \quad F(1) = (1, 0), \quad F(t) \in X \text{ for } t \in [0, 1]$$

なる連続写像 $F:[0,1]\to X$ が存在する. 射影 $p_1(x,y)=x, p_2(x,y)=y$ を用いて, 写像 $f:[0,1]\to[0,1]$ と $g:[0,1]\to[0,1]$ を

$$f \triangleq p_1 \circ F, \qquad g \triangleq p_2 \circ F$$

と定めると、 $f \geq g$ は連続である。 $T_0 \triangleq \inf g^{-1}(\{0\})$ と定めると、 T_0 は集合 $g^{-1}(\{0\})$ の触点であり、 $g^{-1}(\{0\})$ は閉集合だから $T_0 \in g^{-1}(\{0\})$ 、すなわち $g(T_0) = 0$ である。もし $f(T_0) = 0$ であるとすると $F(T_0) = (f(T_0), g(T_0)) = (0, 0) \not\in X$ となってしまうので、 $f(T_0) > 0$ である。 $f(0) = p_1(F(0)) = p_1(0, 1) = 0$ に注意して、任意に $x_1 \in]0, f(T_0)[\setminus \{1/n \mid n \in \mathbb{N}\}$ を固定すると、中間値の定理から、ある $T_1 \in]0, T_0[$ が存在して $f(T_1) = x_1$ となる。 T_0 の定め方から $g(T_1) > 0$ なので、

$$F(T_1) = (f(T_1), g(T_1)) = (x_1, g(T_1)) \notin X$$

となり、これは矛盾である.

教科書 p.124 「例 2.18 でわかる通り,弧状連結成分は一般には閉集合とはならない。」 の説明

例 2.18 において、X の弧状連結成分は、明らかに $\{(0,y) \mid 0 < y \leq 1\}$ と

$$A = \{(x,0) \mid 0 < x \le 1\} \cup \left\{ \left(\frac{1}{n}, y\right) \mid n \in \mathbb{N}, \ 0 \le y \le 1 \right\}$$

の二つである。前ページで見たようにAの $\mathbb R$ における閉包 $\bar A$ について $A \subset X \subset \bar A$ が成り立つので,A の部分空間 X における閉包は X に一致し,一方 $A \neq X$ なので,A は部分空間 X における閉集合ではない.

定理 2.22 後半 (p. 124) (弧状連結の場合) の証明

各直積因子 X_{λ} が弧状連結のとき直積空間 $\prod_{\lambda \in \Lambda} X_{\lambda}$ も弧状連結になることを示す. 任意に $x = (x_{\lambda}), \ y = (y_{\lambda}) \in \prod_{\lambda \in \Lambda} X_{\lambda}$ を固定する.各 X_{λ} は弧状連結だから, $\exists \omega_{\lambda} \colon [0,1] \to X_{\lambda}$:連続 s.t. $\omega_{\lambda}(0) = x_{\lambda}, \ \omega_{\lambda}(1) = y_{\lambda}$ なので, $\omega \colon [0,1] \to \prod_{\lambda \in \Lambda} X_{\lambda}$ を $\forall t \in [0,1]; \ \omega(t) \triangleq (\omega_{\lambda}(t)) \in \prod_{\lambda \in \Lambda} X_{\lambda}$ と定めれば,(授業「直積空間」の最後に示した系より) ω は連続で, $\omega(0) = (\omega_{\lambda}(0)) = (x_{\lambda}) = x, \ \omega(1) = (\omega_{\lambda}(1)) = (y_{\lambda}) = y$ となるから, $\prod_{\lambda \in \Lambda} X_{\lambda}$ は弧状連結である.

次に、直積空間 $\prod_{\lambda \in \Lambda} X_{\lambda}$ が弧状連結のとき各直積因子 X_{λ} も弧状連結になることを示す。任意に $\mu \in \Lambda$ を固定し、 $x_{\mu}, y_{\mu} \in X_{\mu}$ を任意に固定する。 $\lambda \neq \mu$ なる $\lambda \in \Lambda$ についても、 $x_{\lambda}, y_{\lambda} \in X_{\lambda}$ を任意に固定し、 $x = (x_{\lambda}), y = (y_{\lambda}) \in \prod_{\lambda \in \Lambda} X_{\lambda}$ を構成する。 $\prod_{\lambda \in \Lambda} X_{\lambda}$ は弧状連結だから、 $\exists \omega \colon [0,1] \to \prod_{\lambda \in \Lambda} X_{\lambda}$: 連続 s.t. $\omega(0) = x, \omega(1) = y$ である。そこで、 $\omega_{\mu} \colon [0,1] \to X_{\mu}$ を $\omega_{\mu} \triangleq p_{\mu} \circ \omega$ $(p_{\mu} \colon \prod_{\lambda \in \Lambda} X_{\lambda} \to X_{\mu}$ は射影)と 定めれば、 ω_{μ} は連続であり、 $\omega_{\mu}(0) = p_{\mu}(\omega(0)) = p_{\mu}(x) = x_{\mu}, \omega_{\mu}(1) = p_{\mu}(\omega(1)) = p_{\mu}(y) = y_{\mu}$ となる。よって、 X_{μ} は弧状連結である。 (Q.E.D.)

例 2.20 (p. 126) の後半

$$Y \triangleq \left\{ (0, y) \mid -1 \le y \le 1 \right\} \cup \left\{ \left(x, \sin \frac{1}{x} \right) \mid 0 < x \le 1 \right\}$$

が、連結であるが弧状連結でも局所連結でもないことは、例 2.18 と ほぼ同様に示せる (内田伏一「集合と位相」掌華房 pp. 136-138 にも記載があるので、興味のある者は 参照されたい). (なお、上式右辺第 2 項

$$\left\{ \left(x, \sin \frac{1}{x} \right) \mid 0 < x \le 1 \right\}$$

のグラフ (に原点 (0,0) を加えることもある) にはトポロジストの正弦曲線 (topologist's sine curve) という名がある.)

命題 2.14 (p. 127) の証明

局所連結か否かにかかわらず連結成分が閉集合であることは,教科書 p. 123 の最下行で述べられている.局所連結な位相空間において連結成分が開集合であることは,定理 2.23 (教科書 p. 126) (開集合として全体集合を考える)で示されている.

命題 2.15 (p. 127) の証明

弧状連結ならば連結であるから,弧状連結成分は連結集合なので,ある連結成分に含まれる(: 教科書 p. 123 最下行).したがって,弧状連結成分が,それを含む連結成分に一致することを示せばよい. $\{C_{\lambda}\}$ を X の弧状連結成分の全体とする.X は局所弧状連結だから,定理 2.23 より各 C_{λ} は開集合である.したがって,任意の λ に対して $\bigcup_{\mu\neq\lambda} C_{\mu}$ は開集合となる.この開集合 $\bigcup_{\mu\neq\lambda} C_{\mu}$ の補集合は C_{λ} であるから, C_{λ} は閉集合でもある.したがって,ある弧状連結成分 C_{λ} が,連結成分 C の真部分集合だとすると,連結成分 C が部分空間 C の 2 つの開集合(2 つの閉集合) C_{λ} と $C\setminus C_{\lambda}$ の直和で表せてしまうので,連結成分の連結性に反する.よって,弧状連結成分は,それを含む連結成分に一致しなければならない.(Q.E.D.)

命題 2.16 (p. 127) の証明の補足

教科書の証明の2行目「f の $I\setminus\{1/2\}$ への制限は同相写像 $I\setminus\{1/2\}\cong (I\times I)\setminus\{x\}$ を誘導する」とは、「f の $I\setminus\{1/2\}$ への制限 $f \mid (I\setminus\{1/2\})$ は、I の部分空間 $I\setminus\{1/2\}$ から、 $I\times I$ の部分空間 $(I\times I)\setminus\{x\}$ への同相写像である」という意味である.

一般に、X,Y を位相空間、 $f:X\to Y$ を同相写像、 $A\subset X$ とするとき、f のA への制限 $f\upharpoonright A$ は、X の部分空間 A から、Y の部分空間 f(A) への同相写像になる。このことは、部分空間の定義と同相写像の定義から容易に示せる.