Introduction to CMOS VLSI Design

Instructed by Shmuel Wimer Bar-Ilan University, Engineering Faculty Technion, EE Faculty

> Credits: David Harris Harvey Mudd College

(Some materials copied/taken/adapted from Harris' lecture notes)

Course Topics

- Introduction to CMOS circuits
- □ MOS transistor theory, processing technology
- □ CMOS circuit and logic design
- □ System design methods
- □ CAD algorithms for backend design
- □ Case studies, CAD tools, etc.

Bibliography

Textbook

- Weste and Harris.
 CMOS VLSI Design (3rd edition)
 - Addison Wesley
 - ISBN: 0-321-14901-7
 - Available at amazon.com.

Oct 2010

Introduction

- Integrated circuits: many transistors on one chip.
- □ Very Large Scale Integration (VLSI): very many
- Complementary Metal Oxide Semiconductor
 - Fast, cheap, low power transistors
- Introduction: How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- □ Rest of the course: How to build a good CMOS chip

A Brief History

- □ 1958: First integrated circuit
 - Flip-flop using two transistors
 - Built by Jack Kilby at Texas Instruments
- **2**003
 - Intel Pentium 4 µprocessor (55 million transistors)
 - 512 Mbit DRAM (> 0.5 billion transistors)
- □ 53% compound annual growth rate over 45 years
 - No other technology has grown so fast so long
- Driven by miniaturization of transistors
 - Smaller is cheaper, faster, lower in power!
 - Revolutionary effects on society

Annual Sales

□ 10¹⁸ transistors manufactured in 2003

- 100 million for every human on the planet

Oct 2010

Invention of the Transistor

- Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable
- □ 1947: first point contact transistor
 - John Bardeen and Walter Brattain at Bell Labs
 - Read Crystal Fire
 by Riordan, Hoddesor

Transistor Types

- □ Bipolar transistors
 - npn or pnp silicon structure
 - Small current into very thin base layer controls large currents between emitter and collector
 - Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain
 - Low power allows very high integration

MOS Integrated Circuits

- □ 1970's processes usually had only nMOS transistors
 - Inexpensive, but consume power while idle

Intel 1101 256-bit SRAM Intel 4004 4-bit μProc 1980s-present: CMOS processes for low idle power

Oct 2010

Moore's Law

□ 1965: Gordon Moore plotted transistor on each chip

- Fit straight line on semilog scale
- Transistor counts have doubled every 26 months

Fig. 5. The first integrated germanium circuit built by J. Kilby at Texas Instruments in 1958.

Oct 2010

Oct 2010

Corollaries

□ Many other factors grow exponentially

Ex: clock frequency, processor performance

Silicon Lattice

- □ Transistors are built on a silicon substrate
- □ Silicon is a Group IV material
- □ Forms crystal lattice with bonds to four neighbors

Dopants

- □ Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

Oct 2010

p-n Junctions

- A junction between p-type and n-type semiconductor forms a diode.
- □ Current flows only in one direction

anode cathode

nMOS Transistor

- □ Four terminals: gate, source, drain, body
- □ Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS)
 capacitor
 Source Gate Drain
 - Even though gate is no longer made of metal

nMOS Operation

- \Box Body is commonly tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation Cont.

□ When the gate is at a high voltage:

- Positive charge on gate of MOS capacitor
- Negative charge attracted to body
- Inverts a channel under gate to n-type
- Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

□ Similar, but doping and voltages reversed

- Body tied to high voltage (V_{DD})
- Gate low: transistor ON
- Gate high: transistor OFF
- Bubble indicates inverted behavior

Power Supply Voltage

$\Box \quad \text{GND} = 0 \text{ V}$

I In 1980's, $V_{DD} = 5V$

 $\hfill\square$ V_{DD} has decreased in modern processes

– High V_{DD} would damage modern tiny transistors

– Lower V_{DD} saves power

$$\Box$$
 V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

CMOS Inverter

CMOS Inverter

CMOS Inverter

A

Oct 2010

Oct 2010

CMOS NOR Gate

Oct 2010

3-input NAND Gate

- □ Y pulls low if ALL inputs are 1
- □ Y pulls high if ANY input is 0

Compound Gates

Compound gates can do any inverting function

 $\Box \quad \mathsf{Ex:} \ Y = A \bullet B + C \bullet D \ (\mathsf{AND}\text{-}\mathsf{AND}\text{-}\mathsf{OR}\text{-}\mathsf{INVERT}, \mathsf{AOI22})$

Oct 2010

Example: O3AI

$$\Box \quad Y = (A + B + C) \bullet D$$

CMOS Fabrication

- □ CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

Typically use p-type substrate for nMOS transistors
 Requires n-well for body of pMOS transistors

Well and Substrate Taps

- $\hfill\square$ Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection (used for Schottky Diode)
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- □ Transistors and wires are defined by *masks*
- Cross-section taken along dashed line

Oct 2010

Oct 2010

Detailed Mask Views

- □ Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- □ First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

\Box Grow SiO₂ on top of Si wafer

-900 - 1200 C with H₂O or O₂ in oxidation furnace

Photoresist

- □ Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Lithography

- Expose photoresist through n-well mask
- □ Strip off exposed photoresist

Oct 2010

46

Etch

- □ Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- □ Strip off remaining photoresist
 - Use mixture of acids called piranha etch
- Necessary so resist doesn't melt in next step

n-well

- □ n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- □ Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

	n well
p substrate	

Polysilicon

Deposit very thin layer of gate oxide

- < 20 Å (6-7 atomic layers)

- □ Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH_4)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

□ Use same lithography process to pattern polysilicon

N-diffusion

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion (cont.)

□ Pattern oxide and form n+ regions

Oct 2010

N-diffusion (cont.)

- □ Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion (cont.)

□ Strip off oxide to complete patterning step

P-Diffusion

Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- □ Now we need to wire together the devices
- □ Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metalization

- □ Sputter on copper / aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

- □ Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- \Box Feature size *f* = distance between source and drain
 - Set by minimum width of polysilicon
- Feature size scales ~X0.7 every 2 years both lateral and vertical
 - Moore's law
- □ Normalize feature size when describing design rules
- **Express rules in terms of** $\lambda = f/2$
 - E.g. λ = 0.3 μm in 0.6 μm process
- **D** Today's $\lambda = 0.01 \ \mu m$ (10 nanometer = 10^{-8} meter)

Simplified Design Rules

Conservative rules to get you started

Oct 2010

Inverter Layout

□ Transistor dimensions specified as Width / Length

- Minimum size is 4 λ / 2 λ , sometimes called 1 unit
- In $f = 0.01 \ \mu m$ process, this is 0.04 μm wide, 0.02 _{VDD} μm long

Oct 2010

A

Summary

- □ MOS Transistors are stack of gate, oxide, silicon
- □ Can be viewed as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors
- Now you know everything necessary to start designing schematics and layout for a simple circuit!