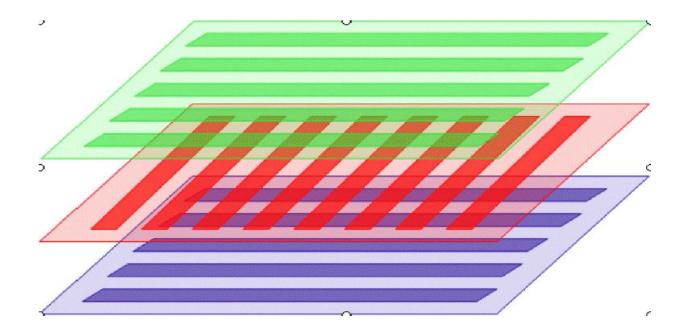
VLSI Interconnects

Instructed by Shmuel Wimer Eng. School, Bar-Ilan University

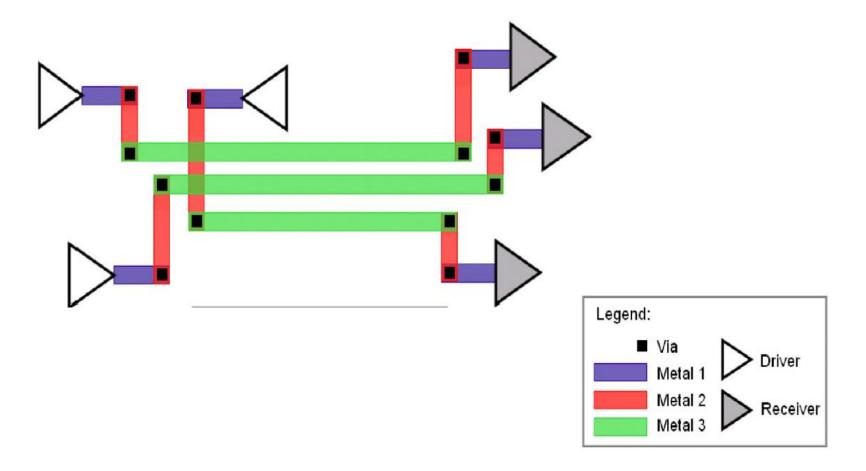
Credits: David Harris Harvey Mudd College

(Some material copied/taken/adapted from Harris' lecture notes)

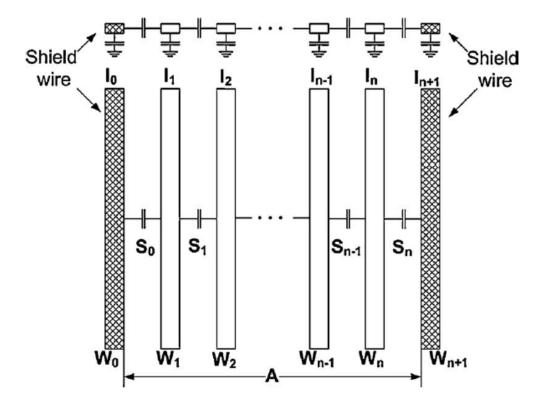

Dec 2010

Outline

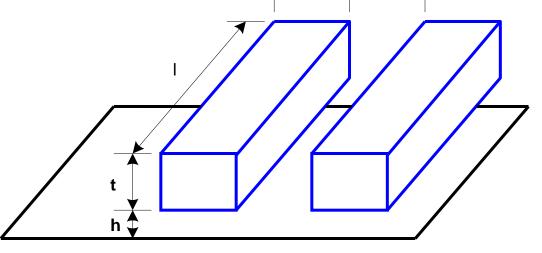
- Introduction
- □ Wire Resistance
- □ Wire Capacitance
- □ Wire RC Delay
- Crosstalk
- □ Wire Engineering
- □ Repeaters
- □ Scaling


Introduction

Chips are mostly made of wires called *interconnect* Alternating layers run orthogonally

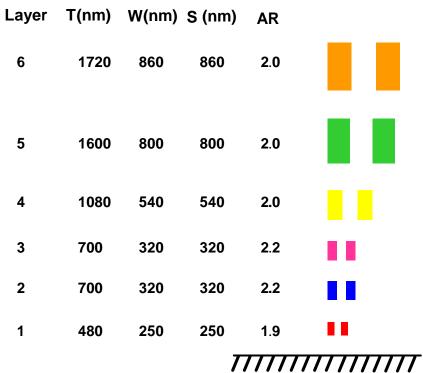


Transistors are little things under the wires
 Many layers of wires


□ Wires are as important as transistors

- Speed
- Power
- Noise

Wire Geometry


- $\Box \quad \text{Pitch} = w + s$
- $\Box \quad \text{Aspect ratio: } AR = t/w$
 - Old processes had AR << 1
 - Modern processes have AR ≈ 2
 - Pack in many skinny wires

S

Layer Stack

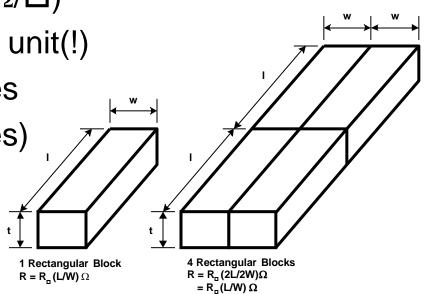
- Modern processes use 6-10+ metal layers
- Example: Intel 180 nm process
- $\square M1: \text{ thin, narrow } (< 3\lambda) \xrightarrow{\text{Layer } T(t)}_{6}$
- High density cells
 M2-M4: thicker
 - For longer wires
- M5-M6: thickest
 - For V_{DD}, GND, clk

Substrate

Dec 2010

Wire Resistance

$$\Box \ \rho = resistivity (\Omega^*m)$$


$$R = \frac{\rho}{t} \frac{l}{w} = R_{\Box} \frac{l}{w}$$

 \square R_{\square} = sheet resistance (Ω / \square)

 $-\Box$ is a dimensionless unit(!)

Count number of squares

$$- R = R_{\Box} * (# of squares)$$

Choice of Metals

- □ Until 180 nm generation, most wires were aluminum
- Modern processes use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ*cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

Sheet Resistance

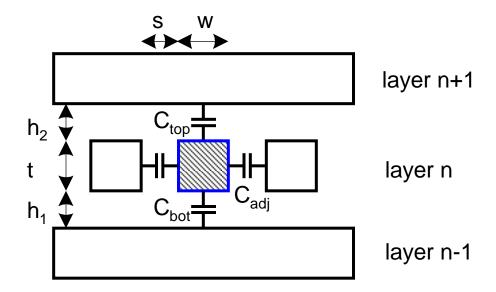
□ Typical sheet resistances in 180 nm process

Layer	Sheet Resistance (Ω/\Box)
Diffusion (silicided)	3-10
Diffusion (no silicide)	50-200
Polysilicon (silicided)	3-10
Polysilicon (no silicide)	50-400
Metal1	0.08
Metal2	0.05
Metal3	0.05
Metal4	0.03
Metal5	0.02
Metal6	0.02

Dec 2010

Contacts Resistance

- $\hfill\square$ Contacts and vias also have 2-20 Ω
- □ Use many contacts for lower R
 - Many small contacts for current crowding around periphery



Wire Capacitance

□ Wire has capacitance per unit length

- To neighbors
- To layers above and below

$$\Box \quad C_{\text{total}} = C_{\text{top}} + C_{\text{bot}} + 2C_{\text{adj}}$$

Dec 2010

Capacitance Trends

- **D** Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant

$$-\epsilon = k\epsilon_0$$

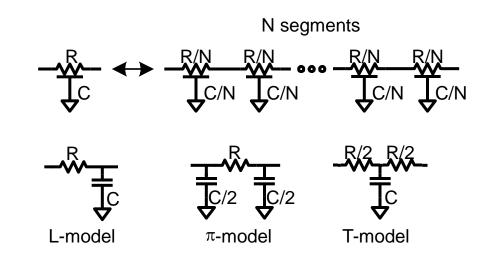
- \Box $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
- \Box k = 3.9 for SiO₂
- Processes are starting to use low-k dielectrics
 - $k \approx 3$ (or less) as dielectrics use air pockets

M2 Capacitance Data

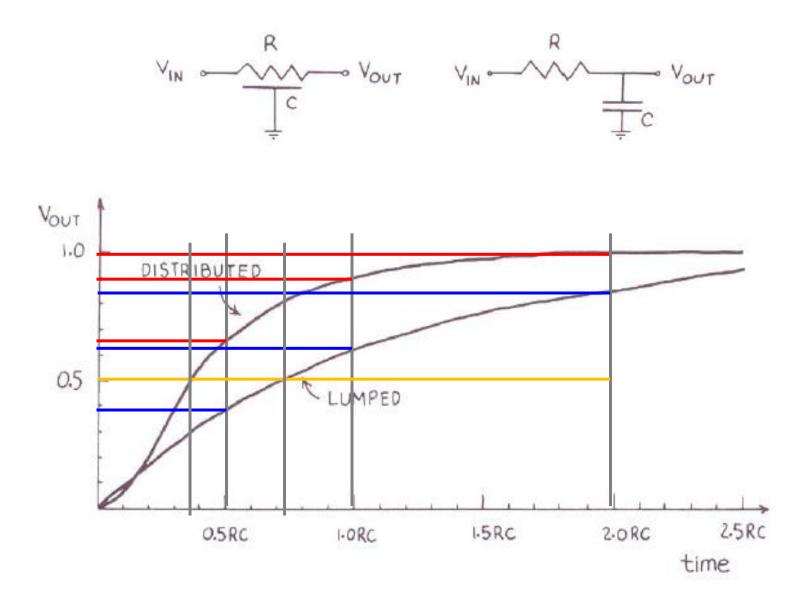
- \Box Typical wires have ~ 0.2 fF/µm
 - Compare to 2 fF/ μ m for gate capacitance

350 Capacitance increases 300 with metal planes M1, M3 planes s = 320250 above and below C_{total}(aF/μ m) s = 640200 Isolated ----s = 320150 ■ ---- s = 480 Capacitance decreases ۵....<u>6</u>....<u>6</u>....0 ---s = 640100 •••• S= [∞] with spacing 50 0 500 1000 1500 2000 0 w (nm)

400


Diffusion & Polysilicon

- **D** Diffusion capacitance is very high (about 2 fF/ μ m)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion (and polysilicon) *runners* for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates


Lumped Element Models

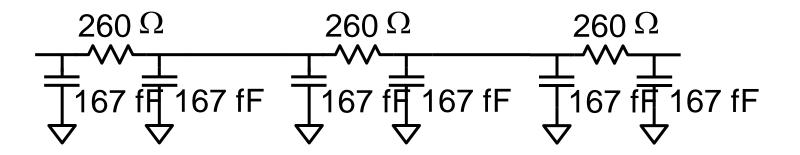
□ Wires are a distributed system

Approximate with lumped element models

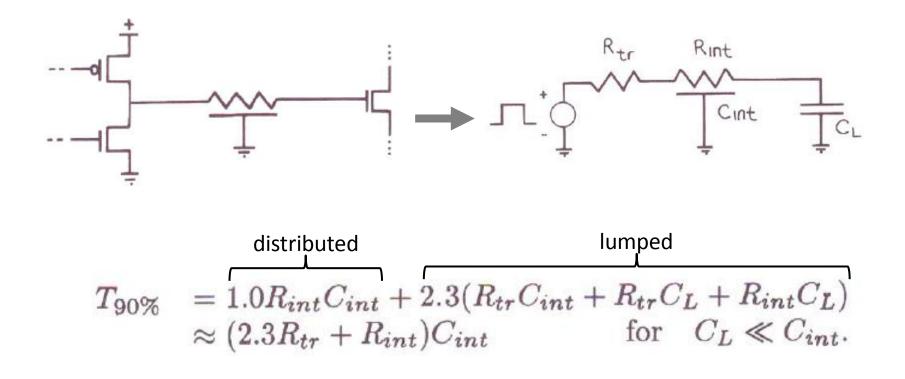
G 3-segment π -model is accurate to 3% in simulation

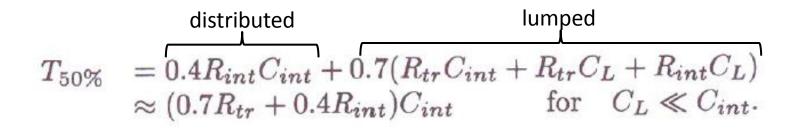
Dec 2010

Output potential range	Time elapsed (Distributed RC Network)	Time elapsed (Lumped RC Network)		
0 to 90%	$1.0 \ RC$	$2.3 \ RC$		
10% to 90% (rise time)	$0.9 \ RC$	$2.2 \ RC$		
0 to 63%	$0.5 \ RC$	$1.0 \ RC$		
0 to 50% (delay)	$0.4 \ RC$	$0.7 \ RC$		
0 to 10%	$0.1 \ RC$	$0.1 \ RC$		


RC Example

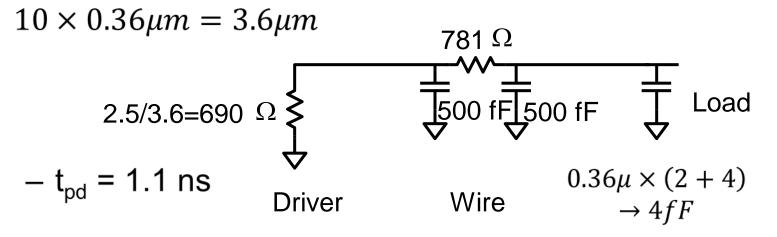
□ Metal2 wire in 180 nm process


- 5 mm long
- 0.32 μm wide
- **Construct a 3-segment** π -model
 - $R_{\Box} = 0.05 \ \Omega/\Box$ => R = 781 Ω


$$- C_{\text{permicron}} = 0.2 \text{ fF}/\mu\text{m}$$

=> R = 781 (=> C = 1 pF

Dec 2010


Dec 2010

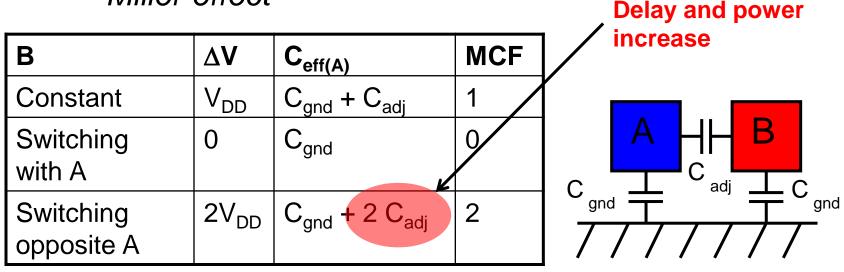
Wire RC Delay Example

Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example

 $- R = 2.5 k\Omega^* \mu m$ for gates

– Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

Dec 2010


Crosstalk

- A capacitor does not like to change its voltage instantaneously
- □ A wire has high capacitance to its neighbor.
 - When the neighbor switches from $1 \rightarrow 0$ or $0 \rightarrow 1$, the wire tends to switch too.
 - Called capacitive *coupling* or *crosstalk*
- Crosstalk effects
 - Noise on non switching wires
 - Increased delay on switching wires

Miller Effect

□ Assume layers above and below on average are quiet

- Second terminal of capacitor can be ignored
- Model as $C_{gnd} = C_{top} + C_{bot}$
- \Box Effective C_{adj} depends on behavior of neighbors
 - Miller effect

Crosstalk Noise

- □ Crosstalk causes noise on non switching wires
- □ If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{\text{victim}} = \frac{C_{\text{adj}}}{C_{\text{gnd-v}} + C_{\text{adj}}} \Delta V_{\text{aggressor}}$$

$$\Delta V_{\text{aggressor}} \bigoplus \left[\begin{array}{c} A_{\text{ggressor}} \\ A_{\text{ggressor}} \end{array} \right] = C_{\text{adj}}$$

Victim

VLSI Interconnects

C_{gnd-v}

 $\Delta V_{\rm victim}$

Driven Victims

□ Usually victim is driven by a gate that fights noise

- Noise depends on relative resistances
- Victim driver is in linear region, agg. in saturation
- If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

$$\Delta V_{\text{victim}} = \frac{C_{\text{adj}}}{C_{\text{gnd-v}} + C_{\text{adj}}} \frac{1}{1+k} \Delta V_{\text{aggressor}}$$

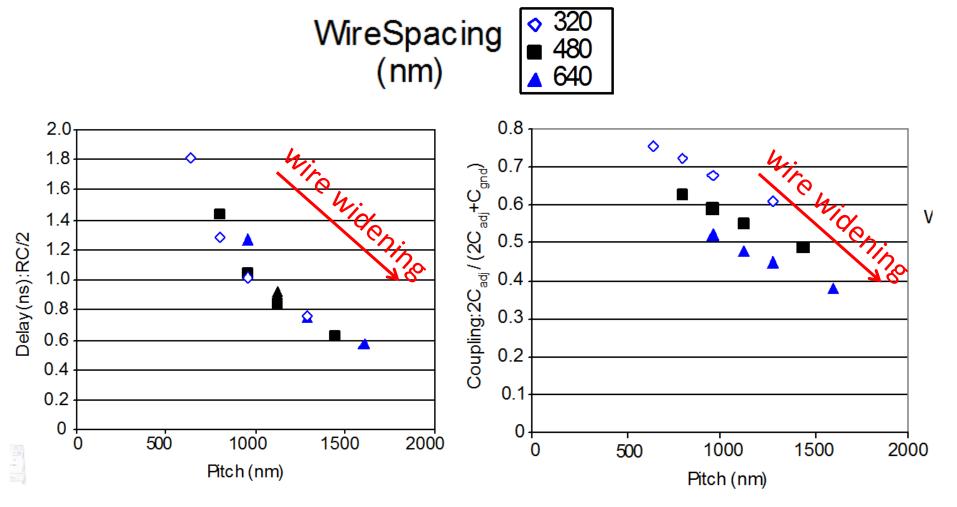
$$k = \frac{\tau_{\text{aggressor}}}{\tau_{\text{victim}}} = \frac{R_{\text{aggressor}} \left(C_{\text{gnd-a}} + C_{\text{adj}}\right)}{R_{\text{victim}} \left(C_{\text{gnd-v}} + C_{\text{adj}}\right)}$$

$$\lambda V_{\text{aggressor}} = \frac{V_{\text{aggressor}} \left(C_{\text{gnd-v}} + C_{\text{adj}}\right)}{R_{\text{victim}} \left(C_{\text{gnd-v}} + C_{\text{adj}}\right)}$$

Dec 2010

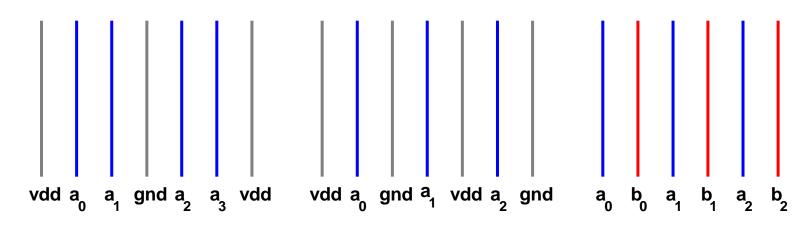
Coupling Waveforms

 $\Box Simulated coupling for C_{adj} = C_{victim}$



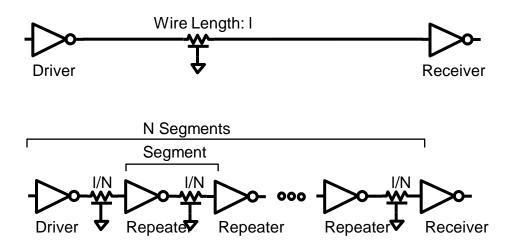
Dec 2010

Noise Implications


- □ So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

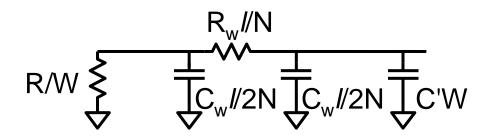
Wire Engineering

Dec 2010


- Goal: achieve delay, area, power with acceptable noise
- Degrees of freedom:
 - Width
 - Spacing
 - Layer
 - Shielding

Dec 2010

Repeaters


- □ R and C are proportional to *I*
- \Box RC delay is proportional to P
 - Unacceptably large for long wires
- □ Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Dec 2010

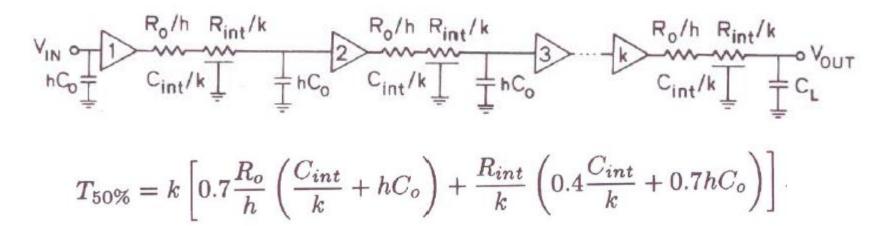
Repeater Design

- □ How many repeaters should we use?
- □ How large should each one be?
- Equivalent Circuit
 - Wire length /
 - Wire Capacitance C_w**I*, Resistance R_w**I*
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

(a) minimum-size repeaters,

$$V_{IN} \stackrel{\frown}{\longrightarrow} \stackrel{R_{o}}{\longrightarrow} \stackrel{R_{int}/k}{\longrightarrow} \stackrel{I}{=} \stackrel{C_{o}}{\longrightarrow} \stackrel{R_{o}}{\longrightarrow} \stackrel{R_{int}/k}{\longrightarrow} \stackrel{I}{=} \stackrel{C_{o}}{\longrightarrow} \stackrel{R_{o}}{\longrightarrow} \stackrel{R_{int}/k}{\longrightarrow} \stackrel{I}{=} \stackrel{C_{o}}{\longrightarrow} \stackrel{V_{OUT}}{\longrightarrow} \stackrel{R_{o}}{\longrightarrow} \stackrel{R_{int}/k}{\longrightarrow} \stackrel{V_{OUT}}{\longrightarrow} \stackrel{V_{OUT}}{\longrightarrow} \stackrel{I}{=} \stackrel{C_{int}/k}{\longrightarrow} \stackrel{I}{=} \stackrel{C_{o}}{\longrightarrow} \stackrel{V_{OUT}}{\longrightarrow} \stackrel{I}{=} \stackrel{I}{\longrightarrow} \stackrel{C_{int}/k}{\longrightarrow} \stackrel{I}{=} \stackrel{V_{OUT}}{\longrightarrow} \stackrel{I}{=} \stackrel{I}{\longrightarrow} \stackrel{C_{int}/k}{\longrightarrow} \stackrel{I}{=} \stackrel{V_{OUT}}{\longrightarrow} \stackrel{I}{\longrightarrow} \stackrel{V_{OUT}}{\longrightarrow} \stackrel{I}{\longrightarrow} \stackrel{I}{\longrightarrow$$

Dec 2010

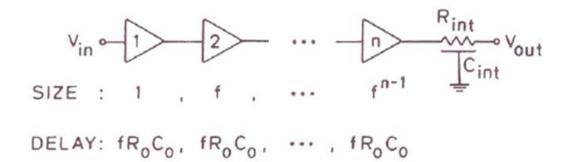

$$k = \sqrt{\frac{0.4R_{int}C_{int}}{0.7R_oC_o}}$$

Under what condition repeater insertion should take place?

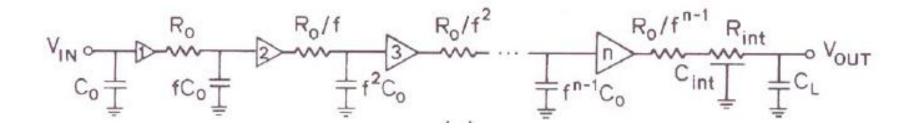
07 Copo 22 Cont Rint 27

Dec 2010

(b) optimal repeaters,

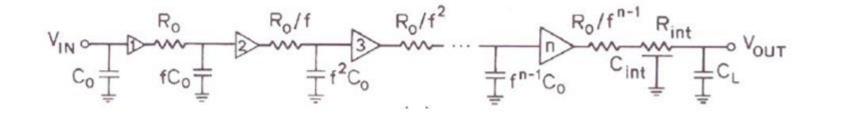


setting dT/dk and dT/dh to zero.


$$k = \sqrt{\frac{0.4R_{int}C_{int}}{0.7R_oC_o}} \qquad h = \sqrt{\frac{R_oC_{int}}{R_{int}C_o}}$$

$$T_{50\%} = 2.5\sqrt{R_o C_o R_{int} C_{int}}$$

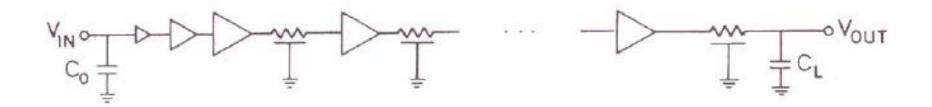
Dec 2010



(c) cascaded drivers,

The method is useful when *Rtr* is dominant and *Cint* is large

Dec 2010


$$T_{50\%} = 0.7(n-1)fR_oC_o + \left(\frac{0.7R_o}{f^{n-1}} + 0.4R_{int}\right)C_{int} + \left(\frac{0.7R_o}{f^{n-1}} + 0.7R_{int}\right)C_L$$

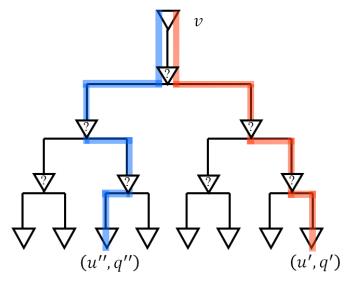
setting dT/dn and dT/df to zero.

$$f = e \qquad n = \ln\left(\frac{C_{int} + C_L}{C_o}\right)$$

Dec 2010

(d) optimal repeaters with a cascaded first stage

Optimal Buffer Insertion

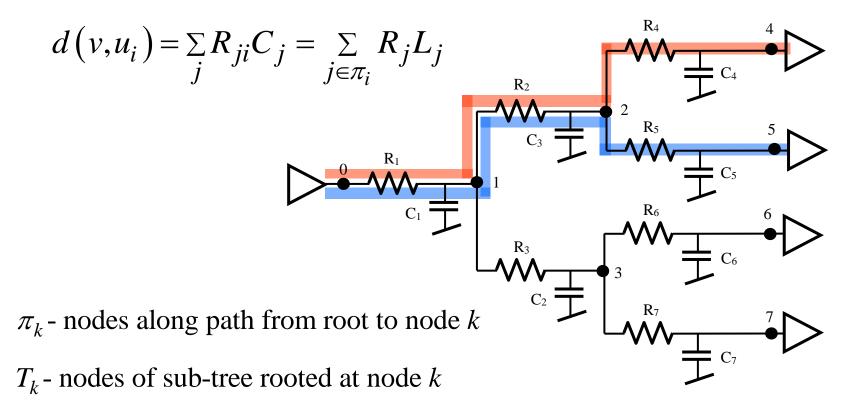

 $d(v, u_i)$: driver to receiver delay. Root required time: $T = \min_i \{q_i - d(v, u_i)\}$.

Optimal Buffer Insertion

Buffer reduces load delay but adds internal delay,

power and area.

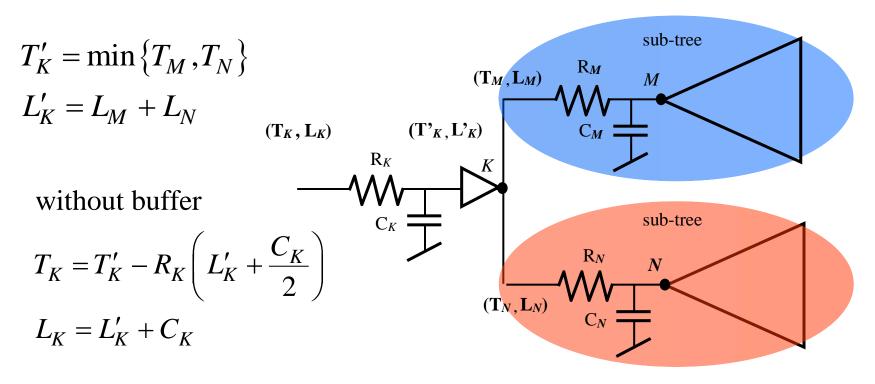
Problem 1:



 $\max_{\text{buffer insertions}} \left\{ \min_{i} \left\{ q_i - d\left(v, u_i\right) \right\} \right\} \text{ by buffer insertions.}$

Problem 2:

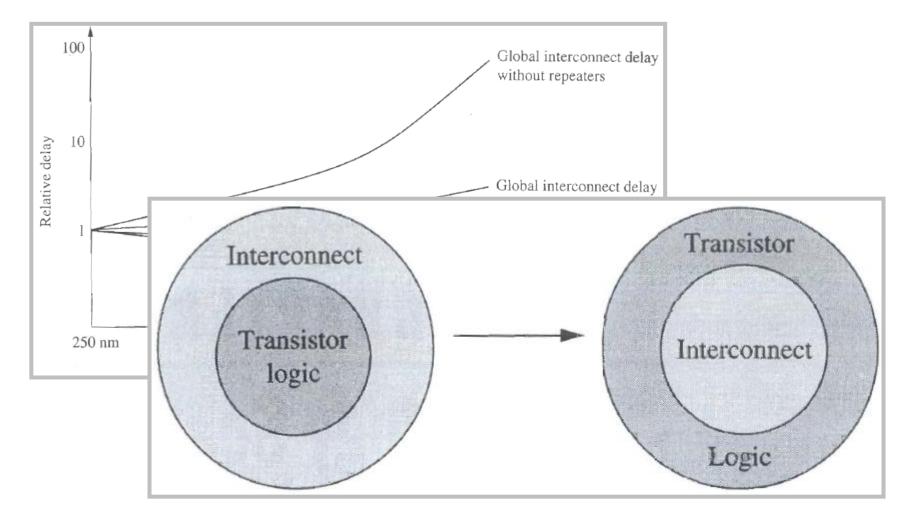
 $\max_{\text{buffer insertions}} \left\{ \min_{i} \left\{ q_i - d(v, u_i) \right\} \right\}, \text{ s.t. power and area constraints.}$


Delay Model

 $R_{kl} = \sum_{j \in \pi_k \cap \pi_l} R_j$ - resistance along common paths

 $L_k = \sum_{j \in T_k} C_j$ - capacitance of sub-tree

Bottom-Up Solution



with buffer

$$T_{K} = T_{K}' - D_{\text{buffer}} - R_{\text{buffer}} L_{K}' - R_{K} \left(C_{\text{buffer}} + \frac{C_{K}}{2} \right)$$

 $L_K = C_{\text{buffer}} + C_K$

Scaling Trends

Device Scaling

Performance parameter	Constant electric field	Constant voltage 1		
Threshold voltage	1/S			
Current	1/S	S		
Subthreshold slope	1	1		
Capacitance	1/S	1/S		
On-resistance	1	1/S		
Delay	1/S	1/S ²		
Power	$1/S^{2}$	S		
Power-delay product	1/S ³	1/S		
Power density	1	S ³		

Dec 2010

Interconnect Scaling

Interconnect parameters	Ideal scaling		Quasi-ideal scaling		Constant resistance		Constant thickness	
	Local	Global	Local	Global	Local	Global	Local	Global
Length (Lint)	1/S	Sc						
Width (Wint)	1/S	1/S						
Thickness (Tint)	1/S	1/S						
Height (H)	1/S	1/S						
Spacing (W _{spa})	1/S	1/S						
Aspect ratio (AR)	1	1						
Resistance	S	S_cS^2						
Coupling capacitance (C ^c)	1/S	Sc						
Ground capacitance (C^g)	1/S	Sc						
C ^c /C ^g	1	1						
RC delay	1	$S_c^2 S^2$						

Dec 2010