
VLSI CAD Overview:  
Design, Flows, Algorithms and Tools 

Konstantin Moiseev – Intel Corp. & Technion  

Shmuel Wimer – Bar Ilan Univ. & Technion 

Compiled from various presentation from the web. 
 
Credits: 
David Pan – Univ. of Texas Austin 
Maciej Ciesielski  - UMASS 
Andrew Kahng – UCSD 
Hai Zhou – Northwestern Univ. 
Kia Bazargan – Univ. of Minnesota 
Avinoam Kolodny - Technion 

March 2013 1 



Design Factors and Styles 

March 2013 2 



The Big Picture: IC Design Methods 

Full Custom 

ASIC – Standard 
Cell Design 

Standard Cell 
Library Design 

RTL-Level Design 

Design 
Methods 

Cost / 
Development 
Time 

Quality # Companies 
involved 

March 2013 3 



Optimization: Levels of Abstraction 
• Algorithmic 

– Encoding data, computation 
scheduling, balancing delays of 
components, etc. 

• Gate-level 

– Reduce fan-out, capacitance 

– Gate duplication, buffer insertion 

• Layout / Physical-Design 

– Move cells/gates around to shorten 
wires on critical paths 

– Abut rows to share power / ground 
lines 

E
ff

e
c
ti

v
e
n
e
s
s
 

L
e
v
e
l 
o
f 

d
e
ta

il
s
 

March 2013 4 



Full Custom 

March 2013 5 



Full Custom 

March 2013 6 



Standard Cell (Semi Custom) 

March 2013 7 



Cell-Based Design (Standard Cells) 

Routing channel  

requirements are 

reduced by presence 

of more interconnect 

layers 

March 2013 8 



FPGA: Lookup Table (LUT) 

• Look-up Table  

– Truth table implemented in hardware 

– Can implement arbitrary function with fixed number of inputs (typically 
4-5) by programming the storage bits (customizing the truth table) 

 F = x1’x2’ + x1x2 

x1  x2    F 

 

0    0      1 

0    1      0 

1    0      0 

1    1      1 

2-Input LUT 
0/1 

x1 x2 

0/1 

0/1 

0/1 

F 
1 

0 

0 

1 

Programming bit P 

March 2013 9 



FPGA: Logic Element 

• Logic Element: the basic programmable element of FPGA 
– Contains LUT 

• Programming is a domain of specialized technology 
mapping onto device specific structure 

Look-Up 
 Table 
 (LUT) 

State 

Out Inputs 

Clock 

Enable 

March 2013 10 



FPGA: Architecture 

Each programmable logic element outputs one data bit 

Interconnects are also programmable 

A domain of physical synthesis (place and route) 

LE LE 

LE LE 

LE LE LE LE 

LE LE 

LE LE 

Logic Element Tracks 

March 2013 11 



FPGA: Architecture 

March 2013 12 



Comparison of Design Styles 

     

 full-custom standard cell gate array FPGA 

cell size variable fixed height * fixed fixed 

cell type variable variable fixed programmable 

cell placement variable in row fixed fixed 

interconnections variable variable variable programmable 

 

style 

March 2013 13 



Comparison of Design Styles 

Area 

Performance 

Fabrication 

layers 

style 

full-custom standard cell gate array FPGA 

compact 

high 

compact 

 to moderate 
moderate large 

high 

 to moderate 
moderate low 

ALL ALL routing 

layers 
none 

March 2013 14 



Comparison of Design Styles 

March 2013 15 



Design Styles Tradeoffs 

March 2013 16 



Electronic Systems > $1 Trillion 

Semiconductor > $220 B 

CAD  $3 B 

The Inverted Pyramid (~2000) 

March 2013 17 



Moore’s law 

• Moore’s law – exponential growth in complexity 

1 billion 
transistors 

 



Data explosion and productivity 



Evolution of the EDA Industry 

Results 
(design productivity) 

Effort (EDA tool effort) 

Transistor entry – Calma, Computervision, Magic 

Schematic entry – Daisy, Mentor, Valid 

Synthesis – Cadence, Synopsys 

What’s next? 

March 2013 20 



Year Design Tools 

1950 - 1965 
 
1965 - 1975 
 
 
 
1975 - 1985 
 
 
 
1985 – 1995 
 
 
 
 
1995 – 2002 
 
 
2002 - present 

Manual Design 
 

Layout editors 
Automatic routers( for PCB) 
Efficient partitioning algorithm 
 
Automatic placement tools 
Well Defined phases of design of circuits 
Significant theoretical development in all phases 
 
Performance driven placement and routing tools 
Parallel algorithms for physical design 
Significant development in underlying graph theory 
Combinatorial optimization problems for layout 
 
Interconnect layout optimization, Interconnect-
centric design, physical-logical codesign 
 
Physical synthesis with more vertical integration 
for design closure (timing, noise, power, P/G/clock, 
manufacturability) 
 

 

History of VLSI Layout Tools 

March 2013 21 



Synthesis and Design Process (High Level) 

• Application (graphics, DSP, general processor) 

• Algorithm (Z-buffer, FFT) 

• Architecture (pipeline, cash sharing, parallelism) 

• High level synthesis 

• Logic and physical synthesis  

March 2013 22 



VLSI Design Flow 

ENTITY test is 
port a: in bit; 

end ENTITY test; 

DRC 
LVS 
ERC 

Circuit Design 

Functional Design 
and Logic Design 

Physical Design 

Physical Verification 
and Signoff 

Fabrication 

System Specification 

Architectural Design 

Chip 

Packaging and Testing 

Chip Planning 

Placement 

Signal Routing 

Partitioning 

Timing Closure 

Clock Tree Synthesis 

March 2013 23 



High Level Synthesis (HLS) 
Converting high-level design description to RTL 

• Input: 
– High-level languages (C, system C, system Verilog)  

– Hardware description languages (Verilog, VHDL) 

– State diagrams / logic networks 

• Tools: 
– Parser, compiler 

– Library of modules 

• Constraints: 
– Resource constraints (number of modules of a certain type) 

– Timing constraints (latency, delay, clock cycle) 

• Output: 
– Operation scheduling (time) and binding (resource) 

– Control generation 

– RTL architecture 

March 2013 24 



Design Compilation 

Lex 

Parse 

Compilation 
front-end 

Behavioral 
Optimization 

Intermediate 
form 

Arch synth 

Logic synth 

Lib Binding 
HLS backend 

Separation into  

•   Data Path (arithmetic) 

•   Control  (Boolean logic) 

March 2013 25 



Behavioral Optimization 

• Techniques used in software compilation 
– Expression tree height reduction 

– Constant and variable propagation 

– Common sub-expression elimination 

– Dead-code elimination 

– Operator strength reduction (e.g., *4  << 2) 

• Hardware transformations 
– Conditional expansion 

• If  c  then x = A  

        else  x = B; 

•  Compute A and B in parallel:  x = C ? A : B  (MUX) 

– Loop unrolling 

• Replace k iterations of a loop by k instances of the loop body 

A B x c 

x = a + b  c + d 

 

+ 

+ 

a b c d 

+ 

+  

a d b c 

March 2013 26 



Data Flow Graph Transformation 

x 

+ 

a b c 

F 

F = a*b + a*c F = a*(b + c) 

Transformation 

+ 

x 

a b c 

x 

F 

March 2013 27 



Optimization in Temporal Domain 

Scheduling 
• Mapping of operations to time slots (cycles) 
• Uses sequencing graph (data flow graph, DFG) 
• Goal: minimize latency (s.t. resource constraints) 

+ 

NOP 

    

  + < 

- 

- 

NOP 

1 

2 

3 

4 

+ 

NOP 

 

 

  

 

 

+ 

< 

- 

- 

NOP 

1 

2 

3 

4 

March 2013 28 



Optimization in Spatial Domain 
Resource allocation & binding  
• Assigning operations to hardware units 

• Allocating registers 

• Binding operations to same resource 

• Goal: minimize resource (s.t. latency constraints) 

+ 

NOP 

    

  + < 

- 

- 

NOP 

1 

2 

3 

4 

March 2013 29 



Synthesis Flow at Logic Level 

module example(clk, a, b, c, d, f, g, h) 
input clk, a, b, c, d, e, f; 
output g, h; reg g, h; 
 
always @(posedge clk) begin 
 g = a | b; 
 if (d) begin 
  if (c)  h = a&~h; 
  else  h = b; 
  if (f) g = c; else a^b; 
 end else 
  if (c) h = 1; else h ^b; 
end 
endmodule 

Specification 

d 

a 
b 

e 

f 

c 

0 
h 

g 

clk 

Logic Extraction 

a multi-stage process 

Technology-Independent Optimization 

f 

g0 

h1 

a 

c 

e 

g1 

h3 

h5 

H 

G 
b 

d 

Technology-Dependent Mapping 

f 

d 

b 
e 

a 
c 

clk 

h H 

G 
g 

Physical Synthesis 

March 2013 30 



Logic Optimization Methods 

Logic Optimization 

Multi-level logic 

(standard cells) 

Two-level logic (PLA) 

Exact (QM) 
Heuristic 

(espresso) 

Structural 

(SIS,ABC) 

Functional 

(AC, Kurtis) 

Functional 

(BDD-based) 

algebraic 

Boolean 

Boolean 

Depends on target technology 

March 2013 31 



Optimization Criteria for Synthesis 

• Area occupied by the logic gates and interconnect 

(approximated by literals = transistors in technology 

independent optimization) 

• Critical path delay of the longest path through logic 

• Degree of testability of the circuit 

• Power consumed by the logic gates 

• Placeability, Wireability  

March 2013 32 



Transformation-Based Synthesis 

sequence of transformations that change network topology 
and its characteristics 

 

• All modern synthesis systems are built that way 
– work on uniform network representation  

– use scripts, lists of transformations forming a strategy 

• Transformations are mostly algebraic 
– very little is based on Boolean factorization 

• Representation 
– Cube notation, BDDs, AIGs 

• The underlying algorithms  
– Algebraic transformations 

– Collapsing, decomposition  

– Factorization, substitution 

March 2013 33 



Multi-Level Logic Minimization 

• Objective 
– Minimize number of literals 

– Literals represent inputs to CMOS gates  

• Representation 
– Factored form 

– Compatible with CMOS 

• Optimization techniques 
– Algebraic factorization and decomposition (heuristic) 

• Technology independent 

– Requires mapping onto target architecture 

• Standard cells 

• FPGAs (LUT) 

March 2013 34 



Two-Level Logic Minimization 
Representation 
• Truth tables 

• Karnaugh maps 

• Sum of Products (SOP) form 

• Binary Decision Diagrams (BDD) 

Objective 
• Minimize number of product terms in SOP 

• Challenge: multiple-output functions 

Optimization techniques 
• Quine McCluskey (optimal) 

• Espresso logic minimizer (heuristic) 

• Ashenhust-Curtis functional decomposition (nearly optimal) 

• BDD-based (heuristic) 

March 2013 35 



Physical Design Steps 

• Circuit partitioning 

• Floorplanning 

• Pin assignment 

• Placement 

• Routing 

• Convergence 

March 2013 36 



37 

Partitioning 

ENTITY test is 
port a: in bit; 
end ENTITY test; 

DRC 
LVS 
ERC 

Circuit Design 

Functional Design 
and Logic Design 

Physical Design 

Physical Verification 
and Signoff 

Fabrication 

System Specification 

Architectural Design 

Chip 

Packaging and Testing 

Chip Planning 

Placement 

Signal Routing 

Partitioning 

Timing Closure 

Clock Tree Synthesis 



38 

Circuit: 

Cut ca: four external connections 

1 

2 

4 

5 

3 

6 

7 8 

5 

6 

4 8 

7 2 3 

1 

5 6 

4 8 

7 2 

3 1 

Cut ca 

Cut cb 

Block A Block B Block A Block B 

Cut cb: two external connections 

Partitioning 



39 

Partitioning - optimization Goals 

• In detail, what are the optimization goals? 

–Number of connections between partitions is minimized 

–Each partition meets all design constraints (size, number 
of external connections..)  

–Balance every partition as well as possible 

 

• How can we meet those goals? 

–Unfortunately, this problem is NP-hard 

–Efficient heuristics developed in the 1970s and 1980s.  
   High quality and low-order polynomial time. 

 
39 



40 

Floorplanning 

ENTITY test is 
port a: in bit; 
end ENTITY test; 

DRC 
LVS 
ERC 

Circuit Design 

Functional Design 
and Logic Design 

Physical Design 

Physical Verification 
and Signoff 

Fabrication 

System Specification 

Architectural Design 

Chip 

Packaging and Testing 

Chip Planning 

Placement 

Signal Routing 

Partitioning 

Timing Closure 

Clock Tree Synthesis 



41 

Floorplanning 

GND VDD 

Module e 

I/O Pads 

Block Pins 

Block a 

Block 
b 

Block d 

Block e 

Floorplan 

Module d 

Module c 

Module b 

Module a 

Chip  
Planning 

Block c 

Supply Network 

©
 2

0
1

1
 S

p
ri

n
ge

r 
V

er
la

g 



42 

Floorplanning 
Example 
Given: Three blocks with the following potential widths and heights  
Block A: w = 1, h = 4  or  w =  4, h = 1  or  w = 2, h = 2 
Block B: w = 1, h = 2  or  w = 2,  h = 1   
Block C: w = 1, h = 3  or  w = 3, h = 1 
 
Task: Floorplan with minimum total area enclosed  

A 

A 

A 

B 

B 
C 

C 



43 

Floorplanning 
Example 
Given: Three blocks with the following potential widths and heights  
Block A: w = 1, h = 4  or  w =  4, h = 1  or  w = 2, h = 2 
Block B: w = 1, h = 2  or  w = 2,  h = 1   
Block C: w = 1, h = 3  or  w = 3, h = 1 
 
Task: Floorplan with minimum total area enclosed  



44 

Floorplanning 

Solution: 
Aspect ratios 
Block A with w = 2, h = 2;  Block B with w = 2, h = 1;  Block C with w = 1, h = 3 
 
This floorplan has a global bounding box with minimum possible area (9 square units). 

Example 
Given: Three blocks with the following potential widths and heights  
Block A: w = 1, h = 4  or  w =  4, h = 1  or  w = 2, h = 2 
Block B: w = 1, h = 2  or  w = 2,  h = 1   
Block C: w = 1, h = 3  or  w = 3, h = 1 
 
Task: Floorplan with minimum total area enclosed  



45 

Placement 

ENTITY test is 
port a: in bit; 

end ENTITY test; 

DRC 
LVS 
ERC 

Circuit Design 

Functional Design 
and Logic Design 

Physical Design 

Physical Verification 
and Signoff 

Fabrication 

System Specification 

Architectural Design 

Chip 

Packaging and Testing 

Chip Planning 

Placement 

Signal Routing 

Partitioning 

Timing Closure 

Clock Tree Synthesis 



46 

Placement 

©
 2

0
1

1
 S

p
ri

n
ge

r 
V

er
la

g 

c 

h 

f 

b 

a 

g 
d 

e 

a c b h g d e f 

e h 

g f 

d a 

c b 

GND 

VDD 

Linear Placement 

2D Placement Placement and Routing with Standard Cells 

h e d a 

g f c b 



47 

Placement 

Global 
Placement 

Detailed 
Placement 



48 

Placement Optimization Objectives 

Total 
Wirelength 

Number of  
Cut Nets 

Wire Congestion Signal  
Delay 

©
 2

0
1

1
 S

p
ri

n
ge

r 
V

er
la

g 



49 

ENTITY test is 
port a: in bit; 

end ENTITY test; 

DRC 
LVS 
ERC 

Circuit Design 

Functional Design 
and Logic Design 

Physical Design 

Physical Verification 
and Signoff 

Fabrication 

System Specification 

Architectural Design 

Chip 

Packaging and Testing 

Chip Planning 

Placement 

Signal Routing 

Partitioning 

Timing Closure 

Clock Tree Synthesis 

Routing 



50 

Given a placement, a netlist and technology 
information,  

• determine the necessary wiring, e.g., net 
topologies and specific routing segments, to 
connect the cells  

• while respecting constraints, e.g., design rules 
and routing resource capacities, and  

• optimizing routing objectives, e.g., minimizing 
total wirelength and maximizing timing slack. 

Routing 



51 

C 

D 

A 

B 

4 3 

2 1 

4 

3 

4 

1 

1 

6 5 4 

 
Netlist: 
 
N1 = {C4, D6, B3}  
N2 = {D4, B4, C1, A4} 
N3 = {C2, D5} 
N4 = {B1, A1, C3} 

 
Technology Information  
(Design Rules) 

Placement result 

Routing 



52 

 
Netlist: 
 
N1 = {C4, D6, B3}  
N2 = {D4, B4, C1, A4} 
N3 = {C2, D5} 
N4 = {B1, A1, C3} 

 
Technology Information  
(Design Rules) 

Routing 

C 

D 

A 

B 

4 3 

2 1 

4 

3 

4 

1 

1 

6 5 4 

N1 



53 

 
Netlist: 
 
N1 = {C4, D6, B3}  
N2 = {D4, B4, C1, A4} 
N3 = {C2, D5} 
N4 = {B1, A1, C3} 

 
Technology Information  
(Design Rules) 

Routing 

C 

D 

A 

B 

4 3 

2 1 

4 

3 

4 

1 

1 

6 5 4 

N2 N3 N4 N1 



The Design Closure Problem 

Iterative removal of timing violations (white lines) 
March 2013 54 



Design Verification 

Ensuring correctness of the design against its 
implementation (at different levels) 

behavior 

structure 

function 

layout 

HDL / RTL 

Gate level 

Logic level 

Mask level 

Design 

 ? 

 ? 

 ? 

model  ? 

March 2013 55 



Algorithm Design Techniques 

• Greedy 

• Divide and Conquer 

• Dynamic Programming 

• Network Flow 

• Mathematical Programming (e.g., linear 

programming, integer linear programming) 

March 2013 56 



Reduction 

• Idea: If I can solve problem A, and if problem B can be 

transformed into an instance of problem A, then I can 

solve problem B by reducing problem B to problem A 

and then solve the corresponding problem A. 

• Example: 

– Problem A: Sorting 

– Problem B: Given n numbers, find the i-th largest numbers. 

March 2013 57 



Analysis of Algorithm 

• There can be many different algorithms to solve the 
same problem. 

• Need some way to compare 2 algorithms. 

• Usually run time is the most important criterion used 
– Space (memory) usage is of less concern now 

• However, difficult to compare since algorithms may be 
implemented in different machines, use different 
languages, etc. 

• Also, run time is input-dependent. Which input to use? 

• Big-O notation is widely used for asymptotic analysis. 

March 2013 58 


