=<

VLSI CAD Overview:

Design, Flows, Algorithms and Tools

March 2013

Konstantin Moiseev — Intel Corp. & Technion

Shmuel Wimer — Bar llan Univ. & Technion

Compiled from various presentation from the web.

Credits:

David Pan — Univ. of Texas Austin
Maciej Ciesielski - UMASS
Andrew Kahng — UCSD

Hai Zhou — Northwestern Univ.
Kia Bazargan — Univ. of Minnesota
Avinoam Kolodny - Technion

=<

Design Factors and Styles

Issues of
VLSI circuits
Performance Area Cost Time—to—market

\ /T

Different design styles

' : N

Full custom | |Standard cell | | Gate array FPGA CPLD | |SPLD| | SSI

Performance, Area efficiency, Cost, Flexibility
-<

March 2013 2

<

The Big Picture: IC Design Methods
Design Cost / Quality # Companies
Methods _II?_eveIopment involved

ime

Full Custom

Standard Cell
Library Design

ASIC - Standard
Cell Design

RTL-Level Design

March 2013 3

[/
N
Optimization: Levels of Abstraction

* Algorithmic

— Encoding data, computation
scheduling, balancing delays of
components, etc.

<

* Gate-level

— Reduce fan-out, capacitance

— Gate duplication, buffer insertion
* Layout / Physical-Design

— Move cells/gates around to shorten
wires on critical paths

Effectiveness
Level of details

— Abut rows to share power / ground
lines

March 2013 4

=<

Full Custom

.

.EI-'I ; L] _.L-

Data path

= over—the—cell

~ routing

/O

ROM/RAM via
Controller _L/ /(contact)
T I

A/D converter

I I I I
Random logic

TFYETT

pins /O pads

ol

. = -
-

-

I—‘l.../ﬁ

March 2013 5

=

. Processor
'Graphics

».

March 2013

R 1 os L2l
! Pl oy '
- LA 'y
¥ e -)
‘B 1 1 388 : :
. MR & S ol e} :
8 BN : :
1 | LA !
" " i : :
) '
-

;E .’131
iwi

Full Custom

hared L3 Cache**
f,.:;;u!,‘"“ il ;.-? L 18!

44
= o= ‘
113
: a =13
: ! 1
‘ A
] |

gasass Memory Controller I/0

- JORP S

811

CEHES

e
Timiie

4o

System

Agent &

Memory |
Controller

including
DMI, Display
and Misc. /0

<

library cells

B]
Cell C CellD Feedthrough Cell

March 2013

Standard Cell (Semi Custom)

=<

Cell-Based Design (Standard Cells)

Feedthrough cell

Rows of cells
AN

March 2013

Logic cell

__/
\ ¥

Functional
module
(RAM,

multiplier, ..

y

Routing
channel

Routing channel
requirements are
reduced by presence
of more interconnect
layers

=<

FPGA: Lookup Table (LUT)

e Look-up Table

— Truth table implemented in hardware

— Can implement arbitrary function with fixed number of inputs (typically

March 2013

4-5) by programming the storage bits (customizing the truth table)

l Programming bit P

O OPR

0/1

0/1

0/1

A 4

:\

A 4

0/1

A 4

[
»

2-Input LUT

F

F =X X + XX,

X1 X2

F

R OO

R OBk O

O O Bk

=K

FPGA: Logic Element

e Logic Element: the basic programmable element of FPGA
— Contains LUT

e Programming is a domain of specialized technology
mapping onto device specific structure

Inputs Look-Up Out
Table L k
(LUT)

Clock > State

Enable

March 2013 10

=K

FPGA: Architecture

Logic Element Tracks
< /
ELE—*—\ iLE_’ iLE_’ ;LE
F O O
ELE_’ \;LE_’ ;LE—» ;LE
AN OB OO
ELE—’ §\LE_’ ELE_’ ;LE

Each programmable Iog&ement outputs one data bit
Interconnects are also programmable

A domain of physical synthesis (place and route)

March 2013

11

<3

blocks 1~

March 2013

switches
Prefabricated all chip components

12

=<

Comparison of Design Styles

style
full-custom standard cell gate array FPGA
cell size variable fixed height * fixed fixed
cell type variable variable fixed programmable
cell placement variable in row fixed fixed
interconnections variable variable variable programmable

March 2013

13

=<

Comparison of Design Styles

style
full-custom | standard cell gate array FPGA
compact
Area compact to moderate moderate large
Performance high high moderate low
to moderate
Fabrication ALL ALL routing none
layers layers

March 2013

14

<3

Comparison of Design Styles

Full Standard | Gate

custom cell array | FPGA
Fabrication time — — — — — F FFF
Packing density +++ FF F E—
Unit cost In large quantity +F+F T F E—
Unit cost in small quantity — — — E— F FFF
Easy design and simulation — — — — — T
Easy design change — — — — — -
Accuracy of timing simulation — — — —
Chip speed FTFF FF T —

March 2013

15

Ny

=K

Design Styles Tradeoffs

| | | | Full

I I custom
| | | |

| |

]03 _______________

10

o

10°————
Turnaround
Time
(Days)
10 |————
solution
1

Logic Capacity (Gates)

March 2013 16

<

March 2013

The Inverted Pyramid (~2000)

17

=<

Moore’s law

* Moore’s law — exponential growth in complexity
Moore's law

08 —— s 1 billion
_AMD ;(:?(r)e ~ ANestmere 6C] transistors
108 - qﬂﬁ%ﬂ!ﬁ@ﬂ
oAU OTE DUT]

o
~

MC68020L¢*

o
o
=

Transister number per chip
o
(@]

104_

103 i
1970 1980 1990 2000 2010 2020
Year

=<

+ Representation of a uP

+ “high level model” (~50k lines)

+ RTL (register transfer level)
(~500K lines)

+ (ates (~5M)

+ Transistors (~50M)

*

Data explosion and productivity

Manual entry

Productivity
(in Gates/week/designer)
~5k

~1k

~100

~10

< Polygons (~500M)

=<

Evolution of the EDA Industry

What’s next?
A Results

(design productivity) &

. Synthesis - Cadence, Synopsys

2? Schematic entry - Daisy, Mentor, Valid

Transistor entry - Calma, Computervision, Magic

Effort (EDA tool effort)
>

March 2013 20

=<

March 2013

History of VLSI Layout Tools

Year Design Tools

1950 - 1965 Manual Design

1965 - 1975 Layout editors
Automatic routers(for PCB)
Efficient partitioning algorithm

1975 - 1985 Automatic placement tools
Well Defined phases of design of circuits
Significant theoretical development in all phases

1985 — 1995 Performance driven placement and routing tools
Parallel algorithms for physical design
Significant development in underlying graph theory
Combinatorial optimization problems for layout

1995 — 2002 Interconnect layout optimization, Interconnect-

2002 - present

centric design, physical-logical codesign

Physical synthesis with more vertical integration
for design closure (timing, noise, power, P/G/clock,
manufacturability)

21

=<

Synthesis and Design Process (High Level)

* Application (graphics, DSP, general processor)

e Algorithm (Z-buffer, FFT)

* Architecture (pipeline, cash sharing, parallelism)
* High level synthesis

* Logic and physical synthesis

March 2013 22

=

LA A7
\7

v

ENTITY testis
port a: in bit;
end ENTITY test;

v

DRC
LVS
ERC

March 2013

VLSI Design Flow

System Specification

\7 j

Architectural Design /

7 /
Functional Design /
and Logic Design /

1
1
1

Circuit Design /

Partitioning

Chip Planning

Placement

Physical Design

Clock Tree Synthesis

Physical Verification \
and Signoff \

W \
Fabrication \
v \
Packaging and Testing

\'7
Chip

Signal Routing

Timing Closure

|(I(I <|€ I(I

N

23

=<

High Level Synthesis (HLS)

Converting high-level design description to RTL
e |nput:
— High-level languages (C, system C, system Verilog)
— Hardware description languages (Verilog, VHDL)
— State diagrams / logic networks

e Tools:
— Parser, compiler
— Library of modules
e (Constraints:

— Resource constraints (number of modules of a certain type)
— Timing constraints (latency, delay, clock cycle)

e Qutput:
— Operation scheduling (time) and binding (resource)

— Control generation
— RTL architecture

March 2013

24

=<

Lex

Parse

Behavioral
Optimization

Arch synth

Logic synth

Lib Binding

1

Design Compilation

\

Compilation
front-end

Intermediate
” form

> HLS backend

Separation into
« Data Path (arithmetic)
« Control (Boolean logic)

=<

Behavioral Optimization

Techniques used in software compilation
— Expression tree height reduction
— Constant and variable propagation
— Common sub-expression elimination
o x=at+bxc+d
— Dead-code elimination

— Operator strength reduction (e.g., *4 2 << 2)
Hardware transformations

— Conditional expansion a d b c

e [f cthenx=A a b cd

else x=B;
e Compute Aand Bin parallel: x=C?A:B (MUX)
— Loop unrolling
e Replace k iterations of a loop by k instances of the loop body

March 2013

26

=<

Data Flow Graph Transformation

Transformation

F=a*(b+c) - * F=a*b +a*c

a b}-gc b\@/;;?j/c
|F

March 2013 27

<

Optimization in Temporal Domain
Scheduling

e Mapping of operations to time slots (cycles)
e Uses sequencing graph (data flow graph, DFG)
e Goal: minimize latency (s.t. resource constraints)

March 2013 28

=<

Optimization in Spatial Domain

Resource allocation & binding
e Assigning operations to hardware units

e Allocating registers
e Binding operations to same resource
e Goal: minimize resource (s.t. latency constraints)

March 2013

29

<

Synthesis Flow at Logic Level

a multi-stage process

March 2013

Specification

Logic Extraction
Technoloav-Independent Optimization

Technoloav-Dependent Mappina

a.m

| L e = Physical Synthesis F

T b L A S
' " »

30

Logic Optimization Methods

Depends on target technology

«\' Exact (QM) !

~
~

~

Logic Optimization

/

Two-level logic (PLA)

-~

~~

Heuristic *
(espresso)
Boolean -

-
b ———
e = ——

Structural Functional
(SIS,ABC) (AC, Kurtis)

< Multi-level logic
(standard cells)

Functional
(BDD-based)

Boolean

=<

Optimization Criteria for Synthesis

« Area occupied by the logic gates and interconnect
(approximated by literals = transistors in technology

Independent optimization)
« Critical path delay of the longest path through logic
« Degree of testability of the circuit
 Power consumed by the logic gates

* Placeabillity, Wireability

March 2013 32

=<

Transformation-Based Synthesis

sequence of transformations that change network topology
and its characteristics

e All modern synthesis systems are built that way

— work on uniform network representation
— use scripts, lists of transformations forming a strategy

e Transformations are mostly algebraic
— very little is based on Boolean factorization

e Representation
— Cube notation, BDDs, AlGs

e The underlying algorithms
— Algebraic transformations
— Collapsing, decomposition
— Factorization, substitution

March 2013

33

=<

Multi-Level Logic Minimization

e QObjective
— Minimize number of literals
— Literals represent inputs to CMOS gates

e Representation

— Factored form
— Compatible with CMOS

e QOptimization techniques
— Algebraic factorization and decomposition (heuristic)
e Technology independent
— Requires mapping onto target architecture
e Standard cells
e FPGAs (LUT)

March 2013

34

<!

A\ Two-Level Logic Minimization

Representation

e Truth tables

e Karnaugh maps

e Sum of Products (SOP) form

e Binary Decision Diagrams (BDD)
Objective

e Minimize number of product terms in SOP
e Challenge: multiple-output functions
Optimization techniques

e Quine McCluskey (optimal)

e Espresso logic minimizer (heuristic)

e Ashenhust-Curtis functional decomposition (nearly optimal)
e BDD-based (heuristic)

March 2013

35

=<

M

Physical Design Steps

Circuit partitioning
Floorplanning

Pin assignment
Placement

Routing

Convergence

arch 2013

36

=

LA A7
\7

v

ENTITY testis
port a: in bit;
end ENTITY test;

v

DRC
LVS
ERC

37

Partitioning

System Specification

\7

Architectural Design

\7

Functional Design
and Logic Design

\ 7

Circuit Design

Physical Design

Physical Verification
and Signoff

W
Fabrication
W

Packaging and Testing

\'7
Chip

1l

Partitioning

Chip Planning

Placement

lock Tree Synthesis

Signal Routing

Timing Closure

\
\

=<

Partitioning
Circuit: @"7 D»/

Cut ¢,

Block A Block B Block A Block B
1a (Hax DD,
| .

DD D DD

Cut c,: four external connections Cut c,: two external connections

| &)
Sl
JIE

38

Partitioning - optimization Goals

* |n detail, what are the optimization goals?
—Number of connections between partitions is minimized

—Each partition meets all design constraints (size, number
of external connections..)

—Balance every partition as well as possible

* How can we meet those goals?

—Unfortunately, this problem is NP-hard

—Efficient heuristics developed in the 1970s and 1980s.
High quality and low-order polynomial time.

=

40

LA A7
\7

v

ENTITY testis
port a: in bit;
end ENTITY test;

v

DRC
LVS
ERC

Floorplanning

System Specification

\7

Architectural Design

\7

Functional Design
and Logic Design

\ 7

Circuit Design

Physical Design

Physical Verification
and Signoff

1 2

Fabrication

v

Packaging and Testing

\'7
Chip

Placement

lock Tree Synthesis

Signal Routing

\
\
\

Timing Closure

\
\

1

N

<3

Floorplanning

/0 Pads Floorplan
odule a ﬁ/»L \ v
L] L]

odule b _ CTTTTTTTTo oo :
Block a ; —Blockc - L]
o o
Dk :
GND N Block d ;"%’
0 Block Pins ‘ O |
Block O - !
odule d b ----- |
I O Block e _
1 | __EES— U
odule e T [] []]

Supply Network

41

<

42

Floorplanning

Example

Given: Three blocks with the following potential widths and heights
Block A:w=1,h=4 or w=4,h=10or w=2,h=2
BlockB:w=1,h=2 or w=2, h=1

BlockC:w=1,h=3 or w=3,h=1

Task: Floorplan with minimum total area enclosed

g
I e

<

43

Floorplanning

Example

Given: Three blocks with the following potential widths and heights
Block A:w=1,h=4 or w=4,h=10or w=2,h=2
BlockB:w=1,h=2 or w=2, h=1

BlockC:w=1,h=3 or w=3,h=1

Task: Floorplan with minimum total area enclosed

<

44

Floorplanning

Example
Given: Three blocks with the following potential widths and heights

Block A:w=1,h=4 or w=4,h=10or w=2,h=2
BlockB:w=1,h=2 or w=2, h=1
BlockC:w=1,h=3 or w=3,h=1

Task: Floorplan with minimum total area enclosed

Solution:

Aspect ratios
Block A with w=2, h=2; Block Bwithw=2,h=1; Block Cwithw=1,h=3

This floorplan has a global bounding box with minimum possible area (9 square units).

=

45

LA A7
\7

v

ENTITY testis
port a: in bit;
end ENTITY test;

v

DRC
LVS
ERC

Placement

System Specification

\7

Architectural Design

\7

Partitioning

Functional Design
and Logic Design

1
1
1
1
1
1
1
1
1
| 1
!
1
1
1
1
1
1
1
1
1

Chip Planning
Circuit Desigr
Physical Design
g e Clock Tree Synthesis
Physical Verification \\
and Signoff K S
| ignal Routing
W | _
Fabrication \\
\4

\
\
W N Timing Closure

Packaging and Testing

\'7
Chip

=<

iy

Placement

DS
o

B B
DD

V|V

2D Placement

Linear Placement

» DODDE

¥

Placement and Routing with Standard Cells

<

Placement
Global Detailed
Placement Placement
||||||§|||||| [l]]]] |||||§||||||§|||

——

LI LT (1T » L] IIEIIII || []

0 [0 000 [T T IITT]

Placement Optimization Objectives

=K

Total Number of Wire Congestion Signal
Wirelength Cut Nets Delay

48

=

LA A7

v

ENTITY testis
port a: in bit;
end ENTITY test;

v

Routing

Partitioning

System Specification
7
Architectural Design !
Vv /
Place

Functional Design
and Logic Design

1
1
1

Chip PI

Circuit Design

anning

ment

Clock Tree

Synthesis

I<<|€ I(I

Physical Design

Routing

Physical Verification

DRC and Signoff
LVS
ERC v
\Z Fabrication
\ W
(SE=EE)
Packaging and Testing
2
Chip

49

=<

Routing

Given a placement, a netlist and technology
information,

* determine the necessary wiring, e.g., net
topologies and specific routing segments, to
connect the cells

* while respecting constraints, e.g., design rules
and routing resource capacities, and

e optimizing routing objectives, e.g., minimizing
total wirelength and maximizing timing slack.

=<

Netlist:

N, ={C,, D, Bs}

N, ={D,, B,, C;, As}
N3 = {Czr Ds}

N, ={B;, A;, G5}

Technology Information
(Design Rules)

51

Routing

Placement result

——

IAD

(] [

B @ [6]

(] [D
O O O

<3

Netlist:

Nl = {C4r Dsr Bg}

C
[]
A
L] [4] "
1
g T T T
Technology Information 0 @ [4] 6
(Design Rules) - % -

52

=<

Netlist:

N, ={C,, D, B;}

N, ={D,, B,, C;, A}
N3 = {Czr Ds}
N,=1{By, A;, G}

Technology Information
(Design Rules)

53

BT - EI
il
E- ¢
@, 0
O @-----4
N, Ny o Ny | N
E- 1 S CCELE —
il o
1 [af -

1VE The Design Closure Problem

N,

Iterative removal of timing violations (white lines)

March 2013 54

Design Verification

Ensuring correctness of the design against its
implementation (at different levels)

<3

M Design
behavior HDL / RTL
function Logic level

=7 <
structure Gate leve|l
= ?
layout Mask level

March 2013 -

=<

M

Algorithm Design Techniques

Greedy

Divide and Conquer
Dynamic Programming
Network Flow

Mathematical Programming (e.g., linear

programming, integer linear programming)

arch 2013

56

=<

Reduction

* Idea: If | can solve problem A, and if problem B can be
transformed into an instance of problem A, then | can

solve problem B by reducing problem B to problem A

and then solve the corresponding problem A.

 Example:

— Problem A: Sorting

— Problem B: Given n numbers, find the i-th largest numbers.

March 2013 57

Analysis of Algorithm

There can be many different algorithms to solve the
same problem.

Need some way to compare 2 algorithms.

Usually run time is the most important criterion used
— Space (memory) usage is of less concern now

However, difficult to compare since algorithms may be
implemented in different machines, use different
languages, etc.

Also, run time is input-dependent. Which input to use?
Big-O notation is widely used for asymptotic analysis.

