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Design Factors and Styles 
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The Big Picture: IC Design Methods 

Full Custom 

ASIC – Standard 
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RTL-Level Design 
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Optimization: Levels of Abstraction 
• Algorithmic 

– Encoding data, computation 
scheduling, balancing delays of 
components, etc. 

• Gate-level 

– Reduce fan-out, capacitance 

– Gate duplication, buffer insertion 

• Layout / Physical-Design 

– Move cells/gates around to shorten 
wires on critical paths 

– Abut rows to share power / ground 
lines 
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Full Custom 
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Full Custom 
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Standard Cell (Semi Custom) 
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Cell-Based Design (Standard Cells) 

Routing channel  

requirements are 

reduced by presence 

of more interconnect 

layers 
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FPGA: Lookup Table (LUT) 

• Look-up Table  

– Truth table implemented in hardware 

– Can implement arbitrary function with fixed number of inputs (typically 
4-5) by programming the storage bits (customizing the truth table) 

 F = x1’x2’ + x1x2 
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FPGA: Logic Element 

• Logic Element: the basic programmable element of FPGA 
– Contains LUT 

• Programming is a domain of specialized technology 
mapping onto device specific structure 

Look-Up 
 Table 
 (LUT) 

State 

Out Inputs 

Clock 

Enable 

March 2013 10 



FPGA: Architecture 

Each programmable logic element outputs one data bit 

Interconnects are also programmable 

A domain of physical synthesis (place and route) 

LE LE 

LE LE 

LE LE LE LE 

LE LE 

LE LE 

Logic Element Tracks 
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FPGA: Architecture 
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Comparison of Design Styles 

     

 full-custom standard cell gate array FPGA 

cell size variable fixed height * fixed fixed 

cell type variable variable fixed programmable 

cell placement variable in row fixed fixed 

interconnections variable variable variable programmable 

 

style 
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Comparison of Design Styles 

Area 

Performance 

Fabrication 

layers 

style 

full-custom standard cell gate array FPGA 

compact 

high 

compact 

 to moderate 
moderate large 

high 

 to moderate 
moderate low 

ALL ALL routing 

layers 
none 
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Comparison of Design Styles 
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Design Styles Tradeoffs 
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Electronic Systems > $1 Trillion 

Semiconductor > $220 B 

CAD  $3 B 

The Inverted Pyramid (~2000) 
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Moore’s law 

• Moore’s law – exponential growth in complexity 

1 billion 
transistors 

 



Data explosion and productivity 



Evolution of the EDA Industry 

Results 
(design productivity) 

Effort (EDA tool effort) 

Transistor entry – Calma, Computervision, Magic 

Schematic entry – Daisy, Mentor, Valid 

Synthesis – Cadence, Synopsys 

What’s next? 
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Year Design Tools 

1950 - 1965 
 
1965 - 1975 
 
 
 
1975 - 1985 
 
 
 
1985 – 1995 
 
 
 
 
1995 – 2002 
 
 
2002 - present 

Manual Design 
 

Layout editors 
Automatic routers( for PCB) 
Efficient partitioning algorithm 
 
Automatic placement tools 
Well Defined phases of design of circuits 
Significant theoretical development in all phases 
 
Performance driven placement and routing tools 
Parallel algorithms for physical design 
Significant development in underlying graph theory 
Combinatorial optimization problems for layout 
 
Interconnect layout optimization, Interconnect-
centric design, physical-logical codesign 
 
Physical synthesis with more vertical integration 
for design closure (timing, noise, power, P/G/clock, 
manufacturability) 
 

 

History of VLSI Layout Tools 
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Synthesis and Design Process (High Level) 

• Application (graphics, DSP, general processor) 

• Algorithm (Z-buffer, FFT) 

• Architecture (pipeline, cash sharing, parallelism) 

• High level synthesis 

• Logic and physical synthesis  
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VLSI Design Flow 

ENTITY test is 
port a: in bit; 

end ENTITY test; 

DRC 
LVS 
ERC 

Circuit Design 

Functional Design 
and Logic Design 

Physical Design 

Physical Verification 
and Signoff 

Fabrication 

System Specification 

Architectural Design 

Chip 

Packaging and Testing 

Chip Planning 

Placement 

Signal Routing 

Partitioning 

Timing Closure 

Clock Tree Synthesis 
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High Level Synthesis (HLS) 
Converting high-level design description to RTL 

• Input: 
– High-level languages (C, system C, system Verilog)  

– Hardware description languages (Verilog, VHDL) 

– State diagrams / logic networks 

• Tools: 
– Parser, compiler 

– Library of modules 

• Constraints: 
– Resource constraints (number of modules of a certain type) 

– Timing constraints (latency, delay, clock cycle) 

• Output: 
– Operation scheduling (time) and binding (resource) 

– Control generation 

– RTL architecture 
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Design Compilation 

Lex 

Parse 

Compilation 
front-end 

Behavioral 
Optimization 

Intermediate 
form 

Arch synth 

Logic synth 

Lib Binding 
HLS backend 

Separation into  

•   Data Path (arithmetic) 

•   Control  (Boolean logic) 
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Behavioral Optimization 

• Techniques used in software compilation 
– Expression tree height reduction 

– Constant and variable propagation 

– Common sub-expression elimination 

– Dead-code elimination 

– Operator strength reduction (e.g., *4  << 2) 

• Hardware transformations 
– Conditional expansion 

• If  c  then x = A  

        else  x = B; 

•  Compute A and B in parallel:  x = C ? A : B  (MUX) 

– Loop unrolling 

• Replace k iterations of a loop by k instances of the loop body 

A B x c 

x = a + b  c + d 

 

+ 
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a b c d 

+ 

+  

a d b c 
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Data Flow Graph Transformation 
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Optimization in Temporal Domain 

Scheduling 
• Mapping of operations to time slots (cycles) 
• Uses sequencing graph (data flow graph, DFG) 
• Goal: minimize latency (s.t. resource constraints) 
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Optimization in Spatial Domain 
Resource allocation & binding  
• Assigning operations to hardware units 

• Allocating registers 

• Binding operations to same resource 

• Goal: minimize resource (s.t. latency constraints) 
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Synthesis Flow at Logic Level 

module example(clk, a, b, c, d, f, g, h) 
input clk, a, b, c, d, e, f; 
output g, h; reg g, h; 
 
always @(posedge clk) begin 
 g = a | b; 
 if (d) begin 
  if (c)  h = a&~h; 
  else  h = b; 
  if (f) g = c; else a^b; 
 end else 
  if (c) h = 1; else h ^b; 
end 
endmodule 
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Logic Optimization Methods 

Logic Optimization 

Multi-level logic 

(standard cells) 

Two-level logic (PLA) 

Exact (QM) 
Heuristic 

(espresso) 

Structural 

(SIS,ABC) 

Functional 

(AC, Kurtis) 

Functional 

(BDD-based) 

algebraic 

Boolean 

Boolean 

Depends on target technology 
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Optimization Criteria for Synthesis 

• Area occupied by the logic gates and interconnect 

(approximated by literals = transistors in technology 

independent optimization) 

• Critical path delay of the longest path through logic 

• Degree of testability of the circuit 

• Power consumed by the logic gates 

• Placeability, Wireability  
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Transformation-Based Synthesis 

sequence of transformations that change network topology 
and its characteristics 

 

• All modern synthesis systems are built that way 
– work on uniform network representation  

– use scripts, lists of transformations forming a strategy 

• Transformations are mostly algebraic 
– very little is based on Boolean factorization 

• Representation 
– Cube notation, BDDs, AIGs 

• The underlying algorithms  
– Algebraic transformations 

– Collapsing, decomposition  

– Factorization, substitution 
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Multi-Level Logic Minimization 

• Objective 
– Minimize number of literals 

– Literals represent inputs to CMOS gates  

• Representation 
– Factored form 

– Compatible with CMOS 

• Optimization techniques 
– Algebraic factorization and decomposition (heuristic) 

• Technology independent 

– Requires mapping onto target architecture 

• Standard cells 

• FPGAs (LUT) 
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Two-Level Logic Minimization 
Representation 
• Truth tables 

• Karnaugh maps 

• Sum of Products (SOP) form 

• Binary Decision Diagrams (BDD) 

Objective 
• Minimize number of product terms in SOP 

• Challenge: multiple-output functions 

Optimization techniques 
• Quine McCluskey (optimal) 

• Espresso logic minimizer (heuristic) 

• Ashenhust-Curtis functional decomposition (nearly optimal) 

• BDD-based (heuristic) 
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Physical Design Steps 

• Circuit partitioning 

• Floorplanning 

• Pin assignment 

• Placement 

• Routing 

• Convergence 
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Partitioning 

ENTITY test is 
port a: in bit; 
end ENTITY test; 

DRC 
LVS 
ERC 

Circuit Design 
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and Logic Design 

Physical Design 
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and Signoff 
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Timing Closure 

Clock Tree Synthesis 
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Circuit: 

Cut ca: four external connections 
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Cut cb: two external connections 

Partitioning 
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Partitioning - optimization Goals 

• In detail, what are the optimization goals? 

–Number of connections between partitions is minimized 

–Each partition meets all design constraints (size, number 
of external connections..)  

–Balance every partition as well as possible 

 

• How can we meet those goals? 

–Unfortunately, this problem is NP-hard 

–Efficient heuristics developed in the 1970s and 1980s.  
   High quality and low-order polynomial time. 
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Floorplanning 

ENTITY test is 
port a: in bit; 
end ENTITY test; 
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Timing Closure 

Clock Tree Synthesis 
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Floorplanning 
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Floorplanning 
Example 
Given: Three blocks with the following potential widths and heights  
Block A: w = 1, h = 4  or  w =  4, h = 1  or  w = 2, h = 2 
Block B: w = 1, h = 2  or  w = 2,  h = 1   
Block C: w = 1, h = 3  or  w = 3, h = 1 
 
Task: Floorplan with minimum total area enclosed  
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A 
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B 

B 
C 
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Floorplanning 
Example 
Given: Three blocks with the following potential widths and heights  
Block A: w = 1, h = 4  or  w =  4, h = 1  or  w = 2, h = 2 
Block B: w = 1, h = 2  or  w = 2,  h = 1   
Block C: w = 1, h = 3  or  w = 3, h = 1 
 
Task: Floorplan with minimum total area enclosed  
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Floorplanning 

Solution: 
Aspect ratios 
Block A with w = 2, h = 2;  Block B with w = 2, h = 1;  Block C with w = 1, h = 3 
 
This floorplan has a global bounding box with minimum possible area (9 square units). 

Example 
Given: Three blocks with the following potential widths and heights  
Block A: w = 1, h = 4  or  w =  4, h = 1  or  w = 2, h = 2 
Block B: w = 1, h = 2  or  w = 2,  h = 1   
Block C: w = 1, h = 3  or  w = 3, h = 1 
 
Task: Floorplan with minimum total area enclosed  
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Placement 

ENTITY test is 
port a: in bit; 

end ENTITY test; 
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Timing Closure 

Clock Tree Synthesis 
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Placement 
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Placement 

Global 
Placement 

Detailed 
Placement 
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Placement Optimization Objectives 

Total 
Wirelength 

Number of  
Cut Nets 

Wire Congestion Signal  
Delay 
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ENTITY test is 
port a: in bit; 

end ENTITY test; 

DRC 
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Circuit Design 
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and Logic Design 

Physical Design 
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Fabrication 
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Partitioning 

Timing Closure 

Clock Tree Synthesis 

Routing 
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Given a placement, a netlist and technology 
information,  

• determine the necessary wiring, e.g., net 
topologies and specific routing segments, to 
connect the cells  

• while respecting constraints, e.g., design rules 
and routing resource capacities, and  

• optimizing routing objectives, e.g., minimizing 
total wirelength and maximizing timing slack. 

Routing 
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Netlist: 
 
N1 = {C4, D6, B3}  
N2 = {D4, B4, C1, A4} 
N3 = {C2, D5} 
N4 = {B1, A1, C3} 

 
Technology Information  
(Design Rules) 

Placement result 

Routing 
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Netlist: 
 
N1 = {C4, D6, B3}  
N2 = {D4, B4, C1, A4} 
N3 = {C2, D5} 
N4 = {B1, A1, C3} 

 
Technology Information  
(Design Rules) 

Routing 
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Netlist: 
 
N1 = {C4, D6, B3}  
N2 = {D4, B4, C1, A4} 
N3 = {C2, D5} 
N4 = {B1, A1, C3} 

 
Technology Information  
(Design Rules) 

Routing 
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The Design Closure Problem 

Iterative removal of timing violations (white lines) 
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Design Verification 

Ensuring correctness of the design against its 
implementation (at different levels) 

behavior 

structure 

function 

layout 

HDL / RTL 

Gate level 

Logic level 

Mask level 

Design 

 ? 

 ? 

 ? 

model  ? 
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Algorithm Design Techniques 

• Greedy 

• Divide and Conquer 

• Dynamic Programming 

• Network Flow 

• Mathematical Programming (e.g., linear 

programming, integer linear programming) 
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Reduction 

• Idea: If I can solve problem A, and if problem B can be 

transformed into an instance of problem A, then I can 

solve problem B by reducing problem B to problem A 

and then solve the corresponding problem A. 

• Example: 

– Problem A: Sorting 

– Problem B: Given n numbers, find the i-th largest numbers. 
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Analysis of Algorithm 

• There can be many different algorithms to solve the 
same problem. 

• Need some way to compare 2 algorithms. 

• Usually run time is the most important criterion used 
– Space (memory) usage is of less concern now 

• However, difficult to compare since algorithms may be 
implemented in different machines, use different 
languages, etc. 

• Also, run time is input-dependent. Which input to use? 

• Big-O notation is widely used for asymptotic analysis. 

March 2013 58 


