CMOS Transistor and Circuits

Instructed by Shmuel Wimer Eng. School, Bar-Ilan University

Credits: David Harris Harvey Mudd College

(Some materials copied/taken/adapted from Harris' lecture notes)

Jan 2015

Outline

- □ MOS Capacitor
- nMOS I-V Characteristics
- pMOS I-V Characteristics
- DC characteristics and transfer function
- □ Noise margin
- □ Latchup
- Pass transistors
- □ Tristate inverter

Introduction

- □ So far, we have treated transistors as ideal switches
- An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- Transistor gate, source, drain all have capacitance

$$- I = C (\Delta V / \Delta t) \rightarrow \Delta t = (C/I) \Delta V$$

- Capacitance and current determine speed
- □ Also explore what a "degraded level" really means

MOS Capacitor

- Gate and body form MOS capacitor
- Operating modes polysilicon gate Θ Θ Θ Θ Θ ΘΘ Θ V_a < 0 silicon dioxide insulator Accumulation p-type body (a) Ð \oplus \oplus \oplus \oplus Ð \oplus \oplus $0 < V_{g} < V_{t}$ depletion region Depletion (b) $V_{a} > V_{t}$ Inversion inversion region depletion region (c) \triangleleft

Terminal Voltages

 $\square \quad \text{Mode of operation depends on } V_g, V_d, V_s$

$$- V_{gs} = V_g - V_s$$

$$- V_{gd} = V_g - V_d$$

$$- V_{ds} = V_d - V_s = V_{gs} - V_{gd}$$

- □ Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \geq 0$
- □ nMOS body is grounded. First assume source is 0 too.
- □ Three regions of operation
 - Cutoff
 - Linear
 - Saturation

nMOS Cutoff

No channel

 $\Box I_{ds} = 0$

nMOS Linear

nMOS Saturation

We say current saturates

□ Similar to current source

I-V Characteristics

- □ In Linear region, I_{ds} depends on:
 - How much charge is in the channel
 - How fast is the charge moving

Channel Charge

MOS structure looks like parallel plate capacitor while operating in inversion

- Gate - oxide - channel

Q_{channel} = CV

$$C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$$

 $V = V_{gc} - V_t = (V_{gs} - V_{ds}/2) - V_t (V_{gc} - V_t \text{ is the amount of})$

voltage attracting charge to channel beyond the voltage required for inversion)

Jan 2015

Carrier velocity

- □ Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $\Box \quad v = \mu E \qquad \qquad \mu \text{ called mobility}$
- \Box E = V_{ds}/L
- □ Time for carrier to cross channel: - t = L / v

nMOS Linear I-V

Now we know

- How much charge $Q_{channel}$ is in the channel
- How much time t each carrier takes to cross

Jan 2015

nMOS Saturation I-V

□ If $V_{gd} < V_t$, channel pinches off near drain - When $V_{ds} > V_{dsat} = V_{gs} - V_t$

Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

nMOS I-V Summary

□ Shockley 1st order transistor models

Example

 $\hfill\square$ We will be using a 0.18 μm process for your project

$$- t_{ox} = 40 \text{ Å}$$

$$- \mu = 180 \text{ cm}^2/\text{V*s}$$

$$- \text{V}_t = 0.4 \text{ V}$$

$$\square \text{ Plot I}_{ds} \text{ vs. V}_{ds}$$

$$- \text{V}_{gs} = 0, 0.3, 0.6, 0.9, 1.2, 1.5 \text{ and } 1.8\text{V}.$$

$$- \text{Use W/L} = 4/2 \lambda$$

$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \cdot 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}}\right) \left(\frac{W}{L}\right) = 155 \frac{W}{L} \mu A/V^2$$

Jan 2015

pMOS I-V

- □ All doping and voltages are inverted for pMOS
- \Box Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
- □ Thus pMOS must be wider to provide same current

– In this class, assume μ_n / μ_p = 2

DC Transfer Characteristics

Objective: Find the variation of output voltage Vout for changes in input voltage Vin.

Vtp – Threshold voltage of p-device

Vtn – Threshold voltage of n-device

NON SATURATED CUTOFF SATURATED Vgsp < Vtp Vgsp < Vtp Vgsp>Vtp Vin V toto Vin < Vtp+Vop P-device Vdsp=Vgsp=Vgp Vdsp>Vgsp-Vzp Vin=Vtp+V00 Vat< Vin-Vp Vout > Vin-Vtp Vgpm >Vtm Vgsn>Vtn Vasm < Vin Vin >Vin Vin >VEn m-device Vdsm > Vgsm -Vin Vdsn=Vgsn=VEn Vin Vin Vout < Vin -Vin Vout > Vin -Vin

Recall CMOS device

cutoff: Ids=0 Vgs = VE linear: Ids = B [(Vgs-Vt)Vds-Vds- Vds- Vds < Vgs-Vt Saturation: Ids = p (Vgs-Vz) ~ O<Vgs-Vz<Vds

CMOS inverter characteristics is derived by solving for Vinn=Vinp and Idsn=-Idsp

FIG 2.23 A CMOS inverter

CMOS inverter is divided into five regions of operation

RegionA: 0 ≤ Vin ≤ Vtn m-device in cutoff, Ids = 0 P-device in linear region, Idsn=-Idsp, Idsp=0 Vdsp=0 => Vout=Voo

Region B: Vtn = Vin < Voo/2 M-device is saturated (current source) p-device is nonsaturcated (lineari, resistor)

Jan 2015

Idon = Bm Z -Idso $\mathcal{B}_{m} = \frac{M_{m} \mathcal{E}}{t_{ox}} \left(\frac{W_{m}}{L_{m}} \right) \qquad \text{Id}_{sm} \bigoplus \qquad \text{Vout}$

In p-device Vgs = (Vin - Vas) Vos = (Vout-Vop) Idsp= -Bp [(Vin -Vop - Vtp) (Vat-Vop) - (Vout-Vop)27 Br= MPE(WP)

substitute Idsp=Idsm Vout = (Vin-Vip) + V(Vin-Vip) = 2(Vin - Voo - Vip) - ---- (Vin-Vin)² Be (Vin-Vip)²

Region C: n-device still in saturation P-device enters saturation Idop = - Bp (Vin-Voo-Vip)2 Idop (Idon= Bn (Vin-Vtn)2 Idom (Vout retting Br= Bp and Vin= -Vip and using

Idom=-Idop, ve obtain

CMOS Transistor

Vin = 100

Region c exist only for one Value of Vin, Possible values of Vout are M-device Vout > Vin-Vin p-device Vout < Vin-Vip concluding Vin-Vin Vout < Vin-Vip)

Region Do Vop < Vin S Voo+Vep @ Idop m-device lineard Idsmit & Vait p-device saturated Vout = (Vin - Vin) - V (Vin - Vin) 2 - Rp (Vin - Voo - Vip) 2 Br (Vin - Voo - Vip) 2

Region E: Vin > Voo + Vip

M-device linear

P-device cutoff

Jan 2015

CMOS Transistor

Vdsn=O => Vout=O

I-V Characteristics

 \Box Make pMOS is wider than nMOS such that $\beta_n = \beta_p$

Jan 2015

Current vs. V_{out}, V_{in}

Load Line Analysis

Load Line Summary

DC Transfer Curve

 $\square Transcribe points onto V_{in} vs. V_{out} plot$

Operating Regions

Revisit transistor operating regions

Region	nMOS	pMOS
А	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

Beta Ratio

- $\Box \ If \ \beta_p \ / \ \beta_n \neq 1, \ switching \ point \ will \ move \ from \ V_{DD}/2$
- □ Called *skewed* gate
- Other gates: collapse into equivalent inverter

DC Transfer function is symmetric for $\beta_n = \beta_p$

Jan 2015

Table 2.3 Summary of CMOS inverter operation					
Region	Condition	p-device	n-device	Output	
А	$0 \le V_{in} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$	
В	$V_{tn} \leq V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out}$ > $V_{DD}/2$	
С	$V_{\rm in}$ = $V_{DD}/2$	saturated	saturated	$V_{\rm out}$ drops sharply	
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$	
E	V_{in} > V_{DD} - $ V_{tp} $	cutoff	linear	$V_{\rm out} = 0$	

Noise Margin

It determines the allowable noise at the input gate (0/1) so the output (1/0) is not affected

Noise margin is closely related to input-output transfer function

It is derived by driving two inverters connected in series

FIG 2.27 Noise margin definitions

Jan 2015

Impact of skewing transistor size on noise margin

skewed inverters

Increasing (decreasing) P / N ratio increases (decreases) the low noise margin and decreases (increases) the high noise margin

Jan 2015

Latchup in CMOS Circuits

Parasitic bipolar transistors are formed by substrate and source / drain devices

Latchup occurs by establishing a low-resistance paths connecting VDD to Vss

Latchup may be induced by power supply glitches or incident radiation

If sufficiently large substrate current flows, VBE of NPN device increases, and its collector current grows.

This increases the current through RWELL. VBE of PNP device increases, further increasing substrate current.

If bipolar transistors satisfy $\beta_{PNP} \times \beta_{NPN} > 1$, latchup may occur.

Operation voltage of CMOS circuits should be below Vlatchup.

Remedies of latchup problem:

- 1. Reduce R_{substrate} by increasing P doping of substrate by process control.
- 2. Reducing RWELL and resistance of WELL contacts by process control.
- 3. Layout techniques: separation of P and N devices, guard rings, many WELL contacts (at design).

Jan 2015

Pass Transistors

- □ We have assumed source is grounded
- $\Box \quad \text{What if source} > 0?$
 - e.g. pass transistor passing V_{DD}

- Hence transistor would turn itself off
- □ nMOS pass transistors pull no higher than V_{DD}-V_{tn}
 - Called a degraded "1"
 - Approach degraded value slowly (low I_{ds})
- \square pMOS pass transistors pull no lower than V_{tp}

Pass Transistor CKTs

As the source can rise to within a threshold voltage of the gate, the output of several transistors in series is no more degraded than that of a single transistor.

Jan 2015

Transmission Gates

Single pass transistors produce degraded outputs
 Complementary Transmission gates pass both 0 and 1 well

Transmission gate ON resistance as input voltage sweeps from 0 to 1(Vss to VDD), assuming that output follows closely.

Tristates

□ *Tristate buffer* produces Z when not enabled

EN	А	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Jan 2015

Nonrestoring Tristate

- □ Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

Tristate Inverter

- □ Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

Multiplexers

□ 2:1 multiplexer chooses between two inputs

S	D1	D0	Y
0	Х	0	0
0	Х	1	1
1	0	X	0
1	1	X	1

Gate-Level Mux Design

 \Box $Y = SD_1 + \overline{S}D_0$ (too many transistors)

□ How many transistors are needed? 20

Transmission Gate Mux

- □ Nonrestoring mux uses two transmission gates
 - Only 4 transistors

Inverting Mux

- □ Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

□ 4:1 mux chooses one of 4 inputs using two selects

Two levels of 2:1 muxes

Sizing for Performance

- C_{int} NMOS and PMOS diffusion + diffusion-gate overlap.
- C_{ext} Fan-out (input gates) + interconnects.
- R_{eq} Equivalent gate resistance.

 $C_{\rm L} = C_{\rm int} + C_{\rm ext}$ Capacitive load of an inverter.

$$C_{\text{int}} = SC_{\text{iref}}$$
 $R_{\text{eq}} = R_{\text{ref}}/S$ S sizing factor.

Propagation delay: $t_{\rm p} = 0.69R_{\rm eq} \left(C_{\rm int} + C_{\rm ext}\right) = t_{\rm p_0} \left(1 + \frac{C_{\rm ext}}{SC_{\rm int}}\right)$

 $t_{p_0} = 0.69 R_{eq} C_{int}$ Inverter delay loaded only by intrinsic.

Jan 2015

 $C_{\text{int}} = \gamma C_{\text{g}}$ Intrinsic cap to gate cap ratio ≈ 1 .

 $f = C_{\rm ext} / C_{\rm g}$ Effective fan-out.

$$t_{\rm p} = t_{\rm p_0} \left(1 + \frac{C_{\rm ext}}{\gamma C_{\rm g}} \right) = t_{\rm p_0} \left(1 + \frac{f}{\gamma} \right)$$

The delay of an inverter is only a function of the ratio between its external load cap to its input cap

$$\frac{\partial t_{p}}{\partial C_{g_{j}}} = 0, \ 1 \le j \le N-1 \quad \text{imply} \quad \frac{C_{g_{j+1}}}{C_{g_{j}}} = \frac{C_{g_{j}}}{C_{g_{j-1}}} = f, \ 2 \le j \le N-1$$

It implies that same sizing factor **f** is used for all stages.

The optimal size of an inverter is the geometric mean of its neighbor drives

$$C_{g_j} = \sqrt{C_{g_{j+1}}C_{g_{j-1}}}$$

Given C_{g_1} and C_L , and $F = C_L / C_{g_1}$ the optimal sizing factor is

$$f = \sqrt[N]{F}$$

The minimum delay through the chain is

$$t_{\rm p} = N t_{\rm p_0} \left(1 + \frac{\sqrt[N]{F}}{\gamma} \right)$$

What should be the optimal *N*?

The derivative by *N* of t_p yields $\gamma + \sqrt[N]{F} - \frac{\sqrt[N]{F} \ln F}{N} = 0$

or equivalently $f = e^{(1+\gamma/f)}$ having a closed form solution

f = e only for $\gamma=0$, a case where the intrinsic self load is ignored and only the fan-out is considered.