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Outline 

 MOS Capacitor 

 nMOS I-V Characteristics 

 pMOS I-V Characteristics 

 DC characteristics and transfer function 

 Noise margin 

 Latchup 

 Pass transistors 

 Tristate inverter 
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Introduction 

 So far, we have treated transistors as ideal switches 

 An ON transistor passes a finite amount of current 

– Depends on terminal voltages 

– Derive current-voltage (I-V) relationships 

 Transistor gate, source, drain all have capacitance 

– I = C (DV/Dt) → Dt = (C/I) DV 

– Capacitance and current determine speed 

 Also explore what a “degraded level” really means 
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MOS Capacitor 

 Gate and body form MOS capacitor 

 Operating modes 

– Accumulation 

 

 

– Depletion 

 

 

– Inversion 
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Terminal Voltages 

 Mode of operation depends on Vg, Vd, Vs 

– Vgs = Vg – Vs 

– Vgd = Vg – Vd 

– Vds = Vd – Vs = Vgs - Vgd 

 Source and drain are symmetric diffusion terminals 

– By convention, source is terminal at lower voltage 

– Hence Vds  0 

 nMOS body is grounded.  First assume source is 0 too. 

 Three regions of operation 

– Cutoff 

– Linear 

– Saturation 
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nMOS Cutoff 

 No channel 

 Ids = 0 
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nMOS Linear 

 Channel forms 

 

 Current flows from d to s  

– e- from s to d 

 

 Ids increases with Vds 

 

 Similar to linear resistor 
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nMOS Saturation 

 Channel pinches off 

 

 

 Ids independent of Vds 

 

 

 We say current saturates 

 

 

 Similar to current source 
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I-V Characteristics 

 In Linear region, Ids depends on: 

 

– How much charge is in the channel 

 

– How fast is the charge moving 
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Channel Charge 

 MOS structure looks like parallel plate capacitor 

while operating in inversion 

– Gate – oxide – channel 

 Qchannel = CV 

 C = Cg = eoxWL/tox = CoxWL 

 V = Vgc – Vt = (Vgs – Vds/2) – Vt (Vgc – Vt is the amount of 

voltage attracting charge to channel beyond the voltage required for inversion) 
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Carrier velocity 

 Charge is carried by e- 

 

 Carrier velocity v proportional to lateral E-field 
between source and drain 

 

 v = mE  m called mobility 

 

 E = Vds/L 

 

 Time for carrier to cross channel: 

– t = L / v 
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nMOS Linear I-V 

 Now we know 

– How much charge Qchannel is in the channel 

– How much time t each carrier takes to cross 
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nMOS Saturation I-V 

 If Vgd < Vt, channel pinches off near drain 

– When Vds > Vdsat = Vgs – Vt 

 

 Now drain voltage no longer increases current 
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nMOS I-V Summary 
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 Shockley 1st order transistor models 
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Example 

 We will be using a 0.18 mm process for your project 

– tox = 40 Å 

–  m = 180 cm2/V*s 

– Vt = 0.4 V 

 Plot Ids vs. Vds 

– Vgs = 0, 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8V. 

– Use W/L = 4/2 l 
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pMOS I-V 

 All doping and voltages are inverted for pMOS 

 Mobility mp is determined by holes 

– Typically 2-3x lower than that of electrons mn 

 Thus pMOS must be wider to provide same current 

– In this class, assume mn / mp = 2 
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DC Transfer Characteristics 

Vtp – Threshold voltage of p-device 

Vtn – Threshold voltage of n-device 

Objective:  Find  the  variation  of 

output voltage Vout for changes in 

input voltage Vin. 
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Recall CMOS device 

CMOS inverter characteristics is 

derived by solving for Vinn=Vinp and 

Idsn=-Idsp 
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CMOS inverter is divided into five regions of operation 
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I-V Characteristics 

 Make pMOS is wider than nMOS such that n = p 
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Current vs. V
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Load Line Analysis 
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Load Line Summary 
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DC Transfer Curve 

 Transcribe points onto Vin vs. Vout plot 
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Operating Regions 

 Revisit transistor operating regions 
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Beta Ratio 

 If p / n  1, switching point will move from VDD/2 

 Called skewed gate 

 Other gates: collapse into equivalent inverter 
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DC Transfer function is symmetric for βn=βp 
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Noise Margin 

It determines the allowable noise at the input gate (0/1) 

so the output (1/0) is not affected 

Noise margin is closely related to input-output transfer 

function 

It is derived by driving two inverters connected in series 
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Impact of skewing transistor size on noise margin 

Increasing (decreasing) P / N ratio increases (decreases) the low 

noise margin and decreases (increases) the high noise margin  
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Latchup in CMOS Circuits 
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Parasitic bipolar transistors are formed by substrate and 

source / drain devices 

Latchup occurs by establishing a low-resistance paths 

connecting VDD to VSS 

Latchup may be induced by power supply glitches or 

incident radiation 

If sufficiently large substrate current flows, VBE of NPN 

device increases, and its collector current grows. 

This increases the current through RWELL. VBE of PNP 

device increases, further increasing substrate current. 
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If bipolar transistors satisfy βPNP x βNPN > 1, latchup 

may occur. 

Operation voltage of CMOS circuits should be below 

Vlatchup. 

Remedies of latchup problem: 

1. Reduce Rsubstrate by increasing P doping of substrate 
by process control. 

2. Reducing RWELL and resistance of WELL contacts by 
process control. 

3. Layout techniques: separation of P and N devices, 
guard rings, many WELL contacts (at design). 
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Pass Transistors 

 We have assumed source is grounded 

 What if source > 0? 

– e.g. pass transistor passing VDD 

 Vg = VDD 

– If Vs > VDD-Vt => Vgs < Vt 

– Hence transistor would turn itself off 

 nMOS pass transistors pull no higher than VDD-Vtn 

– Called a degraded “1” 

– Approach degraded value slowly (low Ids) 

 pMOS pass transistors pull no lower than Vtp 

V
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V
DD
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Pass Transistor CKTs 

As the source can rise to within a threshold voltage of the gate, the 

output of several transistors in series is no more degraded than that 

of a single transistor. 
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Transmission Gates 

 Single pass transistors produce degraded outputs 

 Complementary Transmission gates pass both 0 

and 1 well 
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Transmission gate ON resistance as input voltage 

sweeps from 0 to 1(VSS to VDD), assuming that output 

follows closely. 
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Tristates 

 Tristate buffer produces Z when not enabled 
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Nonrestoring Tristate 

 Transmission gate acts as tristate buffer 

– Only two transistors 

– But nonrestoring 

• Noise on A is passed on to Y 

A Y

EN
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Tristate Inverter 

 Tristate inverter produces restored output 

– Violates conduction complement rule 

– Because we want a Z output 
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Multiplexers 

 2:1 multiplexer chooses between two inputs 
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Gate-Level Mux Design 

   

 How many transistors are needed? 20 
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Transmission Gate Mux 

 Nonrestoring mux uses two transmission gates 

– Only 4 transistors 
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Inverting Mux 

 Inverting multiplexer 

– Use compound AOI22 

– Or pair of tristate inverters 

– Essentially the same thing 

 Noninverting multiplexer adds an inverter 
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4:1 Multiplexer 

 4:1 mux chooses one of 4 inputs using two selects 

– Two levels of 2:1 muxes 

– Or four tristates 
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Sizing for Performance 
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L int extC C C  Capacitive load of an inverter. 

NMOS and PMOS diffusion + diffusion-gate overlap. intC

extC Fan-out (input gates) + interconnects. 

eqR Equivalent gate resistance. 
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Propagation delay: 
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int irefC SC eq refR R S S sizing factor. 
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Intrinsic cap to gate cap ratio ≈1. int gC C

ext gf C C Effective fan-out. 
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What should be the optimal N ? 

The derivative by N of     yields pt
ln

0
N

N F F
F

N
   

 1 f
f e


or equivalently having a closed form solution  

          only for γ=0, a case where the intrinsic self load is 

ignored and only the fan-out is considered.  

f e


