VLSI Floorplanning and Planar Graphs

prepared and Instructed by Shmuel Wimer
Eng. Faculty, Bar-Ilan University

DRC
LVS
ERC

Fig. 1. Eight sub-rectangle floorplan.

Fig. 2. A layout derived from the floorplan in Fig. 1

$$
1 \times 64
$$

1	2	\cdots	63

2×32

Figure 3. Some possible implementations of a register file.

Example

Given: Three blocks with the following potential widths and heights
Block A : $w=1, h=4$ or $w=4, h=1$ or $w=2, h=2$
Block B : $w=1, h=2$ or $w=2, h=1$
Block C : $w=1, h=3$ or $w=3, h=1$
Task: Floorplan with minimum total area enclosed

Example

Given: Three blocks with the following potential widths and heights
Block A: $w=1, h=4$ or $w=4, h=1$ or $w=2, h=2$
Block B : $w=1, h=2$ or $w=2, h=1$
Block C : $w=1, h=3$ or $w=3, h=1$
Task: Floorplan with minimum total area enclosed

Example

Given: Three blocks with the following potential widths and heights
Block A : $w=1, h=4$ or $w=4, h=1$ or $w=2, h=2$
Block B : $w=1, h=2$ or $w=2, h=1$
Block C : $w=1, h=3$ or $w=3, h=1$
Task: Floorplan with minimum total area enclosed

Solution:
Aspect ratios
Block A with $w=2, h=2$; Block B with $w=2, h=1$; Block C with $w=$ $1, h=3$

This floorplan has a global bounding box with minimum possible area (9 square units).

- Area and shape of the global bounding box
- Global bounding box of a floorplan is the minimum axis-aligned rectangle that contains all floorplan blocks.
- Area of the global bounding box represents the area of the top-level floorplan
- Minimizing the area involves by finding the shapes of the individual blocks.
- A rectangular dissection is a division of the chip area into a set of blocks or non-overlapping rectangles.
- A slicing floorplan is a rectangular dissection
- Obtained by repeatedly dividing each rectangle, starting with the entire chip area, into two smaller rectangles
- Horizontal or vertical cut line.
- A slicing tree or slicing floorplan tree is a binary tree with k leaves and $k-1$ internal nodes
- Each leaf represents a block
- Each internal node represents a horizontal or vertical cut line.

Slicing floorplan and corresponding slicing trees

Non-slicing floorplans (wheels)

Floorplan tree: Tree that represents a hierarchical floorplan

H
Horizontal division (objects to the top and bottom)
v Vertical division (objects to the left and right)
w
Wheel (4 objects cycled around a center object)

Floorplan and Layout

Floorplan
Graph representation

Floorplan is represented by a planar graph.
Vertices - vertical lines. Arcs - rectangular areas where blocks are embedded. A dual graph is implied.

From Floorplan to Layout

- Actual layout is obtained by embedding real blocks into floorplan cells.
- Blocks' adjacency relations are maintained
- Blocks are not perfectly matched, thus white area (waste) results
- Layout width and height are obtained by assigning blocks' dimensions to corresponding arcs.
- Width and height are derived from longest paths
- Different block sizes yield different layout area, even if block sizes are area invariant.

