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The probabilistic  method comprises two ideas: 

• Any random variable assumes at least one value not 
smaller than its expectation. 

• If an object chosen randomly from the universe 
satisfies a property with positive probability, there 
must be an object of the universe satisfying that 
property. 

Theorem. For any undirected graph 𝐺 𝑉, 𝐸  with 𝑛 
vertices and 𝑚 edges, there is a partition of 𝑉 into 𝐴 
and 𝐵 such that the edge cut-set has 𝑚 2  edges at 
least, namely 𝑢, 𝑣 ∈ 𝐸 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵 ≥ 𝑚 2 .  
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Proof. Consider the following experiment. Each vertex is 
independently and equiprobaly assigned to 𝐴 or 𝐵. 

The probability that the end points of an edge 𝑢, 𝑣  are 
in different sets is ½. 

By the linearity of expectation the expected number of 
edges in the cut is 𝑚 2 . 

It follows that there must a partition satisfying the 
theorem.∎ 

Consider the satisfiability problem. A set of 𝑚 clauses is 
given in conjunctive (sum) normal form over 𝑛 variables.  
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We have to decide whether there is a truth assignment 
of the 𝑛 variables satisfying all the clauses (POS). 
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There is an optimization version called MAX-SAT where 
we seek for a truth assignment maximizing the number 
of satisfied clauses. This problem is NP-hard. 

We subsequently show that there is always a truth 
assignment satisfying at least 𝑚 2  clauses. This is the 
best possible universal guarantee (consider 𝑥 and 𝑥 ).  

Theorem: For any set of 𝑚 clauses, there is a truth 
assignment satisfying at least 𝑚 2  clauses. 



Proof: Suppose that every variable is set to TRUE or 
FALSE independently and equiprobaly. 
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For 1 ≤ 𝑖 ≤ 𝑚, let 𝑍𝑖 = 1 if the clause is satisfied, and 
𝑍𝑖 = 0 otherwise. 

Due to the conjunctive form, the probability that a 
clause containing 𝑘 literals is not satisfied is 2−𝑘 ≤ 1 2 , 
or 1 − 2−𝑘 ≥ 1 2  that it is satisfied, implying 
𝐄 𝑍𝑖 ≥ 1 2 . 

The expected number of satisfied clauses is therefore 
 𝐄 𝑍𝑖
𝑚
𝑖=1 ≥ 𝑚 2 , implying that there must be an 

assignment for which  𝑍𝑖
𝑚
𝑖=1 ≥ 𝑚 2 . ∎ 



Proof: for each vertex pair we chose an arc 𝑣𝑖 → 𝑣𝑗 or 

𝑣𝑗 → 𝑣𝑖  with equal probability, generating a random 

tournament. 

Let 𝑋 be count the number of Hamiltonian paths in the 
tournament. 𝑋 is a sum of 𝑛! indicator random variables 
for the possibility that a path is Hamiltonian.   
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An orientation of a complete graph is called 
tournament. 

A Hamiltonian path is an 𝑛 − 1 -arc uni-directed path. 

Theorem: (Szele 1943). There is an 𝑛-vertex tournament 
having at least 𝑛! 2𝑛−1  Hamiltonian paths.  



A Hamiltonian path occurs with probability 1 2𝑛−1  , 
hence 𝐄 𝑋 = 𝑛! 2𝑛−1 , and there must be a graph with 
at least 𝑛! 2𝑛−1  Hamiltonian paths. ∎ 
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Expanding Graphs 

𝐺 𝑉, 𝐸  is called an expanding graph if there is a 𝑐 > 0 
such that for any 𝑆 ⊆ 𝑉 there is Γ 𝑆 > 𝑐 𝑆 , where 
Γ 𝑆  is the set of 𝑆’s neighbors.                                    . 
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A particular type of expanding graph is a bipartite multi 
graph 𝐺 𝐿, 𝑅, 𝐸  called an OR-concentrator.  

It is defined by a quadruple 𝑛, 𝑑, 𝛼, 𝑐 , where 
𝐿 = 𝑅 = 𝑛, such that 

1. deg 𝑣 ≤ 𝑑 ∀𝑣 ∈ 𝐿, and 
2. ∀𝑆 ⊆ 𝐿 such that 𝑆 ≤ 𝛼𝑛 there is Γ 𝑆 > 𝑐 𝑆 .                                                

In most applications it is desired to have 𝑑 as small as 
possible and 𝑐 as large as possible. 



Of particular interest are those graph where 𝛼, 𝑐 and 𝑑 
are constants independent of 𝑛 and 𝑐 > 1. 

These are strict requirements and it is not trivial to 
construct such graphs. We rather show that such graphs 
exist. 

We show that a random graph chosen from a suitable 
probability space has a positive probability of being 
𝑛, 𝑑, 𝛼, 𝑐 = 𝑛, 18,⅓, 2  OR-concentrator. (Constants 

are arbitrary, other combinations are possible.)  
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Theorem: There is an integer 𝑛0 such that for all 𝑛 > 𝑛0 
there is an 𝑛, 18,⅓, 2  OR-concentrator. 



Proof: The proof is carried out in terms of 𝑑, 𝑐, and 𝛼, 
while the constants are pinned at the end of the proof. 
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Let 𝜀𝑠  be the event that for 𝑆 ⊆ 𝐿, 𝑆 = 𝑠 there is 
Γ 𝑆 ≤ 𝑐𝑠, namely, an OR-concentrator does not exist. 

Consider a random 𝐺 𝐿, 𝑅, 𝐸 , where 𝑣 ∈ 𝐿 choses its 𝑑 
neighbors Γ 𝑣 ⊆ 𝑅 independently and uniformly with 
replacements, and avoid multi edges. 

Plan: We shall first bound Pr 𝜀𝑠 , and then sum over all 
the values of 𝑠 ≤ 𝛼𝑛. We thus obtain an upper bound 
on the probability that the random 𝐺 fails to be an OR-
concentrator with the parameters we seek.  
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Consider 𝑆 ⊆ 𝐿, 𝑆 = 𝑠 and any 𝑇 ⊆ 𝑅, 𝑇 = 𝑐𝑠. There 

are 
𝑛
𝑠

 ways to choose 𝑆 and 
𝑛
𝑐𝑠

 ways to choose 𝑇.  

There is 𝑑𝑠 ≥ 𝛤 𝑆 . The probability that 𝛤 𝑆 ⊆ 𝑇 is 

𝑐𝑠 𝑛 𝛤 𝑆 ≥ 𝑐𝑠 𝑛 𝑑𝑠.   

𝑇 𝑐𝑠 

𝑅 

𝑆 𝑠 𝑑 

𝐿 

𝑑𝑠 
𝑛 

𝑛 
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The probability that all the 𝑑𝑠 edges emanating from 
some 𝑠 vertices of 𝐿 fall within any 𝑐𝑠 vertices of 𝑅 is 
bounded by 

Pr 𝜀𝑠 ≤
𝑛
𝑠

 
𝑛
𝑐𝑠

𝑐𝑠

𝑛

𝑑𝑠
 

Γ 𝑆 ≤ 𝑐 𝑆  means not 
having OR connector (𝜀𝑠). 

The number of possibilities 
to choose 𝑠 vertices from 𝐿 

and 𝑐𝑠 from 𝑅 is 
𝑛
𝑠

 
𝑛
𝑐𝑠

. 
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Substituition of the inequality 
𝑛
𝑘

≤
𝑛𝑒

𝑘

𝑘
 obtains 

Pr 𝜀𝑠 ≤
𝑛𝑒

𝑠

𝑠 𝑛𝑒

𝑐𝑠

𝑐𝑠 𝑐𝑠

𝑛

𝑑𝑠

=
𝑠

𝑛

𝑑−𝑐−1

𝑒1+𝑐𝑐𝑑−𝑐
𝑠

 

Using 𝛼 = 1 3  and s ≤ 𝛼𝑛, there is 

Pr 𝜀𝑠 ≤
1

3

𝑑−𝑐−1

𝑒1+𝑐𝑐𝑑−𝑐
𝑠

≤
𝑐

3

𝑑

3𝑒 𝑐+1

𝑠
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Using 𝑐 = 2 and 𝑑 = 18, there is  

Pr 𝜀𝑠 ≤
2

3

18
3𝑒 3

𝑠

= 𝑟𝑠, 

where 𝑟 = 2 3 18 3𝑒 3, so that 𝑟 < 1

2
. 

Summing over all 1 ≤ 𝑠 ≤ 𝛼𝑛 = 𝑛 3  there is  

 Pr 𝜀𝑠𝑛 3 ≥𝑠≥1 ≤  𝑟𝑠𝑠≥1 =
𝑟

1−𝑟
< 1, 

showing that the desired OR-concentrator exists. ∎ 



Crossing Number 
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The crossing number 𝑐𝑟 𝐺  of a graph 𝐺 is the smallest 
number of edge crossings in a planar embedding of 𝐺. 

In VLSI it is the number of jumpers (via) required to 
layout a circuit. 

For a planar graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, 𝐸 = 𝑚 there is 
𝑐𝑟 𝐺 = 0. 

Euler formula for planar graph states 𝑛 −𝑚 + 𝑓 = 2. 

Since a face comprises a least 3 edges, and each edge is 
shared by two faces, there is 

 0 = 𝑛 −𝑚 + 𝑓 − 2 ≤ 𝑛 −𝑚 3 − 2. 
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Since 𝑐𝑟 𝐺 = 0 for a planar 𝐺, for any 𝐺 there is 

𝑐𝑟 𝐺 ≥ 𝑚 − 3𝑛 + 6    for 𝑛 ≥ 3.  

Stronger lower bound can be derived with the aid of 
expectation. 

Lemma: (The Crossing Lemma, proof by N. Alon). Let 𝐺 
be a simple graph with 𝑚 ≥ 4𝑛. Then 

 𝑐𝑟 𝐺 ≥  
1

64

𝑚3

𝑛2
. 

Proof: Let 𝐺  be a planar embedding of 𝐺 yielding 𝑐𝑟 𝐺 . 

Let 𝑆 ⊆ 𝑉 be obtained by choosing 𝑣 ∈ 𝑉 randomly with 
probability 𝑝 ≔ 4𝑛 𝑚 . Let 𝐻 ≔ 𝐺 𝑆  and 𝐻 ≔ 𝐺 𝑆 . 
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𝐻  is a planar embedding of 𝐻 imposed by 𝐺 . 

Let 𝑋, 𝑌 and 𝑍 be the random variables of the number of 
vertices, number of edges and the number of crossings 
in 𝐻 , respectively. 

It follows from the trivial lower bound that 𝑍 ≔ 𝑐𝑟 𝐻 

≥ 𝑐𝑟 𝐻 ≥ 𝑌 − 3𝑋 + 6 . By linearity of expectation 
there is 𝐸 𝑍 ≥ 𝐸 𝑌 − 3𝐸 𝑋 . 

There is 𝐸 𝑋 = 𝑝𝑛 and 𝐸 𝑌 = 𝑝2𝑚 (an edge is defined 
by its two end vertices). 

Since a crossing is defined by four vertices, there is 

𝐸 𝑍 = 𝑝4𝑐𝑟 𝐺 = 𝑝4𝑐𝑟 𝐺 . 
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All in all there is 

𝑝4𝑐𝑟 𝐺 ≥ 𝑝2𝑚− 3𝑝𝑛. 

Dividing by 𝑝4 yields 

𝑐𝑟 𝐺 ≥
𝑝𝑚−3𝑛

𝑝3
=

𝑛

4𝑛 𝑚 3 =
1

64

𝑚3

𝑛2
. ∎ 

The Crossing Lemma is useful in combinatorial 
geometry. Consider 𝑛 points in the plane and lines 
passing through each pair of points. 

Some of these 
𝑛
2

 at most distinct lines might pass 

through more than two points. 
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Given 𝑘 ≥ 2, how many lines can pass through at least 𝑘 
points? 

If 𝑛 is a perfect square and the point are on a 𝑛 × 𝑛 
grid, there are 2 𝑛 + 2 lines passing through 𝑛 points. 

𝑛 

𝑛 
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Is there a configuration of 𝑛 points in the plane yielding 
more lines passing through at least 𝑛 points?  

Theorem: (Szemerédi and Trotter 1983). Let 𝑃 be a set 
of 𝑛 points in the plane, and let 𝑙 be the number of lines 
passing through at least 𝑘 + 1  points of 𝑃 , 1 ≤ 𝑘
≤ 2 𝑛. Then  𝑙 < 32𝑛2 𝑘3 . 

𝐺’s edges are the segments between consecutive points 
of the 𝑙 lines. 𝐺 has therefore at least 𝑘𝑙 edges and its 

crossing number is at most 
𝑙
2

. 

Proof: Form a graph 𝐺 with vertex set 𝑃. 
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If it happens that 𝑘𝑙 < 4𝑛, because 1 ≤ 𝑘 ≤ 2 𝑛, there 
is 𝑙 < 4𝑛 𝑘 ≤ 16𝑛2 𝑘3 < 32𝑛2 𝑘3 .  

Otherwise 𝑘𝑙 ≥ 4𝑛, and the Crossing Lemma applies 
(𝑚 = 𝑘𝑙). 

It follows from the lemma that 𝑙2 2 >
𝑙
2

≥ 𝑐𝑟 𝐺

≥ 𝑘𝑙 3 64𝑛2 , yielding again 𝑙 ≤ 32𝑛2 𝑘3 . ∎ 



Properties of Almost All Graphs 
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Theorem: (Gilbert 1959). Let 𝐺  be a random graph 
whose edges have constant probability 𝑝. Almost every 
such graph is connected.  

Proof: Let us denote the graph by 𝐺𝑝, having 𝑛 vertices. 
𝐺𝑝 can get disconnected by vertex bipartition followed 
by deletion of the two-sided edges.  

Plan: We obtain an upper bound the probability 𝑞𝑛 that 
𝐺𝑝 is disconnected, by choosing 𝑆 ⊆ 𝑉 and summing 

the probabilities 𝑃 𝑆, 𝑆 = ∅  over all 𝑆, 𝑆  partitions . 
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Let 𝑆 = 𝑘. There are 𝑘 𝑛 − 𝑘  possible edges in 𝑆, 𝑆 , 

so 𝑃 𝑆, 𝑆 = ∅ = 1 − 𝑝 𝑘 𝑛−𝑘 . By considering all 𝑆, 

there is 𝑞𝑛 ≤
1

2
 

𝑛
𝑘

1 − 𝑝 𝑘 𝑛−𝑘𝑛−1
𝑘=1 . 

This inequality is symmetric in 𝑘 and 𝑛 − 𝑘, so there is 

𝑞𝑛 ≤  
𝑛
𝑘

1 − 𝑝 𝑘 𝑛−𝑘𝑛 2 
𝑘=1 . 

There is 
𝑛
𝑘

< 𝑛𝑘. Also, since in the above summation 

there is 𝑛 − 𝑘 ≥ 𝑛 2  and 1 − 𝑝 < 1 , there is 

1 − 𝑝 𝑘 𝑛−𝑘 ≤ 1 − 𝑝 𝑘 𝑛 2 . 
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All in all there is 𝑞𝑛 ≤  𝑛 1 − 𝑝 𝑛 2 𝑘𝑛 2 
𝑘=1 . 

For sufficiently large 𝑛  there is 𝑛 1 − 𝑝 𝑛 2 <1, so 

𝑞𝑛 <  𝑛 1 − 𝑝 𝑛 2 𝑘∞
𝑘=1 =

𝑛 1−𝑝 𝑛 2 

1−𝑛 1−𝑝 𝑛 2 . 

We conclude that with 𝑛 → ∞, there is 𝑞𝑛 → 0, which 
means that for large enough graphs with constant edge 
probability the graphs is almost surely connected. ∎ 



Markov’s Inequality and Random Graphs 
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We subsequently explore the existence of few 
properties in random large graphs. 

Large means 𝑉 𝐺 = 𝑛 → ∞, whereas the probability 
𝑝 of an edge depends on 𝑛 and satisfies 𝑝 𝑛 → 0.  

Let 𝛺𝑛, 𝑃𝑛 , 𝑛 ≥ 1 be a probability space, 𝛺𝑛  is a 
sample space and 𝑃𝑛 ∶  𝛺𝑛 → 0,1  a probability 
function satisfying  𝑃𝑛 𝜔𝜔∈𝛺𝑛

= 1. 

𝐆𝑛,𝑝 denotes the probability space of such graphs.  
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Markov’s Inequality is applied to show that 𝐺 ∈ 𝐆𝑛,𝑝 

almost surly has a particular property for a certain 𝑝. 

It is obtained by setting 𝑋 = 𝑋𝑛 and 𝑡 = 1. 

Markov’s Inequality states that if 𝑋 is a nonnegative 
random variable and 𝑡 ∈ ℝ, 𝑡 > 0, then 

𝑃 𝑋 ≥ 𝑡 ≤
𝐸 𝑋

𝑡
 

Corollary: Let 𝑋𝑛 ∈ ℕ be a nonnegative random variable 
in a probability space 𝛺𝑛, 𝑃𝑛 , 𝑛 ≥ 1. If 𝐸 𝑋𝑛 → 0 as 
𝑛 → ∞, then 𝑃 𝑋𝑛 = 0 → 1 as 𝑛 → ∞. 



Asymptotic Behavior of Graphs  
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Example: We are interested in the number 𝑋 of triangles 
in 𝐺 ∈ 𝐆𝑛,𝑝. 

𝑋 can be expressed as the sum 

𝑋 =  𝑋𝑆 ∶ 𝑆 ⊆ 𝑉, 𝑆 = 3 , 

where 𝑋𝑆 is the indicator random variable for the event 
𝐴𝑆 that 𝐺 𝑆  is a triangle.  

𝑋𝑆 = 1 if 𝑆 imposes a triangle and 𝑋𝑆 = 0 otherwise. By 
the expectation definition there is 

𝐸 𝑋𝑆 = 𝑃 𝑋𝑆 = 1 . 

There is 𝑃 𝐴𝑆 = 𝑝3. 
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By linearity of expectation, there is 

𝐸 𝑋 =  𝐸 𝑋𝑆 ∶ 𝑆 ⊆ 𝑉, 𝑆 = 3 =
𝑛
3

𝑝3 < 𝑝𝑛 3. 

Thus if 𝑝𝑛 → 0 as 𝑛 → ∞, then𝐸 𝑋 → 0, so 𝑃 𝑋 = 1
→ 0 and 𝑃 𝑋 = 0 → 1. 

It means that if 𝑝𝑛 → 0 as 𝑛 → ∞, 𝐺 will almost surly be 
triangle-free. ∎ 

Consider the probability of having the independent sets 
in a graph of 𝑛 vertices and edge probability 𝑝, not 
exceeding a certain size, which of course depends on 𝑛. 
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Theorem: (Erdӧs 1961). The size of maximal 

independent set in a random grap 𝛼 𝐺 ∈ 𝐆𝑛,𝑝  is 

almost surely no larger than 2𝑝−1 log 𝑛 . 

The theorem states that if the probability of an edge is 
fixed, it is very difficult to find an independent set of size 
that grows with 𝑛, even very slowly as log 𝑛. 

Proof: Let 𝑆 ⊂ 𝑉 𝐺 , 𝑆 = 𝑘 + 1, 𝑘 ∈ ℕ. 𝑘 is pinned 
down later. 

The probability that 𝑆 is an independent set is the 
probability that none of the vertex pairs has a 

connecting edge, namely, 1 − 𝑝
𝑘+1
2 . 
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Let 𝐴𝑆 be the event that 𝑆 is an independent set and let 
𝑋𝑆 be the corresponding indicator random variable. 

There is  𝐸 𝑋𝑆 = 𝑃 𝑋𝑆 = 1 = 𝑃 𝐴𝑆 = 1 − 𝑝
𝑘+1
2 . 

Let 𝑍 be the number of independent sets of size 𝑘 + 1. 
Then 

𝑍 =  𝑋𝑆 ∶ 𝑆 ⊂ 𝑉, 𝑆 = 𝑘 + 1 . 

By linearity of expectation there is 

 𝐸 𝑍 =  𝐸 𝑋𝑆 ∶ 𝑆 ⊂ 𝑉, 𝑆 = 𝑘 + 1 = 

𝑛
𝑘 + 1

1 − 𝑝
𝑘+1
2 . 
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There is 
𝑛

𝑘 + 1
≤

𝑛𝑘+1

𝑘+1 !
   and  1 − 𝑝 < 𝑒−𝑝. 

Substitution in 𝐸 𝑍  yields 

𝐸 𝑍 ≤
𝑛𝑘+1𝑒

−𝑝
𝑘+1
2

𝑘 + 1 !
=

𝑛𝑒−𝑝𝑘 2 𝑘+1

𝑘 + 1 !
 

Let us now pin down 𝑘, supposing 𝑘 = 2𝑝−1 log 𝑛 . 

Then 𝑘 ≥ 2𝑝−1 log 𝑛, and by exponentiation there is 

𝑛𝑒−𝑝𝑘 2 ≤ 1, hence 

𝐸 𝑍 ≤
1

𝑘 + 1 !
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Since 𝑘 ≥ 2𝑝−1 log 𝑛, 𝑘 grows at least as fast as log 𝑛, 
hence 𝐸 𝑍 → 0 as 𝑛 → ∞. 

Recall the corollary stating that if 𝐸 𝑍 → 0 as 𝑛 → ∞, 
then 𝑃 𝑍 = 0 → 1 as 𝑛 → ∞. 

It means that 𝛼 𝐺 ∈ 𝐆𝑛,𝑝 ≤ 2𝑝−1 log 𝑛 with 

probability→ 1 as 𝑛 → ∞, so 𝛼 𝐺 ∈ 𝐆𝑛,𝑝 ≥ 2𝑝−1 log 𝑛 

with probability→ 0 as 𝑛 → ∞. ∎ 
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The distance between two vertices is defined as the 
edge length of the shortest path connecting them. 

The diameter of a graph is the maximum of the distance 
over all vertex pairs. 

Theorem. If 𝑝 is a constant then almost every 𝐺𝑝 has 
diameter 2 (and hence connected). 

Proof. Let 𝑋 𝐺𝑝  count the number of unordered vertex 
pairs which distance is larger than 2, hence having no 
common neighboring vertex. 

If there are none such pairs, then 𝐺𝑝 is connected and 
has diameter 2. 
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𝑋 𝐺𝑝  is a random variable. If it would happen that 
𝐸 𝑋 → 0 as 𝑉 = 𝑛 → ∞ then it follows by Markov’s 
Inequality that the theorem holds.  

For two vertices 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 let 𝑋𝑖𝑗  be an indicator 

random variable specifying that they do not share a 
common neighboring vertex. 

𝑋𝑖𝑗 = 1  would happen if there is no common 

neighboring vertex. 

For each of the other 𝑛 − 2 vertices the probability it 

does not connect to either of 𝑣𝑖 , 𝑣𝑗  is 1 − 𝑝2. Hence 

𝑃 𝑋𝑖𝑗 = 1 = 1 − 𝑝2 𝑛−2. 
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There are 
𝑛
2

  distinct vertex pairs. 𝑋 is bounded by the 

sum of the 
𝑛
2

 random variables  𝑋𝑖𝑗. 

If follows from the linearity of expectation that 

𝐸 𝑋 ≤
𝑛
2

1 − 𝑝2 𝑛−2. 

Since 𝑝 is constant while 𝑛 → ∞, there is 𝐸 𝑋 → 0. 
Consequently, almost every 𝐺𝑝 has diameter 2, and is 
also connected. ∎ 

This theorem is stronger than Gilbert’s theorem. While 
the latter states that almost every 𝐺𝑝 is connected, this 
one provides also the diameter.   



Problem 

A graph 𝐺 is planar if and only if for any 𝐻 ⊆ 𝐺, there is 
𝐻 ≠ 𝐾5 and 𝐻 ≠ 𝐾3,3 . 

Let 𝐺 𝑈, 𝑉  be bipartite random graph with 𝑈 = 𝑉
= 𝑛 , whose edges have probability 𝑝 𝑛  (non 
constant!). 

Find the largest function 𝑓 𝑛  such that if 𝑝 𝑛  
= 𝑜 𝑓 𝑛  then almost every 𝐺 𝑈, 𝑉  is planar as 𝑛
→ ∞.  



Proof: We should find what probability 𝑓 𝑛  ensures 
that there is almost surely no 𝐾3,3 ⊂ 𝐺 𝑈, 𝑉 . 

Let 𝑋 be the number of 𝐾3,3 in 𝐺 𝑈, 𝑉 . 

There are 
𝑛
3

2
 distinct subgraphs 𝐺 𝑊, 𝑍 , where 

𝑊 ⊂ 𝑈,  𝑍 ⊂ 𝑉,  and 𝑊 = 𝑍 = 3. 

Let 𝑋𝑊,𝑍 be an indicator random variable of the event 
𝐺 𝑊,𝑍 = 𝐾3,3.  There is  

𝐸 𝑋𝑊,𝑍 = 𝑃 𝐺 𝑊,𝑍 = 𝐾3,3 = 𝑝 𝑛 9. 



By linearity of expectation, there is 

𝐸 𝑋 =  𝐸 𝑋𝑊,𝑍 ∶ 𝑊 ⊂ 𝑈, 𝑍 ⊂ 𝑉, 𝑊 = 𝑍 = 3

=
𝑛
3

2
𝑝 𝑛 9 < 𝑛6𝑝 𝑛 9. 

Thus if 𝑛6𝑝 𝑛 9 → 0 as 𝑛 → ∞, then 𝐸 𝑋 → 0, so 
𝑃 𝑋 = 1 → 0 and 𝑃 𝑋 = 0 → 1. 

Consequently 

𝑛6𝑓 𝑛 9 = 𝑂 1  ⇒  𝑓 𝑛 = 𝑛−2 3 . ∎ 


