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A 𝑘 -coloring of a graph 𝐺  is a labeling 𝑓: 𝑉 𝐺
→ 1,… , 𝑘 . 

A coloring is proper if no two vertices 𝑥 and 𝑦 connected 
with an edge have same color, i.e. 𝑥𝑦 ∈ 𝐸 𝐺 ⇒ 𝑓 𝑥
≠ 𝑓 𝑦 . 

𝐺 is 𝑘-colorable if it has proper 𝑘-coloring. 

The chromatic number  χ 𝐺  is the smallest 𝑘 such that 
𝐺 has proper 𝑘-coloring. 𝐺 is called 𝑘-chromatic. 

If χ 𝐺 = 𝑘, but χ 𝐻 < 𝑘  for every proper subgraph 𝐻, 
then 𝐺 is 𝑘-critical. 
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The vertices having same color in a proper 𝑘-coloring 
must be independent. Therefore, χ 𝐺  is the minimum 
number of independent sets covering 𝐺. 

Hence, 𝐺 is 𝑘-colorable iff 𝐺 is 𝑘-partite.  

Examples. Every bipartite graph is 2-colorable. 
Every even cycle graph is 2-colorable (it is bipartite). 
Every odd cycle graph is 3-colorable and 3-critical. 

2-colorability can be tested with BFS. (how?) 

We compute the distance from a vertex 𝑢. A connected 
graph is bipartite iff 𝐺 𝑋  and 𝐺 𝑌  are independent 
sets, where 𝑋 and 𝑌 are vertices of even and odd 
distance from 𝑢, respectively. 
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The largest clique size ω 𝐺  satisfies χ 𝐺 ≥ ω 𝐺 . 

The largest independent set size 𝛼 𝐺 satisfies 
𝜒 𝐺  ≥ 𝑛 𝐺 𝛼 𝐺 , since every color class is an 
independent set, therefore having at most 𝛼 𝐺  
vertices. 

Is χ 𝐺 > ω 𝐺  possible? 

𝐾𝑠  

Yes! 

Proper coloring of 𝐾𝑠 requites 𝑠 colors. ω 𝐺 = 𝑠 + 2, 
but 𝜒 𝐺 = 𝑠 + 3, hence χ 𝐺 > ω 𝐺 .  

Could it be constructed with 𝐶3 rather than 𝐶5? 

𝐶5 
𝑠 

𝑠 
𝑠 

𝑠 

𝑠 
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Example. Minimizing exam period in school. How to 
schedule exams in minimum parallel sessions, where no 
two concurrent exams have a common student? 

Define 𝐺 𝑉, 𝐸 , where 𝑣 ∈ 𝑉 corresponds to course, and 
𝑒 𝑢, 𝑣 ∈ 𝐸 iff courses 𝑢 and 𝑣 have a common student. 

An independent set of vertices implies a parallel exam 
session. χ 𝐺  is the smallest number of parallel sessions. 

Example. Chemical storage. Store 𝑛 different chemicals. 
The interaction between some pairs is explosive. 

What is the smallest required number of compartments 
in the storage? χ 𝐺 . 



Upper Bounds of Chromatic Number 
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Easy bounds are χ 𝐺 ≤ 𝑛 𝐺 , χ 𝐺 ≥ ω 𝐺 , and 
𝜒 𝐺 ≥ 𝑛 𝐺 𝛼 𝐺 , all hold with equality for cliques.  

Better than χ 𝐺 ≤ 𝑛 𝐺  upper bounds can be obtained 
by coloring algorithms.  

A greedy algorithm w.r.t 𝑉 𝐺 = 𝑣1, … , 𝑣𝑛  assigns to 
𝑣𝑖  the smallest color index not incident so far to 𝑣𝑖.   

Proposition. There is χ 𝐺 ≤ ∆ 𝐺 + 1. (∆ 𝐺  is the 
largest vertex degree.)  

Proof. By construction. A vertex has no more than ∆ 𝐺  
neighbors. Upon 𝑣𝑖 coloring there must be at least one 
of 1,… , ∆ 𝐺 + 1 colors unused. ■  
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Different orderings may yield smaller upper bounds. 
Finding the best ordering is hard. Is there an ordering 
yielding χ 𝐺 ? It can be shown that such exists. 

Example. Register allocation and interval graphs. 
Consider the registers used by a compiler, each has start 
and end time. What is the smallest number of physical 
registers that can be used?   

Assign the symbols 𝑎, 𝑏, 𝑐, … to the registers in the 
code, and draw their usage time intervals.    

𝑎 
𝑏 

𝑐 
𝑑 𝑒 

𝑓 

𝑔 

Proposition. If 𝐺 is an interval graph then 𝜒 𝐺 = ω 𝐺 . 
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Proof. By left-to-right traversal of the time intervals, pre 
sorted by their starting time. Initializing 𝑘 = 0 . 
Increasing to 𝑘 + 1 at starting point and decreasing to 
𝑘 − 1 at ending point. ■ 

The bound χ 𝐺 ≤ ∆ 𝐺 + 1 may still be very poor.  

For 𝑛 + 1 -vertex star ∆ 𝐺 = 𝑛, whereas χ 𝐺 = 2. 

For 𝑛 + 1 -vertex wheel ∆ 𝐺 = 𝑛, whereas χ 𝐺 ≤ 4. 
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The bound χ 𝐺 ≤ ∆ 𝐺 + 1 can be further improved 
by considering the vertices with high degree first. 

Proposition. (Welsh-Powell 1967) If the vertices are 
ordered in non increasing degree, 𝑑1 ≥ 𝑑2 ≥ ⋯ ≥ 𝑑𝑛, 
then χ 𝐺 ≤ 1 +max

𝑖
min 𝑑𝑖 , 𝑖 − 1 . 

Proof. When vertex 𝑖 is colored, its already colored 
neighbors have at most min 𝑑𝑖 , 𝑖 − 1  distinct colors.  

Its (proper) color is therefore 1 +min 𝑑𝑖 , 𝑖 − 1 . 
Maximization over 𝑖 yields the upper bound. ■ 
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Lemma. If 𝐺 is 𝑘-critical graph, then 𝛿 𝐺 ≥ 𝑘 − 1. 

Proof. Assume in contrary that 𝛿 𝐺 < 𝑘 − 1. Let 𝑥 ∈ 𝐺 
be a vertex for which 𝑑𝐺 𝑥 < 𝑘 − 1. 

We colored properly 𝐺  with 𝑘 − 1  colors, which 
contradicts with 𝐺 being 𝑘-critical graph (χ 𝐺 = 𝑘). ■   

Since 𝐺  is 𝑘-critical, 𝐺 − 𝑥 is by definition 𝑘 − 1 -
colorable. Use any 𝑘 − 1 colors to color properly 𝐺 − 𝑥. 

Since 𝑑𝐺 𝑥 < 𝑘 − 1, 𝑁 𝑥  consume 𝑘 − 2 colors at 
most. Let us color 𝑥 by one not consumed by 𝑁 𝑥 .  

The minimum degree 𝛿 𝐺  in 𝐺 can also be used to 
deduce upper bounds.  
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Corollary. (Szekeres-Wilf 1968)  

χ 𝐺 ≤ 1 +max
𝐻⊆𝐺

𝛿 𝐻  

Proof. Let 𝑘 = χ(𝐺) and 𝐻′ be a 𝑘-critical subgraph of 𝐺. 

By the above lemma 𝛿 𝐻′ ≥ 𝑘 − 1 = χ 𝐺 − 1. 

There is also 𝛿 𝐻′ ≤ max
𝐻⊆𝐺

𝛿 𝐻 , yielding the desired 

bound. ■ 

Show a graph where χ 𝐺 ≤ 1 +max
𝐻⊆𝐺

𝛿 𝐻 < 1

+ ∆ 𝐺 . (homework) 



𝑮 

Coloring of Directed Graphs 
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Theorem. Let a graph 𝐺 be directed with longest path 
𝑙 𝐺 , then 𝜒 𝐺 ≤ 1 + 𝑙 𝐺 . Furthermore, there are 
orientations of 𝐺’s edges such that equality holds. 

Proof. Let 𝐺′ be a maximal acyclic sub digraph of 𝐺 (not 
necessarily a tree). 

𝐺′ must have some vertices with outgoing arcs only.  

𝑮′ 
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Define 𝑓 𝑣  to be a coloring function assigning color 
1 + 𝑙 𝑣  to vertex 𝑣 (longest path from an outgoing 
vertex). 

𝑓  strictly increases along a path in 𝐺′  using the 
colors 1 + 𝑙 𝐺′  on 𝑉 𝐺 = 𝑉 𝐺′ .  

For each edge 𝑢𝑣 ∈ 𝐸 𝐺  there exists a path in 𝐺′ 
between 𝑢 and 𝑣, since either there was 𝑢𝑣 ∈ 𝐸 𝐺′  or 
𝑢𝑣 is closing a cycle of 𝐺. 

𝑮 𝑮′ 
1 

1 

2 

3 

4 

5 

6 
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That implies 𝑓 𝑢 ≠ 𝑓 𝑣  since 𝑓 increases along paths 
of 𝐺′ . Consequently, 𝑓  is a proper coloring and 
𝜒 𝐺 ≤ 1 + 𝑙 𝐺 .  

To prove the existence of an orientations of 𝐺’s edges 
satisfying 𝜒 𝐺 = 1 + 𝑙 𝐺 , an orientation satisfying 
𝜒 𝐺 ≥ 1 + 𝑙 𝐺  is shown.  

Each edge 𝑢𝑣 ∈ 𝐸 𝐺∗  is oriented 𝑢 → 𝑣  iff 𝑓 𝑢
< 𝑓 𝑣 . Since 𝑓 is a proper coloring, this defines an 
orientation.  

Let 𝑓 be an optimal coloring satisfying 𝑓 𝐺 = 𝜒 𝐺 . We 
derive a digraph 𝐺∗ as follows.  
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Since the color labels along paths in 𝐺∗ strictly increase, 
and there are only 𝜒 𝐺  labels, there is 𝑙 𝐺∗ ≤ 𝜒 𝐺∗

− 1, hence 𝜒 𝐺∗ = 1 + 𝑙 𝐺∗ . ■ 

1 2 

3 4 

𝑮 𝑮∗ 



Brooks’ Theorem 
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The bound χ 𝐺 ≤ ∆ 𝐺 + 1 holds for any graph. 

Brook showed that cliques and odd cycles are essentially 
the only graphs where χ 𝐺 = ∆ 𝐺 + 1 holds.  

Theorem. (Brooks 1941) If 𝐺 is connected and other 
than a clique or an odd cycle, then 𝜒 𝐺 ≤ ∆ 𝐺 .  

Proof. Let 𝐺 have 𝑛 nodes and be connected, neither a 
clique, nor an odd cycle. 

Let 𝑘 = ∆ 𝐺  and assume 𝑘 ≥  3 , as otherwise for 
𝑘 =  1 it is single vertex, and cycle for 𝑘 = ∆ 𝐺 = 2. 
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Consider first the case where 𝐺 is not k-regular. 

Choose a vertex 𝑣𝑛 for which 𝑑 𝑣𝑛 < 𝑘 and grow a 
spanning tree rooted at 𝑣𝑛 (by any search, e.g. BSF).  

Index the vertices in decreasing order as they are being 
reached by the search, yielding the order 𝑣1, 𝑣2, … , 𝑣𝑛.  

Each vertex other than 𝑣𝑛  has a higher-indexed 
neighbor along its path to root, hence it has at most 
𝑘 − 1 lower-indexed neighbors. 

Using the greedy coloring with the vertex decreasing 
order obtains proper 𝒌-coloring. 
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In the remaining cases G is 𝒌-regular. 3 cases possible. 

1st case: 𝐺 is 1-connected. Let 𝑥 be a cut-vertex. 

𝑮′ 𝑮 
𝑥 

Let 𝐺′ be a component of 𝐺 − 𝑥 together with 𝑥. 

The degree of 𝑥 in 𝐺′ is less than 𝒌 and a proper 𝑘-
coloring is possible.  
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That can repeat for every components of 𝐺 − 𝑥, yielding 
𝑘-proper coloring for each (𝑥 included). 

By permuting colors of the subgraphs, we can make the 
colorings agree on 𝑥, yielding 𝑘-proper coloring of 𝐺. 

Find a vertex 𝑣𝑛 with two non adjacent neighbors 𝑣1 and 
𝑣2 (why such exist?) whose deletion leaves a connected 
subgraph (otherwise G  was 2-conncted). 

𝑣𝑛 

𝑣1 𝑣2 

2nd case: G is not 2-connected. 
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𝐺 − 𝑣1, 𝑣2  is connected and a spanning tree rooted at 
𝑣𝑛 can be constructed (e.g. BFS). 

The labels 𝑛,… , 3  are assigned to the vertices in 
decreasing order as they are reached.  

Starting coloring from 𝑣1 and 𝑣2, they use same color.  

Each vertex other than 𝑣𝑛  has at most 𝑘 − 1 lower-
indexed neighbors so 𝑘 colors can be used for those. 

All in all, 𝑘 proper coloring of 𝐺 has been obtained. 

𝑣𝑛 has 𝑘 neighbors, of which 𝑣1 and 𝑣2 already used the 
same color. The rest neighbors used at most other 𝑘 − 2 

colors, and 𝑣𝑛 can therefore be properly colored. 



𝑥 = 𝑣𝑛 
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3rd case: G is 2-connected. Choose a vertex 𝑥 such that 
vertex connectivity 𝜅 𝐺 − 𝑥 = 1. 

That is possible by choosing 𝑥 to be one of the two 
disconnecting vertices. 

𝑥 has a neighbor in every block of 𝐺 − 𝑥 obtained by 
deleting the 2nd vertex in a cut-set, otherwise 𝐺 was 1-
connected rather than 2-connected.  

𝑣1 𝑣2 
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There is no edge connecting 𝑣1 
and 𝑣2   since they reside in 
different blocks.  

𝐺 − 𝑥, 𝑣1, 𝑣2  is connected 
since blocks have no cut-
vertices and 𝑣1, 𝑣2 are not such. 

𝑘 ≥  3 implies 𝐺 − 𝑣1, 𝑣2  is also connected. 

All in all this is the same situation as the case of 𝐺 not 2-
connected. ■ 

Brooks’ Theorem implies that the cliques and the odd 
cycles are the only (𝑘 − 1)-regular 𝑘-critical graphs. 
(homework) 
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Example. Prove that for any graph 𝐺, there is a partition 
𝑉 𝐺 = 𝑉1 ∪ 𝑉2 , (𝑉1 ∩ 𝑉2 = ∅) 𝑉1 ≠ ∅, 𝑉2 ≠ ∅, such 
that χ 𝐺 𝑉1 + χ 𝐺 𝑉2 = χ 𝐺 . 

Proof. Consider any coloring of 𝐺  with χ 𝐺  colors. Pick 
𝑘 < χ 𝐺  color classes and denote by 𝑉1 ⊂ 𝑉  the 
vertices of these color classes. Let 𝑉2 = 𝑉\𝑉1. 

The above construction yields a proper coloring of 𝑉1 by 
𝑘 colors and proper coloring of 𝑉2 by χ 𝐺 − 𝑘 colors. 

Consequently, 

𝜒 𝐺 𝑉1 ≤ 𝑘   and   𝜒 𝐺 𝑉2 ≤ 𝜒 𝐺 − 𝑘 . 
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On the other hand, 𝐺 𝑉1  cannot be colored with less 
than 𝑘 colors. 

Otherwise, together with the coloration of 𝑉2  by 
𝜒 𝐺 − 𝑘 colors,  𝐺  could be colored with less than 
χ 𝐺  colors, which is impossible. Thus 

𝜒 𝐺 𝑉1 = 𝑘. 

Similarly and symmetrically 

𝜒 𝐺 𝑉2 = 𝜒 𝐺 − 𝑘. 

 In conclusion 

𝜒 𝐺 𝑉1 + 𝜒 𝐺 𝑉2 = 𝜒 𝐺 . ∎ 



Chromatic Polynomials 
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We shall associate with any graph a function telling 
whether or not it is 4-colorable. 

This study was motivated by the hope to prove the Four-
Color Theorem, which by that time was a conjecture. 

Let 𝑃𝐺 𝑘  denote the number of proper colorings of a 
graph 𝐺 with 𝑘 colors. 𝑃𝐺 𝑘  is called the chromatic 
function of 𝐺. 

Example. 𝑃𝐺 𝑘 = 𝑘 𝑘 − 1 2. The first vertex 
can be colored in 𝑘 ways, while each of the 
other two in 𝑘 − 1 ways.  
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For 𝐺 = 𝐾3 there is 𝑃𝐺 𝑘 = 𝑘 𝑘 − 1 𝑘 − 2  and for 
𝐺 = 𝐾𝑛 there is 𝑃𝐺 𝑘 = 𝑘 𝑘 − 1 𝑘 − 2  … (𝑘 − 𝑛
+ 1). 

If 𝑘 < χ 𝐺  then 𝑃𝐺 𝑘 ≤ 0. For 𝑘 ≥ χ 𝐺  there is 
𝑃𝐺 𝑘 > 0. 

The Four-Color Theorem for planar graph 𝐺 states that 
𝑃𝐺 4 > 0. 

It is difficult to compute 𝑃𝐺 𝑘  by inspection, but it can 
be systematically obtained as a sum of chromatic 
functions of complete graphs. 

For a tree 𝑇 of 𝑛 vertices there is 𝑃𝑇 𝑘 = 𝑘 𝑘 − 1 𝑛−1.  
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Theorem. Let 𝑢, 𝑣 ∈ 𝑉(𝐺) be not adjacent, and let 𝐺1 
and 𝐺2 be obtained from 𝐺  by adding the edge 𝑢𝑣, and 
by identifying 𝑢  and 𝑣 , respectively. Then 𝑃𝐺 𝑘
= 𝑃𝐺1 𝑘 + 𝑃𝐺2 𝑘 . 

𝑢𝑣 

𝑘 𝑘 − 1 𝑘 − 2  

𝐺2 

𝑢 𝑣 

𝐺 

𝑘 𝑘 − 1 𝑘 − 2 2 

= 
𝑢 𝑣 

𝐺1 

𝑘 𝑘 − 1 𝑘 − 2 𝑘 − 3  + 



March 2014 Graph Coloring 28 28 

Proof. In a proper coloring of 𝐺, 𝑢 and 𝑣 may have 
either the same color or different colors. 

The number of proper colorings where 𝑢 and 𝑣 have 
different colors does not change if an edge 𝑢𝑣 would 
exist, yielding 𝑃𝐺1 𝑘 . 

Similarly, the number of proper colorings where 𝑢 and 𝑣 
have same color does not change if 𝑢 and 𝑣 are merged, 
yielding 𝑃𝐺2 𝑘 . ■ 

Corollary. The chromatic function is a polynomial. 

Proof. The procedure of the theorem results in two 
graphs. In 𝐺1 the number of edges is increased. In 𝐺2 
the number of vertices is decreased. 
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The process is finite. It ends with producing complete 
graphs, whose chromatic functions are polynomial. 

The chromatic function is therefore a finite sum of 
polynomials, which must be polynomial too. ■ 

For 𝑛-vertex graph 𝐺 the degree of 𝑃𝐺 𝑘  is 𝑛, the 
coefficient of 𝑘𝑛 is 1 and that of 𝑘𝑛−1 is 𝐸 𝐺 , the sign 
of the coefficients is alternating, and the free coefficient 
is zero. (homework) 

Example. Scheduling feasibility. Lectures scheduling is 
in order, for which some time slots are given (e.g. 
campus is open). There is no limit on available rooms.  
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It is known that some lectures cannot take place in 
parallel (e.g. some students are registered to both). 

Is scheduling feasible? How many schedules there are? 

Solution. Define a graph 𝐺 𝑉, 𝐸 where 𝑣 ∈ 𝑉 
corresponds to a lecture,  and 𝑒 𝑢, 𝑣 ∈ 𝐸 corresponds 
to lectures that cannot be scheduled simultaneously. 

Derive the chromatic polynomial 𝑃𝐺 𝑘 , where 𝑘 is the 
number of time slots. 

Given 𝑘 , evaluation of 𝑃𝐺 𝑘  yields the number of 
distinct schedules. 𝑃𝐺 𝑘 ≤ 0 indicates non existence of  
feasible scheduling. ■ 
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𝑃𝐺 𝑘 = 𝑘5 − 7𝑘4 + 𝑎𝑘3 − 𝑏𝑘2 + 𝑐𝑘 

Example. 

= + 

= + + + 
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= + + + 2 

𝑃𝐺 𝑘 = 𝑘 𝑘 − 1 𝑘 − 2  𝑘 − 3  𝑘 − 4

+ 3𝑘 𝑘 − 1 𝑘 − 2  𝑘 − 3

+ 2𝑘 𝑘 − 1 𝑘 − 2

= 𝑘5 − 7𝑘4 + 19𝑘3 − 23𝑘2 + 10𝑘 
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Show that if 𝐺 and 𝐻 are disjoint (no common vertices) 
then𝑃𝐺∪𝐻 𝑘 = 𝑃𝐺 𝑘 𝑃𝐻 𝑘 . (homework) 

Show that if 𝐺 ∩ 𝐻 is complete then 𝑃𝐺∪𝐻 𝑘 𝑃𝐺∩𝐻 𝑘
= 𝑃𝐺 𝑘 𝑃𝐻 𝑘 . (homework) 



Edge Coloring 
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Edge coloring partitions 𝐸 𝐺  into 𝑘 sets (some possibly 
empty) 𝐸1, 𝐸2, … , 𝐸𝑘 . 

A 𝑘-edge-coloring of a graph 𝐺 is a labeling 𝑓: 𝐸 𝐺
→ 1,2,… , 𝑘 . 

An edge coloring is proper if adjacent edges have 
different colors. All coloring henceforth are assumed 
proper. 
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Edge coloring thus partitions 𝐸 𝐺  into 𝑘  sets 
𝑀1, 𝑀2, … ,𝑀𝑘 of matchings. (Only loopless graphs 

admit proper edge coloring).  

𝐺 is 𝑘-edge-colorable if it has 𝑘-edge-coloring. 

The edge chromatic number 𝜒′(𝐺) is the smallest 𝑘 such 
that 𝐺 has 𝑘-edge-coloring. 𝐺 is called 𝑘-edge-chromatic. 

Clearly, 𝜒′ 𝐺 ≥ ∆ 𝐺 . 

Clearly, 𝐺 is 𝑚-edge-colorable, where 𝑚 =  |𝐸(𝐺)|. 

Not 3-edge-colorable, hence 𝜒′(𝐺)  =  4. 
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Example. Timetabling. 𝑚 teachers 𝑥1, 𝑥2, …, 𝑥𝑚 and 𝑛 
classes 𝑦1, 𝑦2, …, 𝑦𝑛 are given. Teacher 𝑥𝑖 is required to 
teach class 𝑦𝑗  a lessen of period 𝑝𝑖𝑗. Schedule a complete 

timetable having minimum total duration. 

Solution. The scheduling is represented by a bipartite 
graph 𝐻 𝑋, 𝑌 ,  𝑋 = 𝑥1, 𝑥2,…, 𝑥𝑚  , 𝑌 = 𝑦1, 𝑦2,…, 𝑦𝑛   

vertices 𝑥𝑖 and 𝑦𝑗   are connected with 𝑝𝑖𝑗  parallel edges. 

The minimum number of colors required for 𝐻 edge-
coloring ensures minimum duration. 
• No schedule overlap for a teacher. 
• No lesson overlap for a class. ■ 
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Homework.  
1. Show that a 𝑑 -regular graph 𝐺 𝑉, 𝐸  is 𝑑 -edge 

colorable iff 𝐸  can be partitioned into perfect 
matchings. 

2. Show by an appropriate edge coloring that 

𝜒′ 𝐾𝑚,𝑛 = max 𝑚, 𝑛 . 

3. Given graph 𝐺 𝑉, 𝐸 , |𝑉| = 𝑛, |𝐸| = 𝑚, show that  
𝜒′ 𝐺 ≥ 2𝑚 𝑛 . 

4. Eight schoolgirls go for a walk in pairs every day. Can 
they arrange their outgoing so that every girl has a 
different companion at every day of the week? 



Edge Coloring of Bipartite Graphs 
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Let the subgraph 𝐻  span 𝐺  (𝑉 𝐻 = 𝑉 𝐺 ), and 
𝐶 ∶= 𝑀1, 𝑀2, … ,𝑀𝑘  be a 𝑘-edge-coloring of 𝐻. 

A color is available for an edge 𝑒 ∈ 𝐸 𝐺 \𝐸 𝐻  if it is 
available in its two end vertices. 

If 𝑒  is uncolored, any of its available colors can be 
assigned to extend 𝐶 to a 𝑘-edge-coloring of 𝐻 + 𝑒. 

For 𝑖 ≠ 𝑗 , each component of 𝐻𝑖𝑗 ≔ 𝐻 𝑀𝑖 ∪𝑀𝑗  is 

either an even cycle or a path (called 𝒊𝒋-path). (why?)  

Theorem. If 𝐺 is bipartite then 𝜒′ 𝐺 = ∆ 𝐺 .  
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Proof. By induction on 𝑚 = 𝐸 𝐺 . Let 𝑒 = 𝑢𝑣 𝜖 𝐸 𝐺 . 
Assume that 𝐻 = 𝐺\𝑒  has a ∆−edge−coloring  
𝑀1, 𝑀2, … ,𝑀∆ .  

If a color is available for 𝑒 we are done. Otherwise, each 
of the Δ colors is represented either at 𝑢 or at 𝑣.   

Since the degrees of 𝑢 and 𝑣 in 𝐺\𝑒 are Δ − 1 at most, 
there are colors 𝑖 ≠  𝑗, where 𝑖 is available at 𝑢 and exists 
in 𝑣, and 𝑗  is available at 𝑣 and exists in 𝑢.   

Consider the subgraph 𝐻𝑖𝑗 = 𝐻 𝑀𝑖 ∪𝑀𝑗 . Because 𝑢 has 

a degree one in 𝐻𝑖𝑗, the component containing 𝑢 is an 𝑖𝑗-

path 𝑃.     



March 2014 Graph Coloring 40 

𝑃 cannot terminate at 𝑣. If it did, it would started from 𝑢 
with color 𝑗 and end at 𝑣 with color 𝑖, hence comprising 
even number of edges.  

𝑃 + 𝑒 would then be an odd cycle in 𝐺, impossible for a 
bipartite graph. 

Interchanging the colors of 𝑃, a new Δ-edge-colorable 𝐻 
is obtained, where color 𝑗 is available at both 𝑢 and 𝑣. 

Assigning color 𝑗 to 𝑒 obtains a Δ-edge-coloring of 𝐺. ■ 

𝑢 

𝑣 

𝑃 
𝑒 

𝑢 

𝑣 

𝑃 
𝑒 
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Clearly, 𝜒′ 𝐺 ≥ ∆ 𝐺 , and for bipartite graphs there is 
𝜒′ 𝐺 = ∆ 𝐺 . 

What can be said about an upper bound? Surprisingly, it 
is very tight. 

Theorem. (Vizing 1964, Gupta 1966). Let 𝐺 be a simple 
graph (no parallel edges, loopless). Then 𝜒′ 𝐺 ≤ ∆ 𝐺
+ 1.  

Proof. Let 𝐺′ be a proper subgraph of 𝐺, edge-colored 
with ∆ 𝐺 + 1 colors, but 𝑢𝑣 could not be colored. We 
present a recoloring procedure to include 𝑢𝑣.   

Upper Bound of 𝜒′ 𝐺  
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Since more than ∆ 𝐺  colors are used, every vertex has a 
missing color. 

Let 𝒂𝟎 be missing at 𝑢 and 𝒂𝟏 be missing at 𝑣0. (𝒂𝟎 must 
be presented at 𝑣0 and 𝒂𝟏 at 𝑢.) 

𝑢 

𝑣0 

𝑢 

𝑣0 
𝑣1 

Let 𝑣1  be a neighbor of 𝑢 such that 𝑢𝑣1 is colored 𝒂𝟏. 
Some color 𝒂𝟐 must be missing at 𝑣1 since ∆ 𝐺 + 1 
colors are used. 
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Suppose 𝒂𝟐 does not appear on 𝑢. We could recolor 𝑢𝑣1 

with 𝒂𝟐, free 𝒂𝟏 from 𝑢, and then color 𝑢𝑣 with 𝒂𝟏. 

𝑢 

𝑣0 
𝑣1 

So we suppose that 𝒂𝟐 appears on 𝑢.  

The process continues for 𝑖 ≥ 2.  

𝑢 

𝑣0 
𝑣1 

Finding a new color 𝑎𝑖  that appears at 𝑢, let 𝑣𝑖   be the 
neighbor of 𝑢 such that the edge 𝑢𝑣𝑖 is colored 𝑎𝑖. 
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At 𝑣𝑖  some color 𝒂𝒊+𝟏 must be missing.  

𝑢 

𝑣0 
𝑣1 

𝑣2  

𝑣𝑖  

𝒂𝒊+𝟏 𝑢 

𝑣0 
𝑣1 

𝑣2  

𝑣𝑖  

𝒂𝒊+𝟏 𝑢 

𝑣0 
𝑣1 

𝑣2  

𝑣𝑖  

𝒂𝒊+𝟏 

If 𝒂𝒊+𝟏 is missing at 𝑢, we downshift color 𝑎𝑗  from 𝑢𝑣𝑗  to 

𝑢𝑣𝑗−1 for 1 ≤ 𝑗 ≤  𝑖. 

We are finished, unless 𝒂𝒊+𝟏 appears at 𝑢, in which case 
the process continues to 𝑣𝑗+1 and a color 𝑎𝑖+2.  

There are only ∆ 𝐺 + 1 colors, hence the repetitive 
selection of 𝑎𝑖+1must eventually repeat a color. 
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Let 𝑎1, … , 𝑎𝑙   be the shortest non repetitive color list such 
that 𝑎𝑙+1  is missing at 𝑣𝑙  and repeats one of 𝑎1, … , 𝑎𝑙−1.  

Let 𝑎𝑙+1 = 𝒂𝒌 for some 1 ≤ 𝑘 ≤ 𝑙 − 1. This color was 
missing at 𝑣𝑘−1 and appeared on 𝑢𝑣𝑘.  

If 𝑣𝑙 is missing 𝒂𝟎, we use 𝒂𝟎 on 𝑢𝑣𝑙 and downshift 

colors from 𝑣𝑙 and to complete the augmentation.  

𝑢 

𝑣0 

𝑣1 

𝑣2  

𝑣𝑘−1 

𝑣𝑘  

𝑣𝑙  𝑎𝑘  
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Hence we assume that 𝒂𝟎 appears at 𝑣𝑙 and 𝒂𝒌 does not. 

Let 𝑃 be the longest alternating path of edges colored 𝒂𝟎 
and 𝒂𝒌 that begins at 𝑣𝑙 (with 𝒂𝟎). 𝑃 is unique. (why?) 

𝑃 

Depending on the opposite end of 𝑃, recoloring can take 
place to complete the augmentation. There are three 
possibilities of 𝑃 end: at 𝑣𝑘, at 𝑣𝑘−1, and elsewhere. 

𝑢 

𝑣0 

𝑣1 

𝑣2  

𝑣𝑘−1 

𝑣𝑘  

𝑣𝑙  𝑎𝑘  
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If 𝑃 ends at 𝑣𝑘, it is with 𝒂𝟎 since 𝑢𝑣𝑘 is colored with 𝒂𝒌.  

Downshifting colors from 𝑣𝑘, interchanging colors along 
𝑃 , and coloring 𝑢𝑣𝑘  with 𝒂𝟎 , completes the edge 
coloring augmentation. 

𝑢 

𝑣0 

𝑣1 

𝑣2  

𝑣𝑘−1 

𝑣𝑘  

𝑣𝑙  

𝑎𝑘  

𝑎0 

𝑎0 

𝑎𝑘  

𝑢 

𝑣0 

𝑣1 

𝑣2  

𝑣𝑘−1 

𝑣𝑘  

𝑣𝑙  

𝑎0 

𝑎𝑘  

𝑎𝑘  

𝑎0 𝑎𝑘  
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If 𝑃 ends at 𝑣𝑘−1, it is with 𝒂𝟎 since 𝒂𝒌 is missing from  
𝑣𝑘−1.  

Downshifting from 𝑣𝑘−1, interchanging colors along 𝑃, 
and coloring 𝑢𝑣𝑘−1 with 𝒂𝟎, completes the edge coloring 
augmentation. 

𝑢 

𝑣0 

𝑣1 

𝑣2  

𝑣𝑘−1 

𝑣𝑘  

𝑣𝑙  𝑎𝑘  

𝑎𝑘  

𝑎0 

𝑎0 

𝑢 

𝑣0 

𝑣1 

𝑣2  

𝑣𝑘−1 

𝑣𝑘  

𝑣𝑙  𝑎𝑘  

𝑎0 

𝑎𝑘  

𝑎𝑘  
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Finally, suppose that 𝑃 neither ends at 𝑣𝑘 nor 𝑣𝑘−1, so it 
ends at some vertex outside 𝑢, 𝑣𝑘, 𝑣𝑘−1 . 

𝑢 

𝑣0 

𝑣1 

𝑣2  

𝑣𝑘−1 

𝑣𝑘  

𝑣𝑙  𝑎𝑘  

𝑎𝑘  

𝑎𝑘  

𝑎0 

𝑎0 

𝑃 ends with edge colored either by 𝒂𝟎 or 𝒂𝒌, so either of 
𝒂𝟎 or 𝒂𝒌 is missing from the far end of 𝑃, as otherwise 𝑃 
would not be longest. 
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Notice that the vertices along 𝑃 can also touch any of 
𝑁 𝑢 − 𝑣𝑘 , 𝑣𝑘−1 , since 𝒂𝒐  has been assumed to 
present at these (otherwise coloring downshift had been 
possible). 

We downshift from 𝑣𝑙 , assign color 𝒂𝒐  to 𝑢𝑣𝑙 , and 
interchange colors along 𝑃. ■ 

𝑢 

𝑣 

𝑣1 

𝑣2  

𝑣𝑘−1 

𝑣𝑘  

𝑣𝑙  𝑎𝑘  

𝑎0 

𝑎0 

𝑎𝑘  

𝑎𝑘  

𝑢 

𝑣0 

𝑣1 

𝑣2  

𝑣𝑘−1 

𝑣𝑘  

𝑣𝑙  𝑎𝑘  

𝑎𝑘  

𝑎𝑘  

𝑎0 

𝑎0 



Line Graphs 
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Many questions about vertices have natural analogues 
involving edges. 

Definition. The line graph 𝐿 𝐺  is 

defined by 𝑉 𝐿 𝐺 ≡ 𝐸 𝐺  and 

𝑒𝑓 ∈ 𝐸 𝐿 𝐺  if 𝑒 = 𝑢𝑣 and 𝑓 = 𝑣𝑤, 

where 𝑢, 𝑣, 𝑤 ∈ 𝑉 𝐺 . 

Independent sets have no pairs of adjacent vertices; 
matchings have no adjacent edges. 

Vertex coloring partitions the vertices 
into independent sets; edges can be 
partitioned into matching. 

𝑒 
𝑓 

𝑔 
ℎ 

𝑮 

𝑒 

𝑓 

𝑔 

ℎ 

𝑳 𝑮  

𝑢 
𝑣 

𝑤 

𝑧 

𝑧 

𝑤 
𝑣 

𝑣 

𝑣 



Line Graphs Characterization 
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Theorem. (Krausz 1943) A simple graph 𝐺 is the line 
graph of some simple graph 𝐻 iff 𝑉 𝐺  has a partition 
into cliques using each vertex of 𝐺 at most twice. 

Proof. Necessity follows from the fact that the edges 
adjacent at a vertex of 𝐻 are represented in 𝐿 𝐻  by 
vertices connected in a clique. 

Since an edge connects two vertices, those vertices 
imply two cliques at most. 

For sufficiency, suppose 𝑉 𝐺  has such a partition, using 
cliques 𝑆1, … , 𝑆𝑘 . We shall construct H satisfying 
𝐺 = 𝐿 𝐻 . Assume that 𝐺 has no isolated varices. 
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Let 𝑣1, … , 𝑣𝑙  be the vertices of 𝐺 that appear in a single 
clique of 𝑆1, … , 𝑆𝑘 (if such one exist). We define a vertex 
in 𝐻 for each set of 𝑨 = 𝑆1, … , 𝑆𝑘 , 𝑣1, … , 𝑣𝑙 . 

Edges of 𝐻 are defined such that 𝐻 vertices are adjacent 
if the corresponding sets (cliques) of 𝑨 intersect. 

By its construction, each vertex of G appears in exactly 
two sets of 𝑨.  

Also, two vertices cannot both appear in two sets of 𝑨, 
as otherwise a clique was split among the sets. 
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Hence there are no parallel edges in 𝐻, so it is simple, 
and there is one edge in 𝐻 for each vertex of 𝐺. 

clique clique 

impossible 
𝐺 = 𝐿 𝐻  

𝐻 => 

Adjacent vertices in 𝐺 appear together in some 𝑆𝑖   and 
the corresponding edges of 𝐻  share the vertex 
corresponding to 𝑆𝑖. Hence 𝐺 = 𝐿 𝐻 . ■ 

Krausz’s theorem does not directly yield an efficient test 
for line graph, which the following does.  
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Theorem. (Bieneke 1968) A simple graph 𝐺 is the line 
graph of some simple graph iff 𝐺 does not contain any of 
the following subgraphs as an induced subgraph.  


