
May 2014 Connectivity 1 

Connected Graphs and 
Connectivity 

prepared and Instructed by 
 Shmuel Wimer 

Eng. Faculty, Bar-Ilan University 



The Friendship Theorem 
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Theorem. (Erdös et. al. 1966) Let 𝐺 be a simple, 𝑛-vertex 
graph, in which any two vertices (people) have exactly 
one common neighbor (friends). Then 𝐺 has a vertex of 
degree 𝑛 − 1 (everyone’s friend). 

Proof. Suppose in contrary that Δ 𝐺 < 𝑛 − 1. We first 
show that 𝐺  is regular. Consider two non adjacent 
vertices 𝑥 and 𝑦, and assume w.l.o.g that 𝑑 𝑥 ≥ 𝑑 𝑦 . 

Since 𝑥  and 𝑦  have a single 
common neighbor 𝑧, 𝐺 has no 𝐶4 
subgraph.  

𝑥 𝑦 

𝑧1 

𝑧2 
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We establish a one-to-one mapping of 𝑁 𝑥  to 𝑁 𝑦 .  

For each 𝑣 ∈ 𝑁 𝑥 \ 𝑧  denote by 𝑓 𝑣  the common 
neighbor of 𝑣 and 𝑦. 

𝑥 
𝑁 𝑥  

𝑦 
𝑁 𝑦  

𝑧 

𝑣 

𝑓 𝑣  𝑣 

𝑓 𝑣  

impossible 

𝑓 is therefore one-to-one mapping from 𝑁 𝑥 \ 𝑧   to 
𝑁 𝑦 \ 𝑧 , hence 𝑁 𝑥 = 𝑁 𝑦 . 

There is 𝑁 𝑥 = 𝑑 𝑥 ≥ 𝑑 𝑦 = 𝑁 𝑦 , hence 
𝒅 𝒙 = 𝒅 𝒚  for any non adjacent vertices of 𝐺. 
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Any other vertex 𝑤 ≠ 𝑧 is not a neighbor of at least one 
of 𝑥, 𝑦 , say 𝑦 (𝐺 has no 𝐶4). By the same one-to-one 
mapping for 𝑤 and 𝑦 𝒅 𝒘 = 𝒅 𝒚 .  

In conclusion 𝒅 𝒙 = 𝒅 𝒚 = 𝒅 𝒘 = 𝒅 𝒛 = 𝒌. 𝐺  is 
therefore 𝒌-regular. 

We next look for a relation between 𝑛 and 𝑘 by counting 
the number of 2-edge paths in 𝐺. 

What about 𝑧? It could be the friend of all, but by the 
contrary assumption there is 𝑑(𝑧) < 𝑛 − 1. 

It has therefore one non adjacent vertex 𝑤, and by same 
one-to-one mapping for 𝑧 and 𝑤 𝒅 𝒛 = 𝒅 𝒘 . 
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By the theorem hypothesis, any two vertices have a 
unique common adjacent. 

Picking two vertices yields a total of  𝒏 𝒏− 𝟏 𝟐  distinct 
2-edge paths. 

All in all there is 𝒏 = 𝒌𝟐 − 𝒌 + 𝟏. 

For 𝑥 ∈ 𝐺 there are 𝑘 𝑘 − 1 2  distinct paths, yielding a 
total of 𝒏𝒌 𝒌 − 𝟏 𝟐  distinct 2-edge paths. 

To investigate the possible values of 𝑘, we examine the 
vertex adjacency matrix 𝑨 of 𝐺. 

Since 𝐺 is 𝑘-regular, each row and column of 𝑨 has 𝑘 1s. 
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Let us consider 𝑨2.  

Since each row and column of 𝑨 has 𝑘  1s, there is  
𝑨2

𝑖𝑖 = 𝑘, 1 ≤ 𝑖 ≤ 𝑛. 

Since two vertices have one and only one common 
neighbor , there is 𝑨2

𝑖𝑗 = 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗. 

𝑨2 is therefore  𝑨2 = 𝑱 + 𝑘 − 1 𝑰, where 𝑱 is the 𝑛 × 𝑛 
matrix of all 1s and 𝑰 is the 𝑛 × 𝑛 identity matrix.  

the rank of 𝑱 is 1  so it has an eigenvalue 𝑛  with 
multiplicity 1 and eigenvalues 0 with multiplicity 𝑛 − 1. 

𝑨2 has therefore one eigenvalue 𝒏 + 𝒌 − 𝟏 and 𝑛 − 1 
eigenvalues 𝒌 − 𝟏. 
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𝑨 has therefore eigenvalues ± 𝒌− 𝟏 with multiplicity 
𝑛 − 1 and eigenvalue 𝒌 with multiplicity 1. 

Since  𝐺 is simple, 𝑨’s diagonal entries are all 0, so its 
trace is 0, and so is the sum of the eigenvalues. 

Consequently, there is some integer 𝑡 (follows from the 

±) such that 𝑡 𝑘 − 1 = 𝑘. 

The only integers 𝑘 and 𝑡 solving 𝑡 𝑘 − 1 = 𝑘 is 𝒌 = 𝟐, 
implying 𝒏 = 𝑘2 − 𝑘 + 1 = 𝟑 , hence Δ 𝐺 = 𝑛 − 1 , 
contradicting the supposition Δ 𝐺 < 𝑛 − 1. ■ 

The eigenvalues of 𝑨 are the square root of 𝑨2. By 2-
edge path counting argument there is 𝒏 + 𝒌 − 𝟏 = 𝒌𝟐. 



Euler Tours 
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A tour of a connected graph 𝐺 is a closed walk traversing 
each edge of a graph at least once.  

Let 𝐺 be Eulerian and 𝑊 an Euler tour with initial and 
terminal vertex 𝑢. Each time an internal vertex 𝑣 ∈ 𝑊 
occurs, two edges are accounted. 

It is called Euler tour if each edge is traversed exactly 
once. 𝐺 is Eulerian if it admits an Euler tour. 

𝑑 𝑣  is therefore even for all 𝑣 ≠ 𝑢, and also for 𝑢. 

Eulerian graph is therefore necessarily even. 
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Proof. Let 𝑇 be a maximal trail but not closed. Since 𝑇 is 
open, the terminal edge 𝑣 has odd incident 𝑇’s edges. 

But then 𝑣 has another non traversed incident edge 
which contradicts that 𝑇 is maximal. ■ 

Theorem. A finite graph 𝐺 (parallel edges and loops are 
allowed) is Eulerian iff it is connected and even. 

Proof. Necessity was shown. For sufficiency, let 𝑇 be a 
maximal trail in 𝐺 (must be closed by the lemma). 

Lemma. Every maximal trail in an even graph is closed. 
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𝐺′ 𝑇 

𝑮 

𝑣 

𝑒 

If 𝐸 𝑇 ≠ 𝐸 𝐺 , let 𝐺′ = 𝐺 − 𝐸 𝑇 . 𝐺′ is even. There 
must be an edge 𝑒 ∈ 𝐸 𝐺′  incident to 𝑇 at a vertex 𝑣. 

Once the traversal of 𝑇 reached 𝑣, we could switch to 𝑇′, 
consume its edges and return to 𝑣, a contradiction to 𝑇 
being maximal trail at 𝐺. ■ 

Let 𝑇′ be a maximal trail in 𝐺′, starting at 𝑣 along 𝑒. By 
the lemma 𝑇′ is closed. 

𝑇′ 
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Theorem. For a connected nontrivial  graph with 2𝑘 odd 
vertices (why even?), the minimum number of pairwise 
edge disjoint trails covering the edges is max 𝟏, 𝒌 . 

Proof. The internal nodes of trails contribute even 
degree, and their terminals odd degree. 

A trail has two terminals at most (zero if it is a tour)  
hence 𝑘 trails at least are required. 

One trail at least is required since 𝐸(𝐺) > 0. It was 
shown also that for 𝑘 = 0 one trail (a tour) suffices, so at 
least max 1, 𝑘  is required for 𝑘 > 0. 
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Add an edge connecting each paired odd vertices. 𝐺′ is 
connected and each vertex is even, hence an Euler tour 
exists. 

Traversing the Euler tour, a new 
trail starts each time an edge of 
𝐸 𝐺′ − 𝐸(𝐺)  is traversed, 
yielding a total of 𝑘  edge-
disjoint trail cover of 𝐸 𝐺 . ■ 

G 

𝐺′ 

To see that 𝑘 edge-disjoint trails cover 𝐸(𝐺), pair up the 
odd vertices of 𝐺 arbitrarily.   
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Algorithm. (Fleury 1883, Eulerian trail construction) 

Input: A connected graph 𝐺  with at most two odd 
vertices. 

Initialization: Start at an odd vertex if exists, otherwise 
start arbitrarily at any vertex. 

Iteration: Traverse from the current vertex any non cut-
edge, unless there is no other alternative. 

Theorem. If 𝐺 has one non trivial component and at 
most two odd vertices, then Fleury’s algorithm 
constructs an Eulerian trail. 

Proof. By induction on 𝐸 𝐺 . Immediate if 𝐸 𝐺 = 1.  
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If 𝐺 is even, it has no cut-edge. Otherwise, the removal 
of that edge would leave two separate components, each 
with a single odd degree vertex, which is impossible. 
(why?) 

Suppose the construction claim holds for 𝐸 𝐺 − 1.    

Consider 𝐺 − 𝑢𝑣. 𝑢, 𝑣  turn to odd degree vertices. 
Starting from 𝑢 , by induction Fleury algorithm finds 
𝑢 → 𝑣 Eulerian trail. Then close to a tour along 𝑣𝑢.  

Suppose 𝐺 has two odd vertices 𝑢, 𝑣 . If 𝑑 𝑢 = 1, 
starting from 𝑢𝑥, Fleury algorithm finds Eulerian trail 
from 𝑥 to 𝑣. 



? 
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Since 𝐺 is connected, there is a path 𝑃 𝑢 → 𝑣. Since 
𝑑 𝑢 > 1, there is an edge 𝑢𝑥 not on 𝑃. 

Assume first 𝑥 ≠ 𝑣 . Remove 𝑢𝑥  from 𝐺 . Is 𝐺 − 𝑢𝑥 
connected?  

So let 𝑑 𝑢 > 1.  

Yes, otherwise 𝑥 would have been a single odd vertex of 
its component, which is impossible. (why?)   

𝑃 

𝑢 

𝑥 

𝑣 𝑮 
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𝐺 − 𝑢𝑥 has two odd vertices 𝑥 and 𝑣. 

By induction Fleury algorithm finds a 𝑣 → 𝑥 Eulerian trail, 
extendable by 𝑥𝑢 to an Eulerian trail of 𝐺.     

If 𝑥 = 𝑣  then 𝐺 − 𝑢𝑣 is even.  

By induction Fleury algorithm finds Eulerian tour starting 
(and terminating) at 𝑢, extendable by 𝑥𝑢 to an Eulerian 
trail of 𝐺. ■  



Layout of CMOS Compound Gates 
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The Chinese Postman Problem 
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(Guan Meigu 1962) A postman has to traverse all the 
roads of a town (a graph 𝐺), where every road (an edge) 
has a positive weight  (e.g. length, time, biting dogs ). 
The postman starts and ends at the same vertex.  

If 𝐺 is even, an Eulerian tour is optimal. Otherwise, edges 
must be repeated (multigarph, parallel edges). 

Edges are duplicated to produce an even graph. The 
problem is therefore to minimize the total weight of 
edge duplicates producing an even graph. 

Find a closed walk of minimum weight that traverses all 
the edges.   
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Edges need not be multiplied more than once. (why?) 

If an edge is used three or more times, two duplicates 
can be removed while 𝐺 stays even. 

4 4 

4 4 

7 

2 

2 

7 

1 2 2 1 
3 

3 

3 

3 

1 1 

1 1 

Cost: 4 + 4 + 4 + 4 = 16. 

Cost: 1 + 7 + 7 + 1 = 16. 

Better solution: 
1 + 2 + 1 + 1 + 2 + 1 + 1 + 1 = 10. 

Duplicated edge connecting odd and even vertices switch 
their evenness. 
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Edge addition must proceed until an odd vertex is met. 

(Edmonds and Johnson 1973). If there were only two odd 
vertices, a shortest path connecting those solves the 
problem. 

Given 2𝑘 odd vertices, a weighted 𝐾2𝑘 graph is defined. 
An edge weight is the length of the shortest path in G 
connecting the corresponding vertices. 

The problem turns into finding a minimum weight 
perfect matching in the above weighted 𝐾2𝑘, for which a 
polynomial algorithm exists. ■ 



Connection in Digraphs 
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A directed walk in a digraph 𝐷 is an alternating sequence 
of vertices and arcs 𝑊 ≔ 𝑣0, 𝑎1, 𝑣1, 𝑎2, … , 𝑣𝑙−1, 𝑎𝑙 , 𝑣𝑙 , 
such that 𝑣𝑖−1 and 𝑣𝑖 are the tail and head vertices of 
the arc 𝑎𝑖  , respectively, 1 ≤ 𝑖 ≤ 𝑙. 

𝒖𝑾𝒗 is the portion of 𝑊 starting at 𝑢 and ending at 𝑣. 

𝝏+ 𝑿  

𝑿 𝜕+ 𝑋  is the out-cut 
(outgoing arcs) connected 
to 𝑉 𝐺 \𝑋.  
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Theorem. Given digraph 𝐺, let 
𝑥, 𝑦 ∈ 𝑉 𝐺 . 𝑦  is reachable 
from 𝑥  iff ∀ 𝑋 ⊂ 𝑉 𝐺 , 𝑥
∈ 𝑋, 𝑦 ∉ 𝑋, there is 𝜕+ 𝑋 ≠ ∅. 

Proof. Let 𝑃 be a directed path from 𝑥 to 𝑦. Consider any 
𝑋 ⊂ 𝑉 𝐺  such that 𝑥 ∈ 𝑋 and 𝑦 ∉ 𝑋. 

Let 𝑦 be reachable from 𝑥 and let 𝑢 ∈ 𝑋 be the last 
vertex on 𝑃 and 𝑣 its successor. Then 𝑢𝑣 ∈ 𝜕+ 𝑋  and 
hence 𝜕+ 𝑋 ≠ ∅. 

𝑥 
𝑦 
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Conversely, suppose that 𝑦 is not reachable from 𝑥, and 
let 𝑋 be the set of vertices reachable from 𝑥.  

There is 𝑦 ∈ 𝑉 𝐺 \𝑋 . Since no vertex of 𝑉 𝐺 \𝑋 is 
reachable from 𝑥, the out-cut 𝜕+ 𝑋 = ∅. ■ 

Definition. A digraph 𝐺  is strongly connected if ∀ 
ordered vertex pair 𝑢, 𝑣 ∈ 𝑉 𝐺  there is 𝑢 → 𝑣 path in 
𝐺. 
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An Eulerian tour in 𝐺  implies 𝑑+ 𝑢 = 𝑑− 𝑢  ∀ 𝑢
∈ 𝑉 𝐺 . 

This is also sufficient, if the edges of 𝐺 belong to one 
connected component. Proofs are similar to undirected 
graphs.  

Algorithm. (Directed Eulerian Tour) 

Input. A digraph 𝐺 that is an orientation of a connected 
graph, satisfying 𝑑+ 𝑢 = 𝑑− 𝑢  ∀ 𝑢 ∈ 𝑉 𝐺 . 

Since 𝑑+ 𝑢 = 𝑑− 𝑢  ∀ 𝑢 ∈ 𝑉 𝐺 , a  𝑢 → 𝑣 path exists 
for each 𝑢, 𝑣 ∈ 𝑉 𝐺 , hence 𝐺  is strongly connected 
(proven later). 
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Step 1. Choose a vertex 𝑣 ∈ 𝑉 𝐺 . Derive 𝐺′ by reverting 
the edge directions of 𝐺. 

𝑮 

𝑻′ 

𝑮′ 

𝑣 

Find a spanning tree 𝑇′ of 𝐺′ rooted at 𝑣 (BFS, other). It is 
possible since 𝐺 is strongly connected. Proven in next 
Theorem. 
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Step 2. Let 𝑇 be the reversal of 𝑇′. Designate the arc of 𝑇. 

Step 3. Construct an Eulerian tour from 𝑣, where leaving 
from a vertex 𝑢 is on edge of 𝑇 only if all other outgoing 
arcs have already been used. ■ 

𝑮 

𝑻 

𝑣 



May 2014 Connectivity 27 

Theorem. If 𝐺  is multi digraph with one non trivial 
component and 𝑑+ 𝑢 = 𝑑− 𝑢  ∀ 𝑢 ∈ 𝑉 𝐺 , then the 
algorithm constructs an Eulerian tour of 𝐺. 

Proof. The construction of 𝑇′ by BFS (oriented) must 
reach all 𝑉 𝐺 . If it did not, let 𝑅 be the set of those 
reached and 𝑉 𝐺 \𝑅 ≠ ∅. 

An arc within 𝑇′ contributes 
one to the in-degree and 
one to the out-degree of 
𝑅’s vertices.  
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𝑅 is connected to 𝐺\𝑅 only by entering arcs, otherwise 
𝑇′ (and 𝑅) could be expanded. Such arcs contribute only 
to the in-degree of 𝑅’s vertices.  

The total in-degree of 𝑅’s vertices is therefore greater 
than their total out-degree, which is impossible since 
𝑑+ 𝑢 = 𝑑− 𝑢  ∀ 𝑢 ∈ 𝑉 𝐺 . Hence 𝑅 = 𝑉 𝐺 . 

The algorithm starts traversal 
from 𝑣. We show that it must 
terminate at 𝑣 and consume 
𝐸 𝐺 . Notice that all entering 
arcs of 𝑣 belong to 𝑇.  
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The trail must terminate at 𝑣 , since the traversal leaves a 
vertex 𝑢 ≠ 𝑣 along an edge 𝑒 ∈ 𝑇 only after all the other 
out-arcs are consumed. 

Since 𝑑+ 𝑢 = 𝑑− 𝑢 , it implies that all 𝑢’s in-arcs are 
also consumed, in particular, all those of 𝑇.  

Finally, 𝑇 spans 𝐺, so all the vertices, and hence arcs, 
must be traversed. ■ 

Therefore, entering into 𝑣 
with an arc 𝑒 (∈ 𝑇) implies 
that all the vertices and 
incident arcs of the sub tree 
rooted at 𝑣 are consumed. 
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Application. Testing the position of a rotating drum.  

Is there a cyclic arrangement of 2𝑛 binary 0/1 digits, 
such that the 𝑛-bit 2𝑛 words obtained by successively 
sliding 𝑛-bit window are all distinct?  

0 0 
0 

0 

1 

1 

1 
1 1 

1 

0 

0 

0 

1 

1 

0 
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0 0 
0 

0 

1 

1 

1 
1 1 

1 

0 

0 

0 

1 

1 

0 

𝟎𝟎𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟏𝟏𝟎𝟎𝟏𝟎𝟏 solves the problem for 𝑛 = 4.  

The problem can be solved using Eulerian digraph.  

Associate the 2𝑛−1 distinct (𝑛 − 1)-bit words with the 
vertices of a digraph 𝐷𝑛 (𝑛-regular).  

By encoding the currently 
read 𝑛-bit word (with a 
mounted sensor) the 
position of the drum is 
known.  
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0 0 
0 

0 
1 

1 
1 

1 1 
1 

0 

0 

0 
1 

1 

0 

Label an arc with 
the LSB of 𝑏. 

110 

100 

101 

011 

111 

0 

0 

0 

1 

Place an arc from sequence 𝒂 to sequence 𝒃 if the 𝑛 − 2 
LSBs of 𝒂 agree with the 𝑛 − 2 MSBs of 𝒃.  

𝒃 𝒂 
1 

1 1 1 

1 

1 

1 
1 

0 

0 0 

0 

0 

0 
0 0 

tail vertex 

head vertex 

101 111 

011 

110 

000 010 

001 

100 
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For each 𝑛 − 1 -bit sequence (vertex) there are two 
out-going arcs labeled 0 and 1. 

There are also two in-coming arcs labeled with the 
vertex’s LSB. Hence 𝐷𝑛 is Eulerian. 

tail vertex 

head vertex 

The 𝑛-bit codes obtained by appending the arc bit (LSB) 
to the 𝑛 − 1 bits at a tail vertex are all distinct. Two 
successive codes agree on the 𝑛 − 1 bits. ■ 
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Application. Street-Sweeping Problem.  

Curbs of a city are described by a digraph 𝐻. 

Curbs are swept in the traffic direction. A two-way street 
implies two parallel oppositely directed arcs. 

A one-way street implies two parallel arcs of same 
direction. 

In NYC parking is prohibited from some street curbs each 
weekday to allow for street sweeping. 

This defines a sub-graph 𝐺 of 𝐻, consisting of the arcs 
available for sweeping on that day.    
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The problem is how to sweep 𝐺  while minimizing 
deadheading time (no sweeping). 

Each 𝑒 ∈ 𝐸 𝐻  has a deadheading time 𝑡 𝑒 .     

If 𝐺 is Eulerian no deadheading time is needed.  

Otherwise, arcs of 𝐺 are duplicated or arcs of 𝐻 are 
added (not being swept).    

Let 𝑋 ⊂ 𝑉 𝐺  satisfy 𝑑− 𝑥 > 𝑑+ 𝑥 , ∀𝑥 ∈ 𝑋 , and 
𝑌 ⊂ 𝑉 𝐺  satisfy 𝑑+ 𝑦 > 𝑑− 𝑦 , ∀𝑦 ∈ 𝑌. 

Set 𝛼 𝑥 = 𝑑− 𝑥 − 𝑑+ 𝑥  and 𝛽 𝑦 = 𝑑+ 𝑦 − 𝑑− 𝑦 . 
There is  𝛼 𝑥𝑥∈𝑋 =  𝛽 𝑦𝑦∈𝑌 . 
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Since in the super-digraph the in and out degrees must 
be balanced, the additions should be paths in 𝐻 from 𝑋 
to 𝑌, which cost is the shortest path length.   

The Eulerian super-digraph must add 𝛼 𝑥  arcs with tail 
in 𝑥 ∈ 𝑋 and 𝛽 𝑦  arcs with head in 𝑦 ∈ 𝑌.    

The cost of shipment of one unit from 𝑥 to 𝑦 is 𝑐 𝑥𝑦  
(shortest path length), with  𝛼 𝑥𝑥∈𝑋 =  𝛽 𝑦𝑦∈𝑌 .                                         

This turns into a Transportation Problem with supplies 
𝛼 𝑥  for 𝑥 ∈ 𝑋 and demands 𝛽 𝑦  for 𝑦 ∈ 𝑌.  

Transportation problem was introduced by Kantorovich 
(1939), solved by Hitchcock (1941) and many others. ■ 



Cuts and Connectivity 
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It is desired to preserve network service when some 
nodes or connections break. 

For expensive connections it is desired to maintain 
connectivity preservation with as few edges as possible. 

Graphs and digraphs are assumed loopless. 

Definitions. A set 𝑆 ⊆ 𝑉 𝐺  of a graph 𝐺 is a separating 
set or vertex cut if 𝐺 − 𝑆 has more than one component. 

𝐺 is 𝒌-connected if for every such 𝑆 there is 𝑆 ≥ 𝑘.   

The connectivity 𝜿 𝑮  is the smallest vertex cut size.  
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Example. Though 𝐾𝑛 has no separating set, we define 
𝜅 𝐾𝑛 = 𝑛 − 1.  

What is 𝜅 𝐾𝑚,𝑛 ?  

Every induced subgraph of 𝐾𝑚,𝑛  having at least one 
𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 is connected. 

Hence either 𝑋 or 𝑌 must be included in a separating set. 

Since 𝑋 and 𝑌 are separating sets by themselves, 

there is 𝜅 𝐾𝑚,𝑛 = min 𝑚, 𝑛 . ■ 



May 2014 Connectivity 39 

A 𝑘-d cube has 2𝑘 vertices, obtained from two 𝑄𝑘−1 
copies by connecting matched vertices.   

𝑄𝑘 is 𝑘-regular. Deletion of the 𝑘 neighbors of a vertex 
separates 𝑄𝑘   and hence 𝜅 𝑄𝑘 ≤ 𝑘. 

Example. What is the connectivity of a 𝑘-dimensional 
cube 𝑄𝑘?  

To prove that 𝜅 𝑄𝑘 = 𝑘 we show by induction that 
every vertex cut has at least 𝑘 vertices. 
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𝑄𝑘  is obtained by matching the corresponding vertices of 
two 𝑄𝑘−1 copies 𝑄 and 𝑄′. 

Let 𝑆 be any vertex cut of 𝑄𝑘.   

If 𝑄 − 𝑆  and 𝑄′ − 𝑆  are connected then 𝑄𝑘 − 𝑆  is 
connected too, unless 𝑆 contains one end vertex of each 
of the 2𝑘−1 matching edges. 

But then 𝑆 ≥ 2𝑘−1 ≥ 𝑘  for 𝑘 ≥ 2 , hence we may 
assume that 𝑄 − 𝑆 is disconnected. 

𝑄 has 2𝑘−1 vertices, hence by induction 𝜅 𝑄 = 𝑘 − 1 , 
hence 𝑆 has 𝑘 − 1 vertices in 𝑄.  
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If 𝑆 would not have vertices in 𝑄′ then 𝑄′ − 𝑆 would be 
connected and all the vertices of 𝑄 − 𝑆 have neighbors in 
𝑄′ − 𝑆 (by the matching edges). 

𝑄𝑘  would therefore be connected unless 𝑆 has at least 
one vertex in 𝑄′, yielding 𝑆 ≥ 𝑘. ■ 

When 𝐺 is not a clique, deleting all the neighbors of a 
vertex disconnects 𝐺, so 𝜿 𝑮 ≤ 𝜹 𝑮 , but equality does 
not necessarily hold. 



Edge Connectivity 

May 2014 Connectivity 42 

Perhaps that the transceivers (vertices) of a network 𝐺 
are so reliable that more than 𝜅 𝐺 − 1 never fail, hence 
communication is guaranteed. 

It is desired that the links (edges) are also designed so it 
is hard to separate 𝐺 by edge deletion. 

Definitions. A disconnecting set of edges is a set 
𝐹 ⊆ 𝐸 𝐺  such that 𝐺 − 𝐹  has more than one 
component. 

Given 𝑆, 𝑇 ⊆ 𝑉 𝐺 , 𝑆, 𝑇  denotes the edges having one 
vertex in 𝑆 and one in 𝑇. An edge cut is of the form 
𝑆, 𝑆  , where 𝑆 ⊂ 𝑉 𝐺 .  
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𝐺 is 𝒌-edge connected if every disconnecting set has at 
least 𝑘 edges. 

The edge-connectivity 𝜿′ 𝑮  of 𝐺 is the minimum size of 
a disconnecting set. 

Every edge cut 𝑆, 𝑆  is a disconnecting set since 
𝐺 − 𝑆, 𝑆   has no path from 𝑆 to 𝑆 . 

The converse is false. The 3 edges of 𝐾3  are 
disconnecting set, but not an edge cut. Still, there is: 

Proposition. Every minimal disconnecting set is an edge 
cut. 

Let 𝐹 ⊆ 𝐸 𝐺  and 𝐺 − 𝐹  have more than one 
component. 
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there must be some component 𝐻  whose outgoing 
edges are deleted. 

Hence 𝐹 contains the edge cut 𝑉 𝐻 ,𝑉 𝐻 . 𝐹 is not a 

minimal disconnecting set unless 𝐹 = 𝑉 𝐻 , 𝑉 𝐻 . ■ 

Deleting one endpoint of each edge of 𝐹 disconnects 𝐺. 

It is therefore expected that 𝜅 𝐺 ≤ 𝜅′ 𝐺  will always 
hold, unless a vertex deletion eliminates a component of 
𝐺 − 𝐹, producing a connected subgraph.  

Theorem. 𝜅 𝐺 ≤ 𝜅′ 𝐺 ≤ 𝛿 𝐺 . 

Proof. 𝜅′ 𝐺 ≤ 𝛿 𝐺  follows immediately since the 
deletion of the incident edges of a vertex disconnects 𝐺. 



May 2014 Connectivity 45 

To show 𝜅 𝐺 ≤ 𝜅′ 𝐺  let 𝑆, 𝑆  be a minimum edge cut. 

If every vertex of 𝑆 is adjacent to every vertex of 𝑆      
then 𝜅′ 𝐺 = 𝑆 × 𝑆 ≥ 𝑉 − 1 ≥ 𝜅 𝐺 . 

We therefore assume that there exist 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆  but an 
edge 𝑥𝑦 does not exist. 

Let 𝑇 be the vertex set 𝑁 𝑥 ∩ 𝑆 ∪ 𝑁 𝑆 ∩ 𝑆 − 𝑥 . 

𝑥 

𝑦 

𝑆 𝑆  
𝑇 

𝑇 
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Since 𝑥 and 𝑦 belong to 
different components of 
𝐺 − 𝑇, 𝑇 is a separating 
set. 

The vertices of 𝑇 can be associated with distinct edges 
connecting 𝑆 to 𝑆  , hence 𝜅 𝐺 ≤ 𝑇 ≤ 𝑆, 𝑆 = 𝜅′ 𝐺 . 
■  



𝑘-connected Graphs 
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A communication network is fault-tolerant if there are 
alternative paths between vertices. 

The more vertex disjoint paths (except ends) the better.  

Lemma. A graph G is connected iff for every non trivial 
partition 𝑉 𝐺 = 𝑆 ∪ 𝑇, 𝑆 ∩ 𝑇 = ∅, there is 𝑠𝑡 ∈ 𝐸 𝐺  
where 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇. 

Proof. Suppose 𝐺 is connected, and let 𝑆 and 𝑇 be a 
partition. 

Since 𝐺 is connected, there is a path 𝑃 between every 
𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇. 
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Let 𝑠 ≠ 𝑣 be the last vertex of 𝑃 in 𝑆 and 𝑡 ≠ 𝑢 its 
successor. 𝑠𝑡 is the desired edge. 

Conversely, if 𝐺 is disconnected, let 𝐻 be a component of 
𝐺. Then 𝑆 = 𝑉 𝐻  and 𝑇 = 𝑉 𝐺 − 𝑉 𝐻  is a partition. 

There cannot exist an edge between 𝑆 and 𝑇, otherwise 
𝐻 would not be a component. ■  

The above lemma shows that each pair of vertices is 
connected with a path iff 𝐺 is 1-edge-connected. 

We subsequently generalize this characterization to 𝑘-
edge-connected graphs and to 𝑘-connected graphs. 
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Theorem. (Whitney 1932) A graph 𝐺, 𝑉 𝐺 ≥ 3 ,  is 2-
connected iff each 𝑢, 𝑣 ∈ 𝑉 𝐺  are connected with a pair 
of internally-disjoint paths (disjoint vertices except 𝑢 and 
𝑣). 

Proof. Suppose that any two vertices are connected with 
a pair of internally-disjoint paths. 

Deletion of one vertex cannot disconnect these vertices, 
and at least two vertex deletion is required, hence G is 2-
connected. 

Conversely, suppose that 𝐺 is 2-connected. We prove by 
induction on 𝑑 𝑢, 𝑣  (shortest path) that two internally-
disjoint 𝑢, 𝑣 -paths exist. 
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For the base 𝑑 𝑢, 𝑣 = 1. 𝐺 − 𝑢𝑣 is still connected, since 
𝜅′ 𝐺 ≥ 𝜅 𝐺 ≥ 2 (𝐺 is 2-connected). 

A 𝑢𝑣-path is internally-disjoint from 𝑢𝑣, which being an 
edge, has no internal vertices, hence two disjoint paths 
exist.  

Assume by induction that 𝐺 has a pair of internally-
disjoint 𝑥𝑦-paths for 𝑟 > 𝑑 𝑥, 𝑦 ≥ 1.  

Let 𝑑 𝑢, 𝑣 = 𝑟 and let 𝑤 be the vertex before 𝑣 on the 
𝑢𝑣-path. 

𝑑 𝑢,𝑤 = 𝑟 − 1, and by induction there are 𝑢𝑤 vertex-
disjoint paths 𝑃 and 𝑄.   
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Since 𝐺 − 𝑤 is connected, there is a 𝑢𝑣-paths 𝑅, 𝑅 ≠ 𝑃 
and 𝑅 ≠ 𝑄. 

If 𝑅 is vertex-disjoint of 𝑃 or 𝑄 we are done, since 𝑅 and 
either of 𝑃 ∪ 𝑤𝑣 or 𝑄 ∪ 𝑤𝑣 are edge disjoint paths. .   

Otherwise, let 𝑅 intersect both 𝑃 and 𝑄.   

Assume w.l.o.g that its last common vertex 𝑥 is on 𝑃.   

Combining the 𝑢𝑥-path of 𝑃 with 𝑥𝑣-path of 𝑅 yields a 
vertex-disjoint path to 𝑄 ∪ 𝑤𝑣 path. ■  

𝑅 𝑥 

𝑢 𝑣 
𝑤 

𝑃 

𝑄 
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Theorem. (2-connected graph characterization) 
If 𝑉 𝐺 > 3, the following conditions are equivalent. 

• 𝐺 is connected and has no cut-vertex. 

• For all 𝑥, 𝑦 ∈ 𝑉(𝐺), there are internally-disjoint 𝑥𝑦-
paths. 

• For all 𝑥, 𝑦 ∈ 𝑉(𝐺), there is a cycle through 𝑥 and 𝑦. 

• 𝛿 𝐺 ≥ 1, and every pair of edges of 𝐸(𝐺) is on a 
common cycle. 

Let 𝑮 𝒙, 𝒚  be a graph with two distinguished vertices. 

The local connectivity 𝒑 𝒙, 𝒚  is the maximum number 
of pairwise internally disjoint 𝑥𝑦−paths. 𝒄 𝒙, 𝒚  denotes 
the smallest vertex cut separating 𝑥 and 𝑦. 
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Theorem. (Menger 1927, Göring’s proof 2000) 
Let 𝑥, 𝑦 ∈  𝑉 𝐺  be non adjacent. Then 𝑝 𝑥, 𝑦
= 𝑐 𝑥, 𝑦 . 

Proof. Let 𝑐𝐺 𝑥, 𝑦 ≔ 𝑘.  Let us show that 𝑝𝐺 𝑥, 𝑦 ≤ 𝑘. 

Let Π be a set of internally disjoint 𝑥𝑦−paths . Each path 
of Π must meet at least one vertex of any 𝑥𝑦-vertex-cut, 
as otherwise 𝑥, 𝑦  would have been connected.  

Hence, the 𝑥𝑦-vertex-cut must have at least Π  distinct 
vertices, yielding 𝑝𝐺 𝑥, 𝑦 ≤ 𝑘. 
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We subsequently show by induction on 𝐸 𝐺  that 
𝑝𝐺 𝑥, 𝑦 ≥ 𝑘.  

We can assume that there is an edge 𝑒 = 𝑢𝑣 incident 
neither to 𝑥 nor to 𝑦. 

Otherwise, every 𝑥𝑦−path is of lengths 2, so the interim 
vertices of the 𝑥𝑦-paths define an 𝑥𝑦-vertex-cut and the 
Theorem’s conclusion follows immediately. 

Set 𝐻 ≔ 𝐺\𝑒. Because 𝐻 is a subgraph of 𝐺 there is 
𝑝𝐺 𝑥, 𝑦 ≥ 𝑝𝐻 𝑥, 𝑦 . 

By induction there is 𝑝𝐻 𝑥, 𝑦 = 𝑐𝐻 𝑥, 𝑦 . 
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We may assume that 𝑝𝐺 𝑥, 𝑦 = 𝑘 − 1 . 

Otherwise, 𝑝𝐺 𝑥, 𝑦 > 𝑘 − 1 , hence 𝑝𝐺 𝑥, 𝑦 ≥ 𝑘
= 𝑐𝐺 𝑥, 𝑦  and the Theorem’s conclusion follows. 

Thus, in particular, 𝑐𝐻 𝑥, 𝑦 = 𝑘 − 1. 

Let 𝑆 ≔ 𝑣1 , … , 𝑣𝑘−1  be a minimum 𝑥𝑦-vertex-cut in 𝐻. 

Since every 𝑥𝑦-vertex-cut of 𝐻 together with either end 
of 𝑒 = 𝑢𝑣 is an 𝑥𝑦-vertex-cut of 𝐺 , there is 𝑐𝐺 𝑥, 𝑦
≤ 𝑐𝐻 𝑥, 𝑦 + 1, yielding 

𝑝𝐺 𝑥, 𝑦 ≥ 𝑝𝐻 𝑥, 𝑦 = 𝑐𝐻 𝑥, 𝑦 ≥ 𝑐𝐺 𝑥, 𝑦 − 1 = 𝑘 − 1. 



𝑥 𝑦 
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𝑢 𝑣 

𝑒 

𝑋 𝑌 𝑆 

Let 𝑋(𝑌) the set of vertices reachable from 𝑥(𝑦) in 
𝐻 − 𝑆. There is 𝑋 ∩ 𝑌 = ∅. 

Since 𝑆 = 𝑘 − 1, 𝑆 cannot be an 𝑥𝑦-vertex-cut of 𝐺 
(𝑐𝐺 𝑥, 𝑦 ≔ 𝑘).  

Therefore, there must exist an 𝑥𝑦-path in 𝐺 − 𝑆, that 
includes 𝑒 = 𝑢𝑣, where w.l.o.g 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑌. 
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Let us contract 𝑌 into a single vertex 𝑦, and denote the 
outcome by 𝐺/𝑌. 

Likewise, let us contract 𝑋 into a single vertex 𝑥, and 
denote the outcome by 𝐺/𝑋. 

Every 𝑥𝑦-vertex-cut 𝑇 in 𝐺/𝑌 is necessarily so in 𝐺. 
Otherwise, there was an 𝑥𝑦-path 𝑃 in 𝐺 avoiding 𝑇. 

𝑥 𝑦 

𝑢 

𝑋 𝑆 𝑮/𝒀 

𝑦 𝑥 

𝑣 

𝑌 𝑆 𝑮/𝑿 



May 2014 Connectivity 58 

The subgraph 𝑃/𝑌 of 𝐺/𝑌 would then contain an 𝑥𝑦-
path in 𝐺/𝑌 avoiding 𝑇, impossible since 𝑇 is an 𝑥𝑦-
vertex-cut in 𝐺/𝑌. 

Consequently 𝑐𝐺/𝑌 𝑥, 𝑦 ≥ 𝑘 (𝑐𝐺 𝑥, 𝑦 ≔ 𝑘). 

On the other hand, 𝑆 ∪ 𝑢  which is an 𝑥𝑦-vertex-cut of 
𝐺, is also such in 𝐺/𝑌, and therefore 𝑐𝐺/𝑌 𝑥, 𝑦 ≤ 𝑘. 

Consequently, 𝑐𝐺/𝑌 𝑥, 𝑦 = 𝑘 = 𝑆 ∪ 𝑢 , and 𝑆 ∪ 𝑢  is 

a minimum 𝑥𝑦-vertex-cut in 𝐺/𝑌. 

By the induction hypothesis ( 𝐸 𝐺/𝑌 < ( 𝐸 𝐺 ), there 
are 𝑘 internally disjoint xy-paths 𝑃1 , … , 𝑃𝑘 in 𝐺/𝑌, and 
each 𝑣 ∈ 𝑆 ∪ 𝑢  must lie on one and only of them. 
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Assume w.l.o.g that 𝑣𝑖 ∈ 𝑉 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑘 − 1 , and 
𝑢 ∈ 𝑉 𝑃𝑘 . 

Likewise, there are 𝑘  internally disjoint 𝑥𝑦 -paths 
𝑄1 , … , 𝑄𝑘 in 𝐺/𝑋, obtained by contracting 𝑋 to 𝑥, such 
that 𝑣𝑖 ∈ 𝑉 𝑄𝑖 , 1 ≤ 𝑖 ≤ 𝑘 − 1, and 𝑣 ∈ 𝑉 𝑄𝑘 . 

𝑥 

𝑢 

𝑦 

𝑣 

𝑌 𝑆 𝑋 

𝑄1 , … , 𝑄𝑘 𝑃1 , … , 𝑃𝑘 
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It follows that there are 𝑘 internally disjoint 𝑥𝑦-paths in 
𝐺, 𝑥𝑃𝑖𝑣𝑖𝑄𝑖𝑦, 1 ≤ 𝑖 ≤ 𝑘 − 1, and 𝑥𝑃𝑘𝑢𝑣𝑄𝑘𝑦. 

Consequently 𝑝𝐺 𝑥, 𝑦 = 𝑘. ■  



May 2014 Connectivity 61 

Example. Show that 𝑐 𝐺 + 𝐸 𝐺 ≥ 𝑉 𝐺  for every 𝐺, 
where  𝑐 𝐺  is the number of connected components. 

Proof. By induction on 𝐸 𝐺 . If 𝐸 𝐺 = 0 𝐺 has only 
isolated vertices, so 𝑐 𝐺 = 𝑉 𝐺  and an equality holds. 

Let 𝑒 ∈ 𝐸 𝐺 . Since the removal of an edge can turn a 
connected component into two, there is 

(1)   𝑐 𝐺 ≥ 𝑐 𝐺 − 𝑒 − 1. 

Assume by induction that 

(2)   𝑐 𝐺 − 𝑒 + 𝐸 𝐺 − 𝑒 ≥ 𝑉 𝐺 . 

Substitution of (2) in (1) yields 
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𝑐 𝐺 ≥ 𝑐 𝐺 − 𝑒 − 1 ≥ 

𝑉 𝐺 − 𝐸 𝐺 − 𝑒 − 1 = 

𝑉 𝐺 − 𝐸 𝐺 − 1 − 1 = 𝑉 𝐺 − 𝐸 𝐺 . ∎ 


