Parallel and Reconfigurable VLS| Computing (6)

FPGA Synthesis Flow

Hiroki Nakahara
Tokyo Institute of Technology

Outline

Synthesis Flow
Technology Mapping
Clustering
Place-and-Routing
Low Power Design

o Uk wh e

Conclusion

Synthesis Flow

always @ (posedge cik)begin
if(sum>0)

x<=g,
else
p— x<=b;

—_ end

sum

LCI'Q ic SynthESFS — o

Gate level netlist

clk
Technology mapping \’

| LUT Ievel netlist —Jwr
[Clustering \
l LB Ievel netlist EE%
Placement

[RGL;;]'ng] \ %
] OO

Bit stream gen.

' Bit stream -
- — HOL : Hardware description language D

Hyom LUT: Look Up Table
\q -_-_a-ﬁ-'-" LB : Logic Block U D

Re
RO

ated Work: VPR (Verilog-to-

uting) Project

* Open-source CAD tools for FPGA architecture and CAD
research

https://github.com/verilog-to-routing/vtr-verilog-to-routing

* Enable the investigation of new FPGA architectures and CAD
algorithms, which are not possible with closed-source tools

* The VTR design flow takes as input a Verilog description of a
digital circuit, and a description of the target FPGA
architecture

Elaboration & Synthesis (ODIN Il)
Logic Optimization & Technology Mapping (ABC)
Packing, Placement, Routing & Timing Analysis (VPR)

Technology Mapping

— FlowMap

Logic synthesis - Labeling and Cut

eve| netlist

Technology mapping

LUT level netlist
[Clustering]

*Mapping

LB level netlist

Placement

[RE}LI;:IIFIQ J

Bit stream gen.

' Bit stream

HOL ; Hardware description language
: LUT: Look Up Table
S "'E LB: Logic Block

Technology Mapping

* Convert a given Boolean netlist into an LUT netlist

.—% :> \3-LU;/ \3-Lu;/ };LUT/ \3‘L1UT/
Y % v 6 b

C LY >
5 Y L

Boolean netlist LUT netlist

FlowMap Process

[k
v >

>, @ >
Boolean netlist DAG
/@i\@ @)

\3 1w/ sy \s- LUI/‘-__::

P e =

Mapping

mar

LU'T netlist

FlowMap Process
v | >

>, @ >
Boolean netlist DAG
/@i\@ t@)

\3 1w/ sy \s- LUI/‘-__::

= =S

Mapping

—>

LU'T netlist

FlowMap Algorithm

1) Extract a given Boolean network
dependent on an output node t

2) Assign the input label to O

3) Label the node to which the already
labeled node is input

4) Look for the range that can be covered by
the k-LUT and place a cut on the input

5) repeat 3) and 4)

-output Network

Extract a Single

10

Assign the Input Label to O

-~
-~

Labeling the Index by Topological Order

Covering by the k-Input LUT (k-LUT)

#in is less than 4,

and #out is one.

D s infeasible,

since #in=Y and #out=3.

13

Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is infeasible,

since #in=3 and #out=2.

14

Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.

15

Covering by the k-Input LUT (k-LUT)

% 3-LUT;

#in is less than 4,

and #out is one.

D s infeasible,

since #in=4 and #out=2.

16

Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.

17

Covering by the k-Input LUT (k-LUT)

ey
-
.....
.
.
.
-
.

e

.
e

- S@ T

-
- -~
P 7 ~ ™
SYHOBORONO,
I i
I 1
s U 1
[Y
I \
I L TS
I v,
\N N,
| \ -
: 17%
: \\/ .
I ‘LY
| 2 “\ A
' L’ v
\ P \ 57
’L.(IL‘{
.~ ~ s
~ = p P .
~ . ”
1= ¢
\.Iz {

7/ % #inis less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.

18

Labeling

e Calculate the index of the node whose input is the already
assigned

19

Covering by the k-Input LUT (k-LUT)

.-
...........
.....
.....
o b
e

’> o: |

f‘@ 9

LAr . 3-LUT:

b\ t #in is less than 4,

I ':

Py i and #out is one.

1 \ \ .

! Yo 5

: 1%, o |

, O\ is infeasible,

I A 1

‘ AT % i since #in=5 and #out=4.
| & % % :

“L ,/, \ ,’

¢\ l‘-‘{ "

\\I\ ,\}/

N 7’

.. ..
N7 ot

Covering by the k-Input LUT (k-LUT)

.
.
-t
o
)

r A \ ()
1‘ —@&@— : v 3-LUT:
| !
\
\

Y
I
I : P
, 1 1 1 i #in is less than 4,
I : _
1oy : and #out is one.
| :

v :
: \\"-...
: 1% . |
, SO\ is infeasible,
| \
‘ AT % i since #in=3 and #out=3.
\ , v s :
\ /, \ ,/
lt\, f‘-‘\'
~

\\ ,‘}’
\\ s %o
a4
N l .
21

Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=2.

22

Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=2.

23

Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D Is infeasible,

since #in=2 and #out=1.

24

ing Index

Update Label

25

Covering by the k-Input LUT (k-LUT)

3—-LUT:
#in is less than 4,

and #out is one.

D s infeasible,

since #in=4 and #out=3.

26

Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=1.

27

ing Index

Update Label

28

Covering by the k-Input LUT (k-LUT)

3—-LUT:
#in is less than 4,

and #out is one.

D Is infeasible,

since #in=3 and #out=1.

29

ing Index

Update Label

30

Covering by the k-Input LUT (k-LUT)

3—-LUT:
#in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=1.

31

ing Index

Update Label

32

Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

nd #out is one.

D s infeasible,

since #in=3 and #out=1.

33

FlowMap Process

Labeling

[

ki

Y

>

v

—>

Mapping

=

30T |

LUT netlist

34

Technology Mapping

35

Merge k-LUT Netlists

.
L%
.
Y
-

.l
..
-~ o,
0
.
-
.
.

e

\

3-LUT

|

e g

o] g g

36

Clustering

_HoL
— 1. VPack
‘ 2. T-Vpack
Logic synthesis |
Gate level netlist * Connection importance

Technology mapping] e Total route number Impact

LUT level netlist
3. RPack/t-RPack/iRAC

LB level netlist

Placement

[RE}LI;:IIFIQ J

Bit stream gen.

' Bit stream

HOL ; Hardware description language
: LUT: Look Up Table
‘\ e aatll LB : Logic Block

37

Clustering

* Goal: Merge several LUTs into a cluster
* Considerations:

1. Routing outside the cluster has a larger delay penalty than
in the cluster

2. If there is an empty in the cluster, many logic blocks must
be consumed

T

38

VPack

e Goal:

1. Minimize the number of connections between
clusters

2. Minimize the number of clusters

* Strategy:

1. Select the LUT with the largest number of inputs
2. Merge such the LUT into a cluster

i \?HI |

Yau T

2)

T-VPack

e \/Pack:

 Effective for reducing the number of clusters and the
number of connections between clusters

—> Not consider the delay for inside and outside the
cluster

* T-VPack:
1. Connection importance
2. Total route number impact
—>Reduce the delay by placing the critical path in the

cluster

40

Connection Importance

* LUTs close to the critical path (LUT with small Slack
(delay margin)) are placed into the same cluster

1 3
(Arrival time) 1 0
2 2 3 4
= — 0 —> Out
1 2 4

(Request time)

: LUT on critical path

: other LUT

Slack = Request — Arrival

41

Total Route Number Impact

* Place LUTs affected by many critical paths in the
same cluster

W Cluster

. \ Out

: LUT on critical path

: other LUT

42

RPac

</t-RPack/iRAC

e Consic

in routing, simplicity connection)

I
>

-
>

— 5
—

L.t

No empty i

however three external wires

n the cluster, Although an empty exist,

only a external wire

——>

er routing characteristics (degree of freedom

43

Place-and-Routing

— VPR (Versatile Place and Route)

1. Placement

Logic synthesis |
Gate level netlist 2. Routi Ng
Technology mapping]

* Detail routing

| LT level netlist
[Clustering]

=ye| netlist

Bit stream gen.

' Bit stream

HOL ; Hardware description language
: LUT: Look Up Table
‘\ e caabll LE: Logic Block

44

Placement

Goal: Determine the position of each block
Strategy:
1. Place logical blocks and I/O blocks randomly

2. Exchange two blocks at random and accept cost improvement
with a certain probability

45

Routing

* Determining the path of the signal connection for each block

T

| m! | m | m!]

1 A

~ A T T

EEEEL
>

H H__—F u -]
]

= =

1 {1 H—H B H

i
T

1
|
| |

Global routing Detail routing

Detail Routing

1. Routing at minimum cost for each net

2. Add cost to competing routes, re-calculate
minimum cost, then perform routing

Example: Routing to input the output of X, Yto Z

COSt:49(’. 1 Cost

v

@ : Competition

Twice cost for

a competing

Cost:3->5b. oute

47

Low-Power Design Tools

1. Low-power design

2. Emap for technology mapping

3. P-T-VPack for clustering

4. P-VPR for place-and-routing

5. ACE for a measurement of activibity

Low-Power Design

* Dynamic Power Consumption
Powergynamic = 0.5 V%« foy - 2 Activity(i) - C;

lEnodes

* Power Reduction

. Low voltage for power source (V)

. Low clock frequency (f)

. Low switching activity (Activity(i))

B~ W N -

. Low capacitance ((C;)

Emap: Mapping Tool

* Embed routing with the largest activity in the LUT

0.2] |0.1 l0.2l0.3

3-LUL

vvy 0.6

3-LUT Without activity consideration

\% lo. #_,0'2

3-LUT

v

0.21 0. 11 0.2 |0.3

3-LUT

0-1\—* vy With activity consideration

3-LUT

0.1] 0.4 0.2
y

3-LUT

* 50

Cont'd

* Consider fan-out, reduce the number of branches of wiring by reducing
the number of nodes to be duplicated

3-LUT 3-LUT 3-LUT
vV l 1 \ 2 /
3-LUT 3-LUT

l l

e | 4

3-LUT 3-LUT

I |
vy YVYYy

3-LUT 3-LUT

With considering fan-out

P-T-VPack: Clustering Tool

* Include routes with high activity in the cluster

0.2 0.1 0.2 (0.3
l 'l ---- 3-LUT
{1 3-Lut
:. 3-LUT
0 1 v %
| o Without considering activity
3 3-LUT
0 1| """ g4 102 |/ |/
r v
3-LUT
v
O.ZlO.ll 0.2 |0.3
3-LUT
3-LUT —
""" With considering activit
0.1 .:'. v \—¢ g Y
fl3-wr |y 0.1
0.1} 0.4 jo2 3-LUT
E ! 3-LUT
5| 3wt |f

.‘. .: 52
."q *- "..

P-VPR: Place-and-Routing Tool

* Determine routes with high activity so that they are
as short as possible

— Consider making the routing with a high activity,
which is not placed in the critical path

ACE: Activity Measurement Tool

1. Deterministic approach by using a simulation result

—>High prediction, however long-time computation and
depend on a testbench quality

2. Probabilistic approach

—>Low prediction and short-time, however result is
depend on an initial value

Conclusion

* In each process, aimed to optimize delay, area,
power consumption

* In the future, it is expected that a method to
optimize across multiple processes

Exercise

* (Mandatory) Investigate another open-source CAD tools for
FPGA architecture and CAD research, and report it.

* Send a report via e-mail to nakahara@ict.e.titech.ac.jp
Deadline is 10th, July, 2018 (At the beginning of the lecture)

