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Synthesis Flow
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RO

ated Work: VPR (Verilog-to-

uting) Project

* Open-source CAD tools for FPGA architecture and CAD
research

https://github.com/verilog-to-routing/vtr-verilog-to-routing

* Enable the investigation of new FPGA architectures and CAD
algorithms, which are not possible with closed-source tools

* The VTR design flow takes as input a Verilog description of a
digital circuit, and a description of the target FPGA
architecture

Elaboration & Synthesis (ODIN Il)
Logic Optimization & Technology Mapping (ABC)
Packing, Placement, Routing & Timing Analysis (VPR)



Technology Mapping

— FlowMap

Logic synthesis - Labeling and Cut
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Technology Mapping

* Convert a given Boolean netlist into an LUT netlist
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FlowMap Process
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FlowMap Process
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FlowMap Algorithm

1) Extract a given Boolean network
dependent on an output node t

2) Assign the input label to O

3) Label the node to which the already
labeled node is input

4) Look for the range that can be covered by
the k-LUT and place a cut on the input

5) repeat 3) and 4)
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Assign the Input Label to O
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Labeling the Index by Topological Order




Covering by the k-Input LUT (k-LUT)

#in is less than 4,

and #out is one.

D s infeasible,

since #in=Y and #out=3.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is infeasible,

since #in=3 and #out=2.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT;

#in is less than 4,

and #out is one.

D s infeasible,

since #in=4 and #out=2.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.
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Covering by the k-Input LUT (k-LUT)
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7/ % #inis less than 4,

and #out is one.

D Is feasible,

since #in=2 and #out=1.
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Labeling

e Calculate the index of the node whose input is the already
assigned
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Covering by the k-Input LUT (k-LUT)
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Covering by the k-Input LUT (k-LUT)
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=2.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=2.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D Is infeasible,

since #in=2 and #out=1.
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ing Index

Update Label
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Covering by the k-Input LUT (k-LUT)

3—-LUT:
#in is less than 4,

and #out is one.

D s infeasible,

since #in=4 and #out=3.
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:
' #in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=1.
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ing Index

Update Label
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Covering by the k-Input LUT (k-LUT)

3—-LUT:
#in is less than 4,

and #out is one.

D Is infeasible,

since #in=3 and #out=1.
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ing Index

Update Label
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Covering by the k-Input LUT (k-LUT)

3—-LUT:
#in is less than 4,

and #out is one.

D s infeasible,

since #in=3 and #out=1.
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ing Index

Update Label
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Covering by the k-Input LUT (k-LUT)

% 3-LUT:

#in is less than 4,

nd #out is one.

D s infeasible,

since #in=3 and #out=1.
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FlowMap Process

Labeling
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Technology Mapping
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Merge k-LUT Netlists
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Clustering

_HoL
— 1. VPack
‘ 2. T-Vpack
Logic synthesis |
Gate level netlist * Connection importance

Technology mapping] e Total route number Impact

LUT level netlist
3. RPack/t-RPack/iRAC

LB level netlist

Placement
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Bit stream gen.

' Bit stream

HOL ; Hardware description language
: LUT: Look Up Table
‘\ e aatll LB : Logic Block
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Clustering

* Goal: Merge several LUTs into a cluster
* Considerations:

1. Routing outside the cluster has a larger delay penalty than
in the cluster

2. If there is an empty in the cluster, many logic blocks must
be consumed

T
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VPack

e Goal:

1. Minimize the number of connections between
clusters

2. Minimize the number of clusters

* Strategy:

1. Select the LUT with the largest number of inputs
2. Merge such the LUT into a cluster

i \?HI |

Yau T
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T-VPack

e \/Pack:

 Effective for reducing the number of clusters and the
number of connections between clusters

—> Not consider the delay for inside and outside the
cluster

* T-VPack:
1. Connection importance
2. Total route number impact
—>Reduce the delay by placing the critical path in the

cluster
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Connection Importance

* LUTs close to the critical path (LUT with small Slack
(delay margin)) are placed into the same cluster

1 3
(Arrival time) 1 0
2 2 3 4
= — 0 —> Out
1 2 4

(Request time)

: LUT on critical path

: other LUT

Slack = Request — Arrival
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Total Route Number Impact

* Place LUTs affected by many critical paths in the
same cluster

W Cluster

. \ Out

: LUT on critical path

: other LUT
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Place-and-Routing

— VPR (Versatile Place and Route)

1. Placement

Logic synthesis |
Gate level netlist 2. Routi Ng
Technology mapping ]

* Detail routing

| LT level netlist
[ Clustering ]

=ye| netlist

Bit stream gen.

' Bit stream

HOL ; Hardware description language
: LUT: Look Up Table
‘\ e caabll LE: Logic Block
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Placement

Goal: Determine the position of each block
Strategy:
1. Place logical blocks and I/O blocks randomly

2. Exchange two blocks at random and accept cost improvement
with a certain probability
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Routing

* Determining the path of the signal connection for each block
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Detail Routing

1. Routing at minimum cost for each net

2. Add cost to competing routes, re-calculate
minimum cost, then perform routing

Example: Routing to input the output of X, Yto Z

COSt:49(’. 1 Cost

v

@ : Competition

Twice cost for

a competing

Cost:3->5b. oute
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Low-Power Design Tools

1. Low-power design

2. Emap for technology mapping

3. P-T-VPack for clustering

4. P-VPR for place-and-routing

5. ACE for a measurement of activibity



Low-Power Design

* Dynamic Power Consumption
Powergynamic = 0.5 V%« foy - 2 Activity(i) - C;

lEnodes

* Power Reduction

. Low voltage for power source (V)

. Low clock frequency (f)

. Low switching activity (Activity(i))

B~ W N -

. Low capacitance ((C;)



Emap: Mapping Tool

* Embed routing with the largest activity in the LUT
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Cont'd

* Consider fan-out, reduce the number of branches of wiring by reducing
the number of nodes to be duplicated
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P-T-VPack: Clustering Tool

* Include routes with high activity in the cluster
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P-VPR: Place-and-Routing Tool

* Determine routes with high activity so that they are
as short as possible

— Consider making the routing with a high activity,
which is not placed in the critical path



ACE: Activity Measurement Tool

1. Deterministic approach by using a simulation result

—>High prediction, however long-time computation and
depend on a testbench quality

2. Probabilistic approach

—>Low prediction and short-time, however result is
depend on an initial value



Conclusion

* In each process, aimed to optimize delay, area,
power consumption

* In the future, it is expected that a method to
optimize across multiple processes



Exercise

* (Mandatory) Investigate another open-source CAD tools for
FPGA architecture and CAD research, and report it.

* Send a report via e-mail to nakahara@ict.e.titech.ac.jp
Deadline is 10th, July, 2018 (At the beginning of the lecture)



