Parallel and Reconfigurable VLSI Computing (2)

Hardware Preliminary

Hiroki Nakahara
Tokyo Institute of Technology

Outline

- Boolean Logic
- Boolean Arithmetic
- Sequential Circuit
- Computer Architecture

Boolean Logic

Boolean Logic

- Represent number by "bool" variable
 - true/false, 1/0, yes/no, on/off
- (Boolean) Logic function
 - Both In/Out are bool variables

Truth Table

- A kind of representation for logic function
- 2^{2^n} functions exist for n input

Х	У	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Boolean Expression

Boolean operator: OR(+), AND(·) and not()

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$f(x,y,z) = (x+y) \cdot \bar{z}$$

For all combinations of input, evaluate a given expression (Verification)

Canonical Representation

- Any Boolean function can be represented by at least a canonical representation
- Conversion a truth table to a canonical representation
 - For each "1" output line, concatenate input literals by AND operation
 - Concatenate these terms by OR operation
 - → AND-OR standard representation
 - c.f. OR-AND standard representation
- Arbitrary Boolean function can be represented by operator set {AND,OR,NOT} (Completeness)

2-input Boolean Function

• 16 functions

	х,у	0,0	0,1	1,0	1,1
Constant 0		0	0	0	0
AND		0	0	0	1
x AND Not y		0	0	1	0
X		0	0	1	1
Not x AND y		0	1	0	0
у		0	1	0	1
EXOR		0	1	1	0
OR		0	1	1	1
NOR		1	0	0	0
EXNOR		1	0	0	1
Not y		1	0	1	0
If y then x		1	0	1	1
Not x		1	1	0	0
If x then y		1	1	0	1
NAND		1	1	1	0
Constant 1		1	1	1	1

Boolean (Logic) Gate

- A physical device which realizes a Boolean function
- Transistor: Made by connecting a switch by specified wires
- Almost all digital computer operates use electricity to represent and operate binary data
- Other elements can be used:
 - Silicon device (Major)
 - Magnet, light, bio, hydraulic, and pneumatic
- Boolean algebra: A concept abstraction
- Composite gate: Consists of primitive logic gates

Primitive Gate

• NOT —>>>

• AND

• OR

• EXOR

Example of Completeness

• NAND (NOR):

Not
$$= \bigcirc$$

$$AND$$

$$= \bigcirc$$

$$OR$$

$$= \bigcirc$$

$$OR$$

$$= \bigcirc$$

$$EXOR$$

Composite Gate

- a,b,c,f $\in \{0,1\}$
- AND(x,y,z) for Boolean expression: a·b·c=(a·b)·c

Logic Design

- Design method for connecting the gate
 - Composite gate for complicated function is designed using primitive gate
- Different point of view
 - Left: Interface outside the gate → Designers treat it as a black box
 - Right: Implementation method inside gate (architecture)

Example: Logic design for EXOR

- Gate interface (Specification) is an unique
- Several realizations exist
 - Area, speed, power, simplicity, cost, and/or reliability
 - → Design method based on a cost function

Hardware Description Language (HDL)

- Gate level design wastes time
- Circuit assembly mistakes in wiring process
- Design and verification of the architecture on a virtual circuit (computer) with software
 - Logic Synthesis
 - Logic Simulation
- Architecture can be represented by HDL program
- Design and verification can be done with no money
- After HDL design, it prints on real silicon

Example of Verilog-HDL

- HDL specification
- HDL simulation


```
module exor ( a, b, f)
  input a, b;
  output f;

assign w1 = a & ~b;
  assign w2 = b & ~a;
  assign f = w1 | w2;
endmodule
```

```
module
    reg a_t, b_t;
    wire f_t;

#0
    a_t = 1'b0; b_t = 1'b1;
#1
    a_t = 1'b1; b_t = 1'b1;
$display(a_t,b_t);
endmodule
```

Boolean Arithmetic

Binary Number

- Representation of numbers based on two
- $(10011)_b = 1x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = 19_d$

MSB: Least Significant Bit

LSB: Least Significant Bit

Specifications for Adders

- Half adder: Addition for x and y, then output carry(c) and sum (s)
- Full adder: Addition for x, y and c, then output c and s
- (Multibit) Adder: Addition for n-bit of x and y
- Incrementor: Add +1 for a given x

2's Complement (Radix Complement)

- MSB represents sign (plus (0) or minus (1))
- 2's complement \bar{x} for a given x (n bit):

$$\bar{x} = \begin{cases} 2^n - x & (x \neq 0) \\ 0 & (Otherwise) \end{cases}$$

- Example:
 - Five bit for -2_d is represented by 2_d^5 -(00010)_b= 32_d - 2_d = 30_d =(11110)_b, since (00010)_b+(11110)_b=(00000)_b
- Known technique: \bar{x} is obtained by $^{\sim}x+1$

2's Complement for Four bit

• Range: from $2^{n-1}-1$ to -2^{n-1}

Plus number		Minus number	
0	0000		
1	0001	-1	1111
2	0010	-2	1110
3	0011	-3	1101
4	0100	-4	1100
5	0101	-5	1011
6	0110	-6	1010
7	0111	-7	1001
		-8	1000

Trade-off

- Sum of signed 2's complement number can be calculated in the same procedure as the sum of positive numbers
- Increment operation can be done in the same procedure as the sum of constant 1 and positive number
- The num of n-bit positive numbers can be realized by repeating the full adder n-times
- Fast addition → Carry look ahead
- We should think cost-performance issues
 - Area, performance, power, and cost

Extension to Arithmetic Logic Unit (ALU)

- Primitive arithmetic and logic operations
- Operations to be provided are considered in costperformance
- Hardware and software functions are provided as a pair of ALU and operating system (OS)
 - Multiplication, division, floating point operation, e.t.c.

Example of ALU

Sequential Circuit

Combinational and Sequential

Synchronous Sequential Circuit

D-Flip Flop

- Keep the past internal value
- Input, output, clock, (with reset)

D-Flip Flop (Cont'd)

- In practice, data load signal is used with a multiplexer
- In other words, 1-bit register

Clk	load	Q(t)
↑	0	Q(t-1)
↑	1	In
Otherwise		Q(t-1)

Register

- Consists of n-copies of D-FFs
- # of D-FFs: 16, 32, 64 \rightarrow 1 [word]

Random Access Memory (RAM)

RAM→Accessible for arbitrary word

Composite RAM

3-input single output RAM

4-input single output RAM

3-input

2-output RAM

Computer Architecture

Stored Program Computer

- Operate according to "program" stored in memory
 - Run various applications on the same hardware
- Its idea can be traced back to the 1936 theoretical concept of a universal Turing machine
- Von Neumann was aware of the paper, and he impressed it on his collaborators as well

von Neumann Architecture

- It also known as the von Neumann model and Princeton architecture
- Based on the 1945 description by the mathematician and physicist John von Neumann and others in the First Draft of a Report on the EDVAC

Harvard Architecture

 physically separate storage and signal pathways for instructions and data

 From the Harvard Mark I relay-based computer, which stored instructions on punched tape (24 bits wide)

Modern Computer Architecture

- Cache, and it prediction
- Out-of-order
- Hyper pipeline
- SIMD
- Super Scaler
- RISC vs. CISC
- Hyper threading
- Multi core/many core

General-purpose v.s. Specified

- Power-consumption wall
- Specified computer, however, dedicated application
- Special hardware on the same device? → FPGA

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

Summary

- Boolean Logic
- Boolean Arithmetic
- Sequential Circuit
- Computer Architecture
 - Power wall
 - General-purpose
 - → Special HW on the same device (FPGA)
 Reconfigurability? Architecture? Design? Application?

Exercise 2

- (Mandatory) Show the truth table of full adder f=(x,y,z), then convert an AND-OR canonical representation by using Karnaugh map
- (Mandatory) Design a AND-OR canonical representation for above circuit
- 3. (Mandatory) Perform formal verification between f and above circuit, and these are the functionally same circuit? or not?

Send e-mail to nakahara@ict.e.titech.ac.jp

Deadline is 25th, June, 2018 (At the beginning of the next lecture)