MCS.T419 Stochastic Differential Equations Solutions to Assignment \#2

Problem 1.

$$
X_{t}=\left[\begin{array}{l}
X_{0}^{1} \cos t-X_{0}^{2} \sin t-\sigma^{2} \int_{0}^{t} \sin (t-s) d W_{s} \\
X_{0}^{1} \sin t+X_{0}^{2} \cos t+\sigma^{2} \int_{0}^{t} \cos (t-s) d W_{s}
\end{array}\right]
$$

Problem 2.

$$
X_{t}=\sinh \left(t+W_{t}+\operatorname{arcsinh}\left(X_{0}\right)\right)
$$

Problem 3. Omitted.
Problem 4. Omitted. You may find that the nonparametric methods need a very large number of samples.

Problem 5. First, it should be remarked that the initial wealth X_{0} is implicitly assumed to be a positive constant. Then, our task is to check the condition (i) in Theorem 4.11. In particular, it is sufficient to show that $\mathbb{E}\left[\sup _{0 \leq t \leq T} e^{Y_{t}^{a}}\right]<\infty$ for any $a \in \mathbb{R}$. To this end, observe

$$
e^{Y_{t}^{a}} \leq C Z_{t}^{2}
$$

where

$$
\begin{aligned}
C & =\exp \left(\left(\frac{1}{4} q^{2} \sigma^{2} a^{2}-\frac{1}{2} q \sigma^{2} a^{2}+q r+q(b-r) a\right) T\right) \\
Z_{t} & =\exp \left(\frac{q \sigma a}{2} W_{t}-\frac{1}{2}\left(\frac{q \sigma a}{2}\right)^{2} t\right)
\end{aligned}
$$

Applying Doob's maximal inequality (Theorem 1.33), we obtain

$$
\mathbb{E} \sup _{0 \leq t \leq T} Y_{t}^{a} \leq C \mathbb{E} \sup _{0 \leq t \leq T} Z_{t}^{2} \leq 2 C \mathbb{E} Z_{T}^{2}<\infty
$$

Problem 6. Fix $(t, x) \in[0,1) \times \mathbb{R}$, let $T^{\prime} \in(t, 1)$ and consider the stopping time

$$
\tau_{n}:=\inf \left\{s \in\left[t, T^{\prime}\right]:\left|\partial_{x} u\left(s, W_{s}^{t \cdot x}\right)\right| \geq n\right\} \wedge T^{\prime}
$$

 Itô formula and the assumption,

$$
\mathbb{E}\left[u\left(\tau_{n}, W_{\tau_{n}}^{t, x}\right) Y_{\tau_{n}}\right]=u(t, x)
$$

Letting $n \rightarrow \infty$ and then $T^{\prime} \rightarrow 1$, we get the required result.
Note. The equation for u should be

$$
\partial_{t} u(t, x)+\frac{1}{2} \partial_{x x}^{2} u(t, x)+\left(i \lambda g(t, x)-\frac{1}{2} \mu^{2} h(t, x)^{2}\right) u(t, x)+i \mu h(t, x) \partial_{x} u(t, x)=0
$$

rather than the one described in the statement. Sorry for this mistake.

Problem 7. First solve

$$
\sum_{j=1}^{n} \frac{\left(X_{j}-X_{j-1}-b X_{j-1} \Delta\right)^{2}}{X_{j-1}}
$$

with $\Delta=1$ to determine \hat{b}, and then put

$$
\hat{\sigma}^{2}=\frac{1}{n}\left(\sum_{j=1}^{n} \frac{\left(X_{j}-X_{j-1}\right)^{2}}{X_{j-1}}-\frac{\left(\sum_{j=1}^{n}\left(X_{j}-X_{j-1}\right)\right)^{2}}{\sum_{j=1}^{n} X_{j-1}}\right) .
$$

The resulting estimated parameters are $\hat{b}=0.0361$ and $\hat{\sigma}=0.7806$.
Problem 8. The kernel-based collocation method as in the numerical examples in p.99100 can be available. The details are omitted.

