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Preface

These lecture notes have been written for the course MCT.T419: Stochastic Differential Equa-
tions at Tokyo Tech. Our aim is to provide an elementary, concise, yet rigorous introduction to
stochastic differential equations (SDEs) with a special emphasis on stochastic controls and their
numerical methods in a systematic way.

Chapter 1 is devoted to some preliminaries for handling continuous-time stochastic processes.
In particular, we need to introduce the notion of measurability that describes predictabilities
of random motions. This theory is often bothersome to application-oriented students, but is
indispensable for a rigorous analysis of stochastic processes.

Chapters 2—4 are core parts of the present notes. We describe the Ité’s stochastic calculus at
an introductory level. In the light of applications, minimum theoretical tools are presented, and
numerical solutions and statistical inference for SDEs are discussed. Then we present a basic
approach to stochastic controls in the framework of SDEs. We show that the Bellman’s dynamic
programming principle holds true for stochastic controls in continuous-time, and give its rela-
tion with Hamilton-Jacobi-Bellman (HJB) equations, second order nonlinear partial differential
equations.

In Chapter 5, we describe basic parts in the theory of the wviscosity solutions, which are
the most useful and elegant notion for weak solutions of nonlinear elliptic and parabolic partial
differential equations, as well as open up the possibility of rigorous numerical analysis of HJB
equations whose classical solutions might not exist.

The classical finite difference method can be applied for solving nonlinear partial differential
equations numerically. This is powerful and mathematically harmless in one-dimensional prob-
lems. However, its time complexity is growing exponentially as the number of the dimension in
the state space becomes large, and strong conditions need to ensure the rigorous convergence in
multi-dimensional problems. As an alternative, we present kernel-based collocation methods in
Chapter 6, which rely on function approximations with reproducing kernels and are still under
development.

To make the contents simple, we need to drop many interesting topics. For example, deep
analyses of Brownian motion and diffusion processes, stochastic integration with respect to
more general processes, advanced stochastic calculus such as Malliavin calculus, and backward
stochastic differential equations. In stochastic control theory, optimal filtering, an application to
mathematical finance, the infinite horizon control problem, and the optimal stopping problems
are also important topics but missing in the present version. They will be described in future
versions.

To the Reader: The reader of these notes is expected to have knowledge of measure-theoretic
probability theory and of functional analysis at an introductory level. Several technical parts
can be skipped on a first reading, which are explicitly indicated. In particular, the proofs of
mathematical statements with the caption “Proof*” can be skipped on a first reading.
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Convention and Notation

Convention

e Throughout these notes except for the appendix, we work on a complete probability space
(Q, F,P). In particular, all random variables appeared in Chapters 1-5 are assumed to be
defined on the measurable space (2, F).

e All stochastic processes appeared in Chapters 2-5 are assumed to be measurable.

Notation
e N={1,2,...}.
o 7 =1{0,+1,+2,...}.
e R%: d-dimensional Euclidean space.
o 74 ={(z',... .29 2’ €Z, 1<i<d}.
e R™*4: the totality of real m x d-matrices.
e S% the set of all d x d real symmetric matrices.
e C: the set of complex numbers.
e |z|: the standard Euclidean norm of x € R
e lal = (>, |la;;|?)'/? for any real matrix a = (a;;).
e #S: the cardinality of a set S.
e 2zt =max{z,0}, z € R.
e v~ =max{—z,0}, z € R.
e o': the transposition of a real vector or matrix a.
e A€ the complement of a set A.
e 14: the indicator function for a set A.
e E[X]: the expectation of a random variable X under P.
e V[X] = E[(X — E[X])?]: the variance of X under P.
e Eg[X]: the expectation of a random variable X under a probability measure Q on (2, F).

e I;: the identity matrix in R4,

v



LP = LP(Q), F,P) for p € [1, ]

O¢f = 0f/0€ and 85277 f = 0?f/0¢0n if the partial derivatives exist for any function f
defined on a subset of an Euclidean space.

For every multi-index o = (a1, . .., aq) with |a|; := a1 + - - - + ag, the differential operator
D% is defined as usual by

Df(xy,...,zq) = %J‘(wl, cey Td)-
0x{" - -- 0z y*
C(U): the set of all continuous functions on U C R".
Cy(U): the set of all bounded continuous functions on U C R".
C3°(R™): the set of all infinitely differentiable functions on R™ having compact supports.

C12([0, T xR™): the set of all functions f : [0, T]xR"™ — R such that the partial derivatives
Of, Ox, f, (‘ﬁﬂjf, i,7=1,...,n, exist and continuous on [0, T] x R<,

By (x) ={y e R": |y —z| <r} for z € R” and r > 0.



CHAPTER 1

Preliminaries for Continuous-Time Stochastic Processes

In the theory of stochastic differential equations, martingales play a fundamental role. So we first
review the abstract notion of conditional expectation on which martingale theory is built. Next,
we discuss several kinds of measurability which are indispensable for handling unpredictable
motions of dynamical systems. Then, we deal with Brownian motions, which is a basic model
of a source of purely random fluctuations.

1.1 Conditional Expectation

For A, B € F with P(B) > 0, we call

P(AN B)

P(AIB) = 5

the conditional probablity of A given B.
Similarly, for random variable X and B € F with P(B) > 0, we call

E[X1p]
P(B)

E[X|B] :=
the conditional expectation of X given B.

The case of finite o-algebras
Definition 1.1. A sub c-algebra G in F is said to be finite if there exist Ay,..., A, € F such
that Q = UP_ Ag, AinA;j =0 (i#j) and G =0(Ay,..., Ay).

e We call {A;}}_, in Definition 1.1 a partition of Q.

e The o-algebra G in Definition 1.1 is said to be generated by the partition {Ay}.

Definition 1.2. Let X € L! and G be the o-algebra generated by the partition {Ay}7?_,. Then,

n

E[X|G] =) E[X|A]l4,
k=1

is said to be the conditional expectation of X given G. Here, we set an arbitrary value for
E[X|Ag] if P(Ag) = 0.



e Roughly speaking, E[X|F] is the expectation of X computed provided that we know in-
formation of G.

e Note that E[X|G] is also a random variable. In particular, it is a G-measurable random
variable.

e We often write E[X|G](w) to emphasize that it is a function of w € Q.

e Since {A} is a partition of Q, the quantity E[X|G](w) gives the conditional expectation
of X given the events of which w belongs to.

e For random variables X, Y, we often write E[X|Y] for E[X|o(Y)].

Problem 1.3. Let p € (0,1) and 0 < d < 1 < u. Consider the random variables S;, i = 0,1, 2,
defined by
Siv1 = D115, i=0,1,

where Dy, Dy are IID with P(D; =u) =1 —P(D; =d) = p.
(i) Show that ¢(S7) is finite.
(ii) Prove that
E[S2]S1] = (up + d(1 — p))Sh.
General definition

Next consider the case where o-filed is not necessarily finite. Then of course Definition 1.2 is
no longer available. Our idea is to derive a good implication that can be described without the
definition of finite o-fields, and to adopt it as the definition of general conditional expectations.

Proposition 1.4

Let X € L! and G a finite o-field. Then, for A € G we have E[X14] = E[E[X|G]14].

Proof. Let {By}}_, be a partition of €2 satisfying G = (B4, ..., By).
First notice that the proposition immediately follows if A € G is empty. Thus assume that
A € G is nonempty. Then, A = UJ" | B;, for some iy,... iy € {1,...,n}, and so

E[E[X|G]14] = Y EE[X|G]1p, ] =) E[E[X|B;]l5,]
k=1 k=1

NE

E[X|B,JB(B;,) = 3 E[X15, ] = E[X14].
k=1

e
Il
—

O]

Proposition 1.4 means that if G is finite, then Y = E[X|G] is a G-measurable random variable
such that E[X14] = E[Y14], A € G. A random variable Y with this property exists when o-
algebra is not necessarily finite, and this existence is unique.



Theorem 1.5

Let X € L' and G a sub o-algebra in F. Then there exists a random variable Y satisfying
the following:

(i) Y is G-measurable.
(i) Y e L.
(iii) E[lAY] = E[lAX], Aeqg.

Moreover, this existence is almost surely unique, i.e., for Y with the three properties
above, we have Y =Y a.s.

Proof. We use the representation X = X —X~. For each X and X ~, we define the probability
measure QF on (Q,G) by

Xt +1
+ _
Q (A)_/AE[ i+1]dIP>, Acg,

respectively. Since QT and Q~ are both absolutely continuous with respect to P, by Radon-
Nikodym theorem (see Theorem A.38), there exist nonnegative, integrable, and G-measurable
random variables Z* such that Q*(A) = E[14Z%], A € G. Hence, the G-measurable random
variable
Y =EXt+1Z" -E[X™ +1]Z~
satisfies (ii) and (iii) in the statement of the theorem.
Next we will show the uniqueness. Suppose that Y and Y satisfy (i)-(iii) in the statement

of the theorem and P(Y" > Y) > 0. Then, since lim, ,o, P(Y >Y 4+ 1/n) = P(Y > Y), we have
P(Y >Y +1/n) > 0 for some n € N. It follows from this that

- 1 -

On the other hand, the conditions (ii) and (iii) imply that A := {Y > Y +1/n} € G and
E[Y14] = E[Y'14], which lead a contradiction. Thus ¥ <Y a.s. By a similar argument, we see
Y >Y as. HenceY =Y a.s. O

Therefore, the conditional expectations with respect to finite o-algebras are completely char-
acterized by the three properties in Theorem 1.5. Then we define the conditional expectations
with respect to general o-algebras by these properties.

Definition 1.6. For X € L' and any sub o-algebra G in F, we call the unique random variable
Y as in Theorem 1.5 the conditional expectation of X given G, and write Y = E[X|7].

e If you want to confirm that Y = E[X|G] a.s., then you only need to check that Y satisfies
the properties (i)—(iii) in Theorem 1.5.

We collect basic properties of the conditional expectations given o-algebras.



Let X,Y € L' and let G, H be o-algebras. Then the following hold:
(i) If X is G-measurable, then E[X|G] = X a.s.
(ii) E[aX + bY|G] = aE[X|G] + bE[Y|G] a.s. for a,b € R.
(iii) If X > 0 a.s., then E[X|G] > 0 a.s.
)

(iv) For a sequence {X,,}>°, of random variables such that 0 < X,, < X411 <--- as.
and X,, — X a.s., then E[X,,|G] " E[X]|]] a.s.

(v) For a sequence {X,}7° ; of random variables such that |X,| < Z (Vn) a.s. for some
nonnegative random variable Z € L' and lim,,_,oo X,, = X a.s., then

li_}m E[X,|G] = E[X|G] as.

(vi) If H C G then E[E[X|G]|H] = E[X|H] a.s.
(vii) E[E[X|G]] = E[X].

)
)
(viii) If X is G-measurable and XY € L!, then E[XY|G] = XE[Y|G] a.s.
(ix) If H is independent of o(X,G), then E[X|o(G,H)] = E[X|F] a.s.
(x) If X is independent of G, then E[X|G] = E[X] a.s.

)

(xi) For R-valued convex function g on R such that g(X) € L!, we have E[g(X)|G] >
§(E[X|G]) as.

\.

Proof. (i). The random variable X itself satisfies (i)—(iii) in Theorem 1.5. By the uniqueness,
X =E[X|G] as.
(ii). By the linearity of E[-], for A € G,

E[(aX + bY)14] = aE[X14] + bE[Y14] = aE[E[X|G]14] + bE[E[Y|G]1 4]
= E[(aE[X|G] + bE[Y|G])14].

The uniqueness of E[aX + bY|G] means E[aX + bY |G| = aE[X|G] + DE[Y|G] a.s.

(iii). It follows from X > 0 and Theorem 1.5 (iii) that E[14E[X|G]] > 0 for A € G. Hence
E[X]|G] > 0 a.s.

(iv). From (iii) the sequence {Y,} defined by Y, := E[X,,|G] is almost surely nonnegative and
nondecreasing. Thus Y (w) := limsup,,_, ., Y, (w) satisfies ¥;, /Y a.s. Then the monotone
convergence theorem for the expectation (see Theorem A.36) yields

E[YIA] = nli_)HoloE[YnlA] = nh_)rroloE[anA] = E[XIA], Aeqg.

This means that Y satisfies the conditions (i)—(iii) in Theorem 1.5.
(v). Use an argument similar to that in the proof of (iv).

(vi). Let A € H. Since A € G, we have E[E[X|G]14] = E[X14].
(vii). This follows from the property (iii) in Theorem 1.5 for A = Q.
(viii). For B € G we see

E[15E[Y|G]14] = E[E[Y|G]15na] = E[Y1pn4] = E[(15Y)14], A€G.



Thus, the claim follows for X = 1. For general X, approximate it with simple random variables
and then use a convergence theorem.

(ix). We may assume that X > 0 a.s. without loss of generality. The claim is trivial when
X =0 a.s. Thus we further assume E[X] > 0. Set Y = E[X|G]. Then we will show that the

two probability measures
ii(A) = E[X14]/E[X], pa(A) = E[VL/E[Y], AeF

coincide with each other on o(G,H).
Indeed, for A € G and B € H, since X14 and Y14 are independent of B, we find

E[X1anp] = E[X14]P(B) = E[Y 14]P(B) = E[Y 14n5].

Hence 1y = po on C := {ANB: A€ G, Be€ H}. Lemma A.44 now implies that pu; = pz on
o(G,H)=0(C).

(x). Take G = {0, 2} in (ix).

(xi). We will prove the claim in the case where G is finite, i.e., it is generated by a par-
tition {Ay}7_,. For general cases we refer to, e.g., [31]. In the present case, E[X|G] =
S r_E[X|A]14,. Then notice that E[X|A,] = E?[X], where Q is the probability measure
defined by dQ/dP = 14, /P(Ax). Thus by Jensen’s inequality (Proposition A.27),

n

g(E[X]9]) Zg (XA La, <D Elg(X)[Ar]La, = Elg(X)|G],

k=1 k=1

as required. ]

The conditional expectation E[X|G] can be interpreted as the least square estimates of X
over G-measurable random variables.

Proposition 1.8

For X € L?, the conditional expectation E[X|G] is almost surely unique G-measurable
random variable such that

E[(X — E[X|G])?] = min{E[(X —Y)?]: Y € L?, G-measurable}.

Proof. First notice that for Y € L?, Cauchy-Schwartz inequality (see Proposition A.28 (i)) yields
IE[XY]| < co. Thus (X —Y)? € L!. Next, setting Z = E[X|G] — Y, we have

(X -Y)?= (X —E[X|G] + E[X|G] - YV)? = (X — E[X|G])? + 2(X — E[X|G])Z + Z*.
If Y is G-measurable, so is Z. Thus By Proposition 1.7,

E[(X - E[X[G])Z] = E[E[(X - E[X|7])Z|G]] = E[ZE[X — E[X]|G]|F]]
=E[Z(E[X|G] — E[X|F])] = 0.
This implies
E[(X - V)% = E[(X - E[X|G])’] + E[Z?]

for any G-measurable Y € L2. Therefore E[Z?] attains the minimum 0 only when Y = E[X|J]
a.s., which leads to the claim. O



Let N be the collection of all P-null sets from F. Then, o(N) ={A € F : P(A) =1 or P(A) = 0}.
The following is a generalization of Theorem A.17:

Theorem 1.9

Let (E, &) be a measurable space, Y : Q@ — F, and X : Q = R a (N Uo(Y))-measurable
random variable. Then, there exists an £-measurable function f : £ — R such that
X =f(Y) as.

Proof*. We may assume that X is bounded. Otherwise, it suffices to consider arctan(X). We
also assume that X > 0 a.s. and P(X > 0) > 0 without loss of generality. Then, define

X(w) = E[X|o(Y)](w), we Q.

By Theorem A.17, X (w) = f(Y (w)), w € Q, for some E-measurable f. We will show that X = X
a.s. To this end, first note that G := o(N U o (Y)) = o(c(N)No(Y)) and o(N) No(Y) is a
m-system. For any A € o(N) and B € o(Y') we have

E[X1ans] = E[X15] = E[X15] = E[X14q5]

if P(A) = 1. Otherwise, E[X14np] = 0 = E[X14np]. Thus, the two probability measures Q and
Q on (92, G) defined respectively by

Q(A) = Q(A) = Aeg,

agree with each other on o(N) N (V). Then, applying Lemma A.44, we find that E[X1,4] =
E[X14], A € G, whence }
E[XZ] =E[XZ]

for any bounded G-measurable random variable Z. Therefore, for any A € F,
E[X14] = E[XE[14|G]] = E[XE[14|G]] = E[X14].

This means X = X a.s., as wanted. O

1.2 Filtration, Measurability, and Martingales

An R%valued stochastic process is a family {X;};er of random variables taking values in R
The index generally represents a continuous or discrete time variable.

Definition 1.10. Let T = [0, 00), [0,7], NU{0}, or {0,1,..., N}, where T' € (0,00) and N € N.
A family F = {F; }ier of sub o-fields of F is said to be a filtration if Fs C F; for s,t € T with
s <'t.

e F; is interpreted as the information available at time ¢.

e The quadruplet (2, F,F,P) is said to be a filtered probability space.

Definition 1.11. Let T be as in Definition 1.10, and let F = {F},cr be a filtration. An
R%valued stochastic process {X;}ier is said to be F-adapted if X; is Fi;-measurable for any
teT.

o If {X;} is an adapted process, then the random variable X} is realized up to time t.



e For an arbitrary process {X;}ier, the family FX = {FX};cr of sub o-algebras defined by
FX =0(Xs;s €T, s <t)is said to be the natural filtration generated by {X;}ser. Here,
for a family {Z)}xea of random variables,

o(Zy,Ae) =0 (U U(Z)\)> .

AEA
e Any stochastic process is adapted w.r.t. the natural filtration generated by itself.

In what follows, we work on a fixed filtered probability space (Q, F,F,P).

Definition 1.12. (i) A process {X;}:>0 is said to be measurable if X. : [0,00) x Q@ — R is
B[0, 00) x F-measurable.

(ii) A process {X}}+>0 is said to be F-progressively measurable if X. : [0,¢]xQ — R is B[O, t] x F4-
measurable for every ¢ € [0, 00).

e If {X;} is measurable, then for every ¢ the random variable Y; := f(f X,ds is F-measurable.

o If {X,} is progressively measurable, then {Y;} above is an adapted process.

Problem 1.13. Show that every progressively measurable process is measurable and adapted.
Hereafter, all processes are assumed to be measurable.

Definition 1.14. We say that {X;}:>0 is a modification of {Y:}i>0 if P(X; = Y;) = 1 for any
t > 0. Moreover, {X;} and {Y;} are said to be indistinguishable if P(X; =Y;, t > 0) = 1.

Ezample 1.15. Let 7 be a (0,00)-valued random variable having a continuous density, say an
exponentially distributed random variable. Set X; = 1<y, ¢ > 0 and consider the left-limit
Xi— = limg ~ X;. Then it is straightforward to see that V; := X; — X3 = L=y, and that
P(Y; =0) =P(r #t) = 1 for every ¢t € [0,00). Hence, the process Z; = 0 is a modification of
{Y:}. On the other hand, we have P(Y; =0, t > 0) =P(r # ¢, t > 0) = P(7 ¢ [0,00)) = 0,
which implies that {Y;} and {Z;} are not indistinguishable.

Proposition 1.16

Suppose that { X }+>0 is adapted and {Y;}+>¢ is a modification of { X;}. Suppose moreover
that Fy contains all P-null sets that are F-measurable, i.e., that N’ C Fy. Then {Y;}:>0
is also adapted.

Proof. Fix t > 0 and set N = {X; # Y;}. Then observe that for A € B(R),
{VeA}=({V1 e AInN)U({Y: € A}NN®) = ({Y, € A}nN)U ({X; € A} N N°).

Since Y; is F-measurable and N, N¢ € Fy, we have {Y; € A} € F and P{Y; € A} N N) = 0.
Hence {Y; € A} N N € Fy. This together with {X; € A} UN° € F; means {Y; € A} € /.. O

e We often assume Fy D N = {A € F : P(A) = 0} to use the convenient property above.

e The filtration o(FX UN), t > 0, is called the augmented natural filtration generated by X.

Problem 1.17. Suppose that Fy D N. Let {Xt(n)}tzo be a sequence of adapted processes such
that Xt(n) converges to some X; almost surely for any ¢ > 0. Show that {X;}+>¢ is adapted.



In general, t — X;(w), w € Q, is called a sample path of the process {X;} with respect to
w. We say that {X,;} is a continuous process if every sample path of {X,} is continuous, i.e.,
t — Xi(w) is continuous for every w € Q2. We also say that {X;} is a.s. continuous if ¢t — X (w)
is continuous almost all w € Q.

Proposition 1.18

Let {X;} and {Y;} be continuous. If {X;} and {Y;} are modifications of each other,
then the two processes are indistinguishable. Moreover, if {X;} is adapted, then it is
progressively measurable.

Proof. Let w € {X; =Y, forallt € QN [0,00)}. For any ¢t > 0 there exists {t,} C QN [0,00)
such that ¢, — t¢. Then, by the continuity of {X;}, we have X;(w) = lim, o0 X¢, (w) =
limy, o0 Y, (w) = Y;(w). This implies P(X; = Y, W) = Nyegnio.ooP(Xs = Y3) = 1

To prove the second claim, we consider a piece-wise linear function [0,¢] 3 s — X ) (w)
satisfying x{ (w) = Xs(w), s=0,27",...,27"|2"t|. Here, |z| denotes the greatest integer not
exceeding z € R. Then, X is B([0, t]) x Fi-measurable. This together with lim,, s X () (w) =
Xs(w) for w and s € [0,¢] means that X, s <t, is also B([0,t]) x Fy-measurable. O

The proposition above is generalized in the following sense:

Proposition 1.19

Every measurable and adapted process has a progressively measurable modification.

The proof of this result is found in [20].

Proposition 1.20

Suppose that Fy D N. Let {X;}o<i<7 be an adapted process satisfying

T
/ | X¢|dt < 00, a.s.
0

Then, the process
t
Yt:/ Xeds, 0<t<T,
0

is progressively measurable. In particular, {Y;} is adapted.

Proof. By Proposmon 1.19, the process { X;} has a progressively measurable modification {Xt}
Then, Y; := fo X,ds, 0 <t <T,is adapted. By Fubini theorem,

T T

Thus, the Lebesgue measure of {s : X; # XS} is zero almost surely, whence Y; = }7{5 a.s.,
€ [0,7]. Then Proposition 1.16 and Proposition 1.18 mean that {Y;} is adapted and so is
progressively measurable due to the continuity. O

Problem 1.21. Prove that if {X;};>0 is continuous then sup;~o X¢, infy>o X, limsup;_, ., Xy,
and liminf; ,., X; are all F-measurable random variables.



Problem 1.22. Prove that if {X;};>0 is continuous then
o(X;0<t<T)=0(Xy;t €T N[0,T])
for any dense subset T C [0,00) and T € [0, c0).

Definition 1.23. Let T be as in Definition 1.10, and let F = {F},c1 be a filtration. A real-valued
process { X, }ier is said to be an F-martingale if the following three conditions are satisfied:

(i) X; € L' for any t € T.
(i1) {X;} is F-adapted.
(iii) E[Xy|Fs] = X for s,t € T with s <t.

Ezample 1.24 (Simple random walk). Let Xy € R, and let {X,,}7°, be an IID sequence with
P(X, =1) =P(X,, = —1) =1/2, n € N. Then define {5, }°°, by

Sn = ZXk;, n € N.
k=0

We say that the process {S,}22 is a simple random walk starting from Xj.
Now, let IF be the natural filtration generated by {X,}. Then it is straightforward to see
from Proposition 1.7 that E[X,,|F,] = 0 for m > n. This means that {S,} is an F-martingale.

Ezample 1.25. Let X € L'. Then X; := E[X|F], t € T, gives the estimation of unrealized
variable X based on the information available at time ¢. By Proposition 1.7, the process {X;}
is a martingale.

In Example 1.25, if T = N U {0}, then one might expect that X,, — X as n — oo, which is
guaranteed by the following result:

Theorem 1.26

Let G be a sub o-field of F, and X € L? a G-measurable random variable. Suppose that
the filtration G = {G, }n>0 saitisfies G = (G, : n > 0). Then E[X|G,] converges to X
almost surely and in L?.

The proof is omitted. An interested reader may refer to [31, Ch. 14].

Definition 1.27. Let T be as in Definition 1.10, and let F = {F}:cr be a filtration. Suppose
that a real-valued process {X;}ser is F-adapted and satisfies X; € L', t € T. We say that {X;}

is an F-supermartingale if
E[X:|Fs] < X5 as. t>s,

and that {X;} is an F-submartingale if
E[X¢|Fs] > X5 as. t>s.

o If {X;} is a supermartingale (resp. submartingale), then E[X;] is nonincreasing (resp. non-
decreasing).

Problem 1.28. Let {M,;}:cr be a martingale and p > 1. Show that if E|M;|P < oo for every
t € T then the process {|M|P}ieT is a submartingale.

Definition 1.29. Let F = {F;}ic[0,0) be a filtration. We say that 7: Q — [0, co] is F-stopping
time if it satisfies {7 <t} € F; for any ¢ € [0, 00).



e If 7y and 7 are F-stopping times, then 7 V 7o and 71 A 79 are also F-stopping times. This
follows from

(nvr<ty={n<t}n{n <t}
{nAn <ty ={n<t}u{n <t}

A filtration F = {F; };1>0 is said to be right-continuous if Fy = Fyy 1= Ny Fs for any ¢ > 0.
Proposition 1.30
Let IF be a right-continuous filtration. Then the following (i)—(iv) are equivalent:
(i) 7 is a stopping time.

(ii) {r <t} € F for any t > 0.

)
)

(iii) {r >t} € F; for any t > 0.
)

(iv) {r >t} € F; for any ¢t > 0.

Proof. If T is a stopping time, then by definition {7 < t} = U2 {r <t —1/n} € F;. Thus
the implication (i)=-(ii) follows. Conversely, assume that (ii) holds. Then for £ > 1 we have
{r <ty =my {r <t+1/n} € Fipy,. This together with the right-continuity of F implies
that (i) holds. The claims (i)« (iii) and (ii)<>(iv) are trivial. Thus the proposition follows. [

Proposition 1.31

Let F be a right-continuous filtration and {X;};>0 an R%valued continuous F-adapted
process. If A is an open or a closed subset of R, then the random variable

TA(w) :=1inf{t > 0: X;(w) € A}

is an F-stopping time. Here, by convention, inf () = +oo.

e 74 is called the hitting time of {X;} to A or the first exit time of {X;} from A°.

o We say that a filtration F = {F;}+>0 satisfies the usual conditions if it is right-continuous
and Fp contains all P-null sets from F.

For a filtration G = {G:}+>0 and a G-stopping time 7, we define
Gr={A€ G : ANn{r <t} € G, Vt > 0}.
e Here, Goo :=0(G; : t > 0).
e Roughly speaking, G, is the o-algebra generated by events occurring before 7.

e If two stopping times o and 7 satisfies o(w) < 7(w) for all w € Q, then we have F, C F;.

Proposition 1.32

Suppose that I is right-continuous. Let { X} }+>0 be an F-progressively measurable process,
and let 7 an F-stopping time with 7 < co a.s. Then X is F--measurable.

10



Proof. Fix t > 0. By the assumption, the mapping (w, s) — Xs(w) is measurable from (€ x
[0,t], F: x BJ0,t]) into (R, B(R)). Moreover, the mapping w + (w,7(w) A t) is measurable from
(Q, F) into (2 x [0,t], F¢ x B[0,¢t]). Hence X,x; is Fi-measurable. In addition, by Proposition
1.30, we have {7 < t},{r =t} € F;. Therefore, for B € B(R),

(X;eByn{r<t}={X.eB}n{r<t}U{X,eB}n{r=t}
={X;n€BIn{r<t}u{X, e B}n{r=t}eF.

Thus the proposition follows. O

The following inequality for continuous submartingales is frequently used.

Theorem 1.33: Doob’s maximal inequality

Suppose that {X;}:>0 is a nonnegative submartingale with continuous paths. Then, for
every T > 0 and A > 0,

1
P ( sup X > A) < —E[X7].
0<t<T A

Moreover, for any p > 1, if E[X7] < oo then we have

2 e

\. .

E | sup X7

0<t<T

Proof. Notice that by the continuity supg<,<p X¢ is certainly F-measurable (see Problem 1.21)
and o
sup X; =sup Xy,
0<t<T n>0
where {t,}> 4 = QnN[0,T] such that 0 =ty < t; < --- and lim,, o t, = T". Then, we find that
the event A = {supg<g<n X1, > A} is represented as A = n_ Ay with

A():{X()ZA}, Ak:{thz)\Omagi Xt <)\} k=1,2,....n

Since Agl)’s are disjoint, by Chebyshev’s inequality and the submartingale property we see

= 1
M) =3 P(A) ZE Xy 1] ZE (X1l 0] = JEXT140)]
1 1
< S EXTHsupgg o xe2}] < FE[XT]. (1.2.1)

Letting n — oo, we obtain the first required inequality.
To show the second inequality, put ¥ = supy<,< Xt and observe, for K > 0,

[XTl{y>)\}]d)\

E[(Y/\K)p]:p/ Apl]ID(Y/\KZ)\)d)\gp/ AP~ 1i
0 0

YAK P
=pRE [ / AP—2dAXT] = ——E[(Y A K1 X7]
0 p
<L gva KPP D/PR[XE)V/P.
p

Here, we have used (1.2.1) with limit, Fubini’s theorem, and Hélder’s inequality. Thus,

E[YP]Y? = lim E[(Y A K)P]/P < <

ELX})'
K—o0 — 1

as wanted. O
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1.3 Brownian Motion

Consider the simple random walk S,, = >}, X, n > 0, starting from 0. To embed this into
the continuous time framework, we use the normalized process

of S, by v/n. Then we define the continuous time process Wt(n) by its linear interpolation, i.e.,

Sy, -

n 1
Wt( ):%[Stntj—i_XLntj—i-l(nt_LntJ)]7 t>0.

N"l

00s : \\f\/\v‘ ‘ o6 [
\A M i
oA // w/\\\ //A/ A w ‘;'W Mﬁw
. A

o1 04
[ 0z 04 06 08 0 0z 0.4 086 08 1 0 02 04 06 08 1

Figure 1.3.1: Sample paths of Wt(n). The cases of n = 10 (left), n = 100 (center), n = 1000
(right).

We shall consider a limit of Wt(n) as n — oo.

Proposition 1.34

Let 0 = t9g < t; < ts < --- < t,,. Then the R™"!-valued random variable
(Wt(on) ,Wt(1 ), ..,Wt(::)) converges in distribution to an R™*l-valued random variable

(Wio, Wy, ..., Wy, ) having the following properties:
(i) Wi, =0 as.
(i) Wy, , Wy, — Wy, ..., Wy, — W, | are independent.

(iii) For each k, the random variable Wy, — W4, | has a Gaussian distribution with mean
0 and variance ty — tp_1.

Proof. We will prove the case of m = 2. The proof for the general case is similar. For simplicity
set s =t1 and t = t5. We see

m_ g |1
‘Wt \/FLS nt)| < =
to obtain .
n (n)
’(Ws( )7Wt ) - %(S\_snjasunj) —0 as
Hence, it is sufficient to show that
Lsn] [tn]
ZX],ZX — (W, W;) in law. (1.3.1)

12



To this end, let 7 be the imaginary unit and «, 5 € R. Then, by the IID property of {¢;},

[sn] [tn]

1 1
E [exp ia—g X‘—l—zﬂ—g X;
vn J=1 ! vn J=1 !

Lsn| [tn]
=E |exp | i(a— ZX +Zﬁf Z X;

j=lsn]+1

an
=E |exp | i(a—p \/
\/ sn|

Lt?’LJ L J 1 Ltnjzfsnj
V0tn] — |sn] ot

It follows from (sn— 1)/n < Lsnj /n < s that [sn]/n — s. Further, by the central limit theorem,
the distribution of
\/7

xE |exp | i8

E X converges to the standard normal distribution. Therefore

[sn] [tn]

E exp Q0 X + ’LB X — K ei(afﬁ)Ws E eiB(Wtfs)
\f Z Vi & Z [ JE[ ]
— E[eiaWS+zﬂWt].

Thus (1.3.1) follows. O

This suggests that a process {W;} satisfying Proposition 1.34 (i)—(iii) can be seen as a limit
of {W, n)}. We shall call such process {W;} as Brownian motion.

Definition 1.35. A real-valued process {W;}:>0 is said to be a Brownian motion if
(i) Wy =0 as.
(ii) ¢t — W, is continuous almost surely.

(iii) Independent increments property: for 0 = tg < t; < -+- < ty,, the random variables
Wi Wiy — Wy oo o Wy, — W, | are independent.

(iv) Stationary increments property: for s < t, the random variable W; — Wy is a Gaussian
random variable with mean 0 and variance ¢ — s.

It should be noted that Proposition 1.34 does not guarantee the existence of a Brownian
motion. The proposition means that if a Brownian motion exists then its distribution coincides
with the limiting distribution of {Wt(n)}.

To discuss the existence of a Brownian motion rigorously, we consider the measurable space
(C[0,00), B(C[0,00))) defined by the totality of continuous functions on [0,00). Then, the
projection m; defined by m(w) = w(t), w € C[0,00) is a measurable function on C[0,0c0). For
each w € C[0,00) we can regard {m(w)}+>0 = {w(t)}+>0 as the sample paths of a process. We
call {m }+>0 as coordinate process.

Now suppose that a probability measure P on (C[0,00), B(C[0,00))) satisfies, for 0 = ¢y <
t1 <---<tpyand ag,...,a, €ER,

P(w:w(ty) — w(tk_l) <ag, k=1,...,m)
(1.3.2)

o —u2/2(tk—tk_1)du.

13



Then, the coordinate process {7} on the probability space (C|0, 00), B(C[0,0)), P) is a Brow-
nian motion. Therefore, the existence problem of a Brownian motion is reduced to that of P.
Let P, be the distribution of C[0, c0)-valued random variable W) := {Wt(n)}. Then P, is
a probability measure on (C[0,00), B(C[0,00))). If {P,} weakly converges to some P then it
follows from Proposition 1.34 that P satisfies (1.3.2).

A general theory of weak convergence of probability measures tells us that if the two con-
ditions in the statement of Theorem A.42 hold then there exists a subsequence {P,, } that
converges weakly. Indeed, we can prove that the two conditions do hold, and so a weak limit P
satisfies (1.3.2). An interested reader may consult [15, Chapter 2] and [5, Chapter 2]. Conse-
quently, under the weak limit P, the coordinate process {m;} satisfies the conditions in Definition
1.35.

The arguments above shows the following claim:

Theorem 1.36

There exists a Brownian motion on some probability space.

P is called the Wiener measure.

e We also say that a process satisfying the requirements in Definition 1.35 is a Wiener

process.

e An R%valued process W; = (W}, ..., Wg), t >0, is said to be a d-dimensional Brownian
motion if each W} is a Brownian motion and W} and W} are independent of each other
for i # j.

e Let P, i=1,...,d, be d copies of the Wiener measure on (C[0, 00), B(C[0,00))). Then
PO := PWx...x P is called the d-dimensional Wiener measure on (C([0, 00)?, B(C[0, 00)?)),
and the coordinate process Wi(w) := w(t), t > 0, is a d-dimensional Brownian motion un-
der P°.

Definition 1.37. Let F = {F;}:+>0 be a filtration. We call {W;};>¢ as a d-dimensional F-
Brownian motion if

(i) {Wi}eso is F-adapted and a d-dimensional Brownian motion.

(ii) For s <t the random variable W} — W is independent of Fs.

o Let {W;} be a d-dimensional Brownian motion and consider the augmented natural filtra-
tion G = {G¢}1>0 generated by {W;}, i.e., G := o(F}Y UN), where A is the collection of
all P-null sets from F. Then {W;} is also a d-dimensional G-Brownian motion.

e It is known that the filtration G above satisfies the usual conditions (see, e.g., [15, Theorem
2.7.9)).

Problem 1.38. Let {W;};>0 be a d-dimensional Brownian motion. Show that
o (FVUN) =0 ({o(Why,.. ., Wy,): 0<t1 <+ <t, <t, n>1}UN).

There are infinitely many Brownian motion on the same probability space, as seen in the
following problem:

Problem 1.39. Let {W;};>¢ be a Brownian motion. Then show that the processes defined by
the following (i)—(iii) are all Brownian motions:

(1) {=Witizo.

14



(ii) {Wt+s - Ws}tZO'
(ﬁi) {CLLQ/QQ)}tZO-
Here s > 0 and ¢ # 0.

Next we focus on an irregularity of the sample paths of a Brownian motion.

Theorem 1.40

Let {W;} be a Brownian motion. Then

P({w € Q: ¢t — W;(w) is not differentiable at s € Q N [0,00)}) = 1.

Proof. Fix s > 0, put Ay = {w : t — Wi(w) is not differentiable at s > 0}, and take w € A,.
Then the limit limp\ (Weip(w) — Ws(w))/h exists and is finite. In particular, there exist 6 > 0
and hg > 0 such that Wy, (w) — Ws(w)|/h < 0, 0 < Vh < ho. Hence sup,,>1 n|Wpq/m(w) —
Wi(w)| < 0o, and so there exists N > 1 such that for n > 1 we have n|W,; /,(w) — Ws(w)| < N.
This implies
As C U m{n|Ws+1/n - Wi < N},
N>1n>1
whence by the continuity of the probability measures
P(As) < A}im inf P(n|Wpi/m — Ws| < N).

—oon>1

Take £ ~ N(0,1) and use W1/, — Ws ~ N(0,1/n) to obtain
inf P(n|W, 1/, — Ws| < N) = inf P(ny/1/nl¢] < N) = inf P(¢] < Nn~'/%) = 0.

Consequently we have P(As) = 0. Therefore P(Usegno,o0)As) = 0. O

e Actually, we can show that the sample paths of a Brownian motion is not differentiable
for any time almost surely We refer to [15, Theorem 2.9.18] for a proof.

e This fact suggests an unpredictability of Brownian motion in a pathwise way.

We shall see an irregularity of Brownian motions with a different criterion. To this end, we
use the total variation of {W;} in [0,¢] for each ¢ > 0, defined by

k

VW([O7 t]) ‘= sup Supz |Wti+1 - Wti|a
k20T iz

where the second supremum is taken over the partitions 7: 0 =1ty <t < --- <t < tgyr1 =1 of
[0,¢] having k£ + 1 points.

Theorem 1.41

The total variation of {W;} is almost surely infinite, i.e., P(Viy([0,t]) = oo, ¢ > 0) = 1.

Proof. First notice that for each partition 7 of [0, ¢],

E> (Wi, —Wi)? =) (ti —t) =t

t;em tiem
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Then write Z; = (Wy,,, — Wy,)? — (tiz1 — t;) and take £ ~ N(0,1). Clearly, {Z;} is independent
and each Z; has the same distribution as that of (¢2 — 1)(t;41 — t;). Thus

2
E (Z(Wti+1 - Wti)2 - t) =E Z Zi2 = E[(§2 - 1)2] Z(ti—H - ti)2~
tiem t,em t,em

Let 7, be a sequence of the partition such that A, := sup; . |tiy1 — % — 0. Then the
right-hand side of the equality just above is at most tE[(¢2 — 1)?]A,,. Therefore,

Qni= Y (Wi, —Wy,)> =t n—o0, inL?

t;€Emn

whence there exists a subsequence @), that converges almost surely.
Now, suppose that P(Vii([0,t]) < co) > 0. By the continuity of Brownian sample paths, we
have supy, ¢, |[Wi,., — Wi,| — 0, and so the probability of the event

1+1

t < lim ( sup [Wi, , — Wtz’) Z Wir — Wi | =0

k—o0 ’
t; EMny, tieﬂ'nk

is positive, which is impossible for ¢ > 0. Hence P(Viy([0,¢]) = oo) for every ¢ > 0. Furthermore,
since Viy ([0, s]) < Vip ([0, t]) for any ¢ > 0 and s € Q with s < ¢, we have

1 =PV ([0,s]) =00, s € QN (0,00)) < P(Viy([0,t]) = o0, t > 0).
Thus the theorem follows. O

The proof of the theorem above implies that for each partition 0 =ty < t1 < -+ < t,, <
tn+1 = t such that A, = sup |[t;i+1 — ;] — 0,

<W>t = hmZ(WtH_l - Wti)Q = t, in Lz.
=0

We call (W), t > 0, as the quadratic variation of {W;}.

Definition 1.42. We say that an R%-valued F-adapted process {X;} is an F-Markov process if
E[f(Xe)|Fs] = E[f(Xo)| XS], s <t
for any bounded Borel function f on R¢.

e {X;} is simply called a Markov process if it is Markov with respect to {F7* };>o.

Theorem 1.43

Any d-dimensional F-Brownian motion is F-Markov.

Proof. Let s <t. Since W; — Wy is independent of F, we can apply Lemma 1.44 below to obtain
E[f(W)|Fs] = E[f (Wi — W + W;)| Fs| = g(W).
Here g(y) = E[f (Wi — W; +y)].

On the other hand, o(Ws) C F; yields E[f(Wy)|o(Ws)] = E[E[f(Wy)|Fs]lo(Ws)] = g(Ws),
whence the claim follows. O
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We have used the following lemma to show Theorem 1.43.

Lemma 1.44

Let (S;,S;), i = 1,2, be measurable spaces. Suppose that an Sj-valued random variable X
is independet of a o-algebra G and that an Ss-valued random variable X5 is G-measurable.
Then for any bounded Borel function f on (S; X S2,S1 X S2) we have

E[f (X1, X2)[6] = E[f (X1, 2)]|a=x,-

Proof. Let A € G. The assumption implies that Z = (X2, 14) is independent of X;. So applying
Theorem A.36, we have

ELf(X,Y)14] = / F (). (de, dy, d€) = / f(, )€ (da)pz (dy, €),

where py denotes the distribution of V. Thus by Fubini’s theorem (Theorem A.35),

BV = [ [ [ 1t ysmdx)] €7 (dy,€) = Blg(Y)14]

Since A € G is arbitrary, we are done. O

Theorem 1.45: The strong Markov property for Brownian motions

Suppose that the filtration F is right-continuous. Let {W;};>0 be a d-dimensional F-
Brownian motion. Then, for any F-stopping time 7 and bounded Borel function f on R?,
we heve

E[l{rcooy f(Xr+6)|Fr] = E[L{rcooy f(Xr)|X7], ¢ 2>0.

Proof. First notice that for every bounded Borel measurable function f on B(R) there exists a
sequence {f,}°%, C Cy(R?) such that f,(z) — f(z), € R%. To confirm this, recall that any
Borel measurable function can be approximated by simple functions and the indicator function
on Hle(ai, b;] can be approximated by continuous functions. Thus, in view of this pointwise
approximation and the dominated convergence theorem, we can assume f € Cy(R?) without loss
of generality.

Let 7 be a stopping time and put 7, = (|n7] +1)/n, n € N. Fix A € F;. Then,

E [1{r<oopf (Wigr,)14] ZE (Wiste/n)Lan{rn=k/n}] -

Since 7 < 7, we have 7, C Fr,,. Thus AN {7, = k/n} € Fj/,. Then by Theorem 1.43,

Elf (Wisr)Lantr,=k/n}] = BIELf (Werr ) Fr/nlLangr,=k/n}]
E[E[f (Wit )W /nll angrn=k/n}]
=E[E[f(Wirk/n — Wisn + 0)lle=wy ., Lan{ra=k/n}]-

Therefore,
E [1frcooy f(Weir)1a] = E [1r <o) E[f (Wi + )] le=w, 14] -

By the continuity of f and the dominated convergence theorem, letting n — oo, we obtain

E [1{T<oo}f(Wt+‘r)1A] =K [1{T<OO}E[f(Wt + SU)”:E:W.,. 1A] . (133)
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On the other hand, by Proposition 1.18, {W;} is progressively measurable. This together
with Proposition 1.32 means that W is F,-measurable. Thus, o(W;) C F; and (1.3.3) holds
for any event in o(W.). Consequently,

E [1{T<oo}f(Wt+‘r) |]:T] = [1{T<oo}f(Wt+T) | U(WT)] )

as required. ]

Theorem 1.46

Suppose that the filtration I is right-continuous. Let {W;};>0 be a d-dimensional {Fit>o0-
Brownian motion and 6 an F-stopping time with 6 < oo, a.s. Then, W; := Wy, 9— Wy, t >
0, is also a d-dimensional Brownian motion with respect to {F;4¢}+>0 and is independent
of .Fg.

Proof. As in (1.3.4), we can show that
E [eﬁﬁT(Wt+e—Ws+9)1A:| — [E[e\/—ilﬁTWtfs 1A] , t> s, Ae fs—i—&, é- c Rd,

whence
E [eﬁﬂ(wwfwﬁe)

Fopo| = e 2> R,

This leads to the claims. O

Proposition 1.47

Let {W;}+>0 be an F-Brownian motion, and o € R. Then the following three processes
are F-martingales.

(i) {Witizo,
(ii) {WZ — t}i>0,

(111) {6O'Wt — (o2 /Z)t}tZO ]

.

Proof. Let s <t. (i). Since Wy — Wy is independent of F;, we have
E[W,|Fs] = E[W, — Wy + Wi|Fg] = E[W, — W] + W = W

(ii). We use the representation W2 —t = (W — Ws+Ws)2 —t = (W — Wi)% — (t —5) + 2W (W, —
W) + W2 — s to see

E[W? — t|Fs] = E[(W; — W,)?] — (t — s) + 2W,E[W; — W] + W2 — s = W2 — 5.
(iii). This follows from

E[eaWt—(UQ/Q)t‘]:s] _ eaWS—(02/2)5E[60(Wt—WS)—(0'2/2)(t—s)] _ eaWS—(UZ/Z)s.

Problem 1.48. Apply Doob’s maximal inequality to show that
Elexp o sup |[Wi || < 0
0<t<T

18
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Let {W;} be a 1-dimensional Brownian motion. For t > 0 and = € R,
W;x =+ W —-W;, s>t
is a Brownian motion starting at (¢,2). Then, the probability density function

o e~lo=yl2/2(s—1)
p(Svy’t,-f) Z:%P(Ws’ Sy):m, s>, yER

of W& is called a transition density from (¢, ) to (s,y). This satisfies second order parabolic
partial differential equations

1

Osp — §8§yp =0, (1.3.4)
1

Oip + iaizp =0,. (1.3.5)

The equation (1.3.4) is called the forward Kolmogorov equation, whereas (1.3.5) is called the
backward Kolmogorov equation.

Let f be a bounded continuous function on R. Then, by the backward Kolmogorov equation
(1.3.5), the function
u(t,x) = E[f(Wr")],  (t,x) € [0,T] xR,

satisfies )
Ou(t,x) + iﬁgxu(t, z)=0, (t,z)€0,T) xR,

and u(T,z) = f(x), x € R.
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CHAPTER 2

Stochastic Integration

Standard textbooks for the contents of this chapter are, e.g., [24], [41], [37], [15].

In what follows, we fix a time maturity 7' € (0,00) and work on a filtered probability space
(Q, F,{Fi}o<t<,P). For the technical reasons described in Chapter 1, we assume that F satisfies
the usual conditions.

2.1 Construction

Let {Wi}o<t<r be a one-dimensional {F;}o<;<p-standard Brownian motion on (2, F,P). As
seen in Chapter 1, Brownian motions can be a mathematical model for unpredictable motions.
One might expect that an infinitesimal analysis for Brownian motions can be available as in the
case of the classical calculus. However, by Theorem 1.40, the sample paths of Brownian motions
are not differentiable. Therefore, to say nothing of a differentiation, an integral fg fsdWy cannot

be defined via the classical change of variation formula fg fs(dWs/ds)ds. Moreover, since the

total variation of any Brownian motion diverges (Theorem 1.41), an integral fot fsdWs cannot
also be defined by the so-called Lebesgue-Stiletjes integrals.

The case of simple processes

As in the case where the definition of the expectation, we start with the case of simple integrands.

Definition 2.1. We say that {¢;}o<i<7 is a simple process if there exist a partition 0 = ¢y <
tp < -0 <ty < tyy1 = T of [0,T], Fo-measurable vy € L? and F;,-measurable p; € L%
1=20,...,n, such that

dr(w) = o(w) oy (t) + Y @i(w) g, 00 (),  (tw) €[0,T] x Q. (2.1.1)
=0

For simple processes {¢;}, we define the stochastic integral or Ité integral on [0,T] of {¢:}
with respect to {W;} by

T n
1(9) E/O G dWs = oi(Wi,,, — Wa,). (2.1.2)
=0

It should be mentioned that the values at left most point in [t;, t;11] are adopted for the integrals,
which differs from the arbitrariness in the case of Riemann integrals.
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Our first task is to confirm that the definition (2.1.2) is well-defined, i.e., (2.1.2) is indepen-
dent of the representation (2.1.1) of ¢, as a simple process. Suppose that {X;} is represented
as

m
bt = 1/}01{0} (t) + Z S021(51',5#1](75)

i=1
for some partition 0 = sop < s1 < -+ < Sy < Smy1 = T, and F,-measurable ¢ € L?,
1 = 1,...,m. Then, with the common partition 0 =y < up < - < uk < Ugyr = T, we
see ¢y = Yy lioy(t) + Zf 0 gog’l(u“ulﬂ]( ), where ¢ is given by ¢? = ¢; = ¢}, for appropriate j
and ¢. Since the interval (u;, u;j41] is a subdivision of (t;,¢;41] for some j, we have (t;,tj41] =
UL, (us,uiy1] for some ig < i;. Hence, 0i(Wiy —Wy,) = Zl:m (W, — Wy,). A similar

=10

relation is obtained for the representation of ¢, (Ws,,, — Ws,). Therefore,
n m
= Z @j(Wth - Wt] Z SD Wiy — W) = Z 902(W55+1 - WS@)'
j=0 £=0

This shows that (2.1.2) is well-defined.
Now, we shall define the It6 integrals for general integrands by extending the definition
(2.1.2) in a natural way. To this end, we focus on the following fact:

Proposition 2.2

If {¢;} is a simple process, then
T
=E U ¢§ds} : (2.1.3)
0

([ o)

Proof. Suppose that ¢; is represented as in (2.1.1). Then,

T 2
(/0 ¢tth> = Z @i@j(WtHl - Wtz‘)(Wtj+1 - Wtj)

( j
= Z 901 + 2 Z PiPj Wtz+1 - Wti)(Wtj+1 - Wtj)‘
7>t
By the independent increments property of {W,}, for j > i we have

Elpioj Wiy — Wi, ) Wi,y — Wiy)] = Eloi(Wh oy — Wi )@ BEIW,, ., — Wy | F ]l =0

J+1

T 2
(/0 ¢tth>] ZE tz+1—tz = / ¢tdt

e The property (2.1.3) is called as the isometry of the It integrals.

whence

e Proposition 2.2 means that for two simple processes {¢;} and {¢}

T
E[(I(6) — I($))] = E /0 (60 — v)2dt

Thus, the L?-error between I(¢) and I(v)) is equal to the mean squared error E fOT(qSt -
y)2dt of the two stochastic processes {¢;} and {1 }.
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The case of square integrable processes

The preceding argument suggests that for a general process {¢;} having approximate sequence
{¢§")} of simple processes, the L2-limit of I(¢(™) is meaningful and can be defined as an integral

of {¢¢}.

We consider the class

T
Lo = {{gbt}ggtST : F-adapted, IE/ qb?dt < oo} .
0

Then we have the following:

For any {¢;} € Lo, there exists a sequence {qﬁgn)}, n > 1, of simple processes such that

T
lim E U b — ¢§”)|2dt] —0.
n—ro0 0

Proof*. First, consider the case where ¢;(w) is continuous for any w € €2 and uniformly bounded,
L.e., SUP(¢ w)eo,1)xq |¢t(w)| < 0o. Then, the sequence

O = prgngp te k2T (k+1)27"T), k=0,...,2"—1, n=12,...

of simple processes converges to ¢y(w) for any (¢t,w). Further, it follows that |¢E") — ¢y <

2supy , [¢s(w)| < oo, whence, by the dominated convergence theorem, EfOT |¢§n) — ¢y|2dt — 0.
Second, consider the case where {¢;} is adapted and uniformly bounded. Then, by Propo-

sition 1.20, the process

1 t

¢ == | aods, 0<t<T

€ Jt—e
is adapted, uniformly bounded, and continuous. By [35, & 19.3], we have (bga) — ¢ as
e — 0 for almost every t. Moreover, there exists a sequence {¢§n,5)} of simple processes that
approximate {d),gs)} for every € > 0. Therefore, applying the dominated convergence theorem,
we obtain

T
lim lim IE/ 16" — ¢y |2dt = 0.
0

e—0n—o00

Thus we have E fOT |¢§n’€") — ¢¢|2dt — 0 for some subsequence &, — 0.
Third, consider the case where {¢;} is adapted and is not necessarily bounded. Then, the

process d)g&) = ¢tl{jg,|<sy, 0 <t < T, is adapted and bounded, and satisfies

T T
: () 270 1 2 —
611HI£10]E/0 |¢t - ¢t’ dt = 611HI£10]E/0 (cbt) 1{|¢t|>5}dt =0. (2.1.4)

Hence, there exists a sequence {qﬁg"’é)} of simple processes that approximate {qﬁgé)} for every

0 > 0. This together with (2.1.4) implies that E fOT |¢§n’6") — X;|2dt — 0 for some subsequence
Oy — 00. O

By Proposition 2.2 and Lemma 2.3, for any {¢;} € Lo there exists a sequence {q&ﬁ”)}ogtg
of simple processes such that

T
E|I(¢™) — I(¢™)* = E /0 6" — o™ Pdt, m,n €N,
T
lim IE/ 6 — o™ |2dt = 0.
n—oo 0
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This shows that {I(4(™)}°2 | is a Cauchy sequence in L?, whence there exists a limit I(¢) € L.
Moreover, I(¢) does not depend on the choice of approximating simple processes {¢§")}. Indeed,
if {%En)}ogth, n € N, are another simple processes such that EfOT |pr — wgn)|2dt — 0, then

EI1(9) — I(™)[2 < 2B[T(6™) — I + 2E| (™) — I(6)?
T
E / 16— g™ Pt 4 2| 1) — 1) — 0.
0

The arguments above justify the following definition:

Definition 2.4. Let {¢;} € L2 and {qﬁgn)} be as in Lemma 2.3. Then we define the It6 integral
1(¢) = [i ¢1dW; of {¢} by the L*-limit of I(¢(™).

Ezample 2.5. Let us compute fOT WidWy. In this case,

2n_1
Z jo-nrlijo-nT (je12-n) (), 0<E<T, n=12,...

is an approximate sequence of {W;}. Indeed,

T (n) 281 e(j+1)27nT
E[/( " Wt)th] Z/ (Wig—ng — Wy)2dt
0

=0 Ji2 T
—1 (j+1)27T 2n-1
:Z/ (j27"T — t)dt 221 (j+1)27"T — j27"T)% = 0.
2—nT

Thus,
on—1

/ Wtth = hm Z j2- "T j+1)2_”T — Wj2—nT) in L2.

Using 2y(z —y) = 22 —y? — (v — y)2, we see

an 1 an 1
2 Z Wig-np(Wis1)2-nr — Wig-ng) = Wi — Z (Wiis1y2-nT — Wia—np)?.
— =

Further, the second term of the right-hand side in the equality just above converges to 1" in L2
Therefore,

T
1., T
/OWtth—2WT—2.

Ito integration as stochastic processes

We shall define the stochastic integrals on [0,t] for each ¢t € [0,7], and then construct the
processes of the integrals. For the simple process {¢;} with representation (2.1.1),

/ PsdW -—/ Pslis<pydWs = Z@k Wieint = Wiat), 0<t <T.
k=0

That is, for t € (ti,tiva], I(d) = S k(Wi o, — W) + @i(Wy — Wy,). The sample paths of
{I;(¢)} is clearly continuous almost surely.
Next, we introduce the class

M = {{M;}o<i<7 : a.s. continuous, F-martingales}
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of processes. Then we have the following fundamental result:

Proposition 2.6

For any simple process {¢:}o<t<7, the process {I;(¢)}o<i<r is an F-martingale, i.e.,

{1:(8)} € M.

Proof. Let {¢:} be given by (2.1.1). If s < ¢; < ¢ then it follows from the martingale property
of Brownian motions that

Elpi Wt ne — Wine) [ Fsl = EloiE[Wr At — Wine| Fi )| Fsl = 0= 0i(We i as — Wiins)-
Ift; < s <t;y1 At then
E[@i(WtH_l/\t - Wti/\t)’féi] = Wz(Ws - Wtz) = Spi(Wti+1/\S - Wti/\s)-

If r > t; 1At then clearly we have Elp; (W, at—Wiae)[Fs) = ©s(We, a6 —Wi;at). Consequently,
for s < t we obtain

E[1(¢)|Fs] = Z%(thAs — Wiins) = I5(9).
i=0
O
For t € [0,T] and for {¢s}o<s<t € L2, we define I;(¢) by the L2-limit of the stochastic

integrals I;(¢(™) of an approximating simple processes {¢§”)}0§ s<t- Then we have the following:

Theorem 2.7

For any {¢:}o<t<r € L2 there exists a modification process J : L3 — M of {I;(¢) }o<t<T-
Namely, {J;} is a continuous F-martingale and satisfies P(J; = I;(¢)) = 1 for t € [0,T.

Proof*. By Doob’s maximal inequality (Theorem 1.33), for any fixed € > 0,

P(sup [1(6™) = (¢! )\>a)< SE |[Ir(6™) = Ir(¢™)P?]

0<t<T

1 n m
- /ms” " Pt — 0

g2

as m,n — oo. Hence there exists a subsequence ng * oo such that

P( sup [L(¢"+1)) = I(¢))| > 2_k> =

0<t<T
Then we apply Borel-Cantelli lemma (Lemma A.12) to obtain
Pl UN { sup |, (¢™+1)) — I, (¢(™))] > 2—’f} - 1.
K>1 5k (OSIST
From this, for almost every w € Q there exists ko(w) such that

sup [1(¢" ) (w) — L(¢"H) (w)| <27, k> ko(w).
0<t<T

24



This implies that for almost every w the sequence I;(¢™*))(w) of functions converges to some
Ji(w) uniformly on [0, T]. We set J;(w) = 0 for w such that the limit I;(¢("))(w) does not exist.
Then {J;} is continuous almost surely and a modification of {I;(¢)}. Indeed, by Fatou’s lemma,
E[(J; — Ti(¢))*] = E[ lim (T,(¢"™) — I,(¢))*] < lim inf E[(1;(¢™) — I:(¢))*] = 0
n—o0 n—oo

whence J; = I;(¢) a.s.

Next we will show that {J;} is a martingale. It is clear that J; € L for every ¢t. By Problem
1.17 and Proposition 1.16, {I;(¢)} and {J;} are adapted. Moreover, for s < ¢, the inequality
(a +b)? <2(a®? +1b?) for a,b € R and Jensen’s inequality for conditional expectations yield

E [E[JF) - Jil* < 28 [E[J|F,] - ElL(6") ) CoElr - |
<2 (E 1 - th +E|I™ -, 2)
— 0,
whence E[J;|Fs] = Js. Therefore we have {J;} € M. 0

e In what follows, the process I;(¢) = f(f PsdWs, 0 <t < T, denotes the continuous modifi-
cation {J;}o<i<¢ in Theorem 2.7.

e The processes of the stochastic integrals can be seen as a linear map from Lo into M.
Namely, for {¢:}, {11} € L2 and o, € R we have I;(a¢ + ) = al(¢) + SI ().

e We define, for s < ¢,
t t s
s 0 0

Then it follows that for A € F;

t ¢
/ Laul sy dWy = 1,4/ O dWy, (2.1.5)
S S
which can be verified by the approximation argument with simple processes.

Next, we consider the stopped process I.n,(¢) defined for an F-stopping time 7 (see Chapter
1). The following proposition gives a representation for Iia,(¢):

Proposition 2.8

For any {¢;} € L, and F-stopping 7,

tAT t
budW, = / bolgeerydWs, D<E<T, as.
0 0

Proof. 1t suffices to show the proposition in the case that 7 is [0, t]-valued for some fixed t € [0, 7).

First assume that 7 is represented as 7 = Z?:l tila,, where 0 <t; <---<t, =tand 4; €
Fi; such that {4;} is disjoint. From {s > 7} = UlL;{s > t;} N A;, the fact that s+ 14,1155, 05
is adapted and the linearity of the stochastic integrals we obtain

t n t
/0 LsoryfsdWs = /0 14,1ty GsdWs.
=1

25



Applying (2.1.5) to the right-hand side in the equality just above, we find

t n t t
/ ]‘{S>T}¢SdWS = Z 1Ai / ¢des = / ¢des-
0 i=1 t; T

For a general [0, t]-valued stopping time 7, we consider an approximation of 7 with

on

Tn = Z(i + 1)27 "t fjo-ni<r<(iv1)2-n1}-
i=0

Since 7, — 7 a.s. and s — fos ¢ dW,, is continuous almost surely, the sequence of the random
variables [ ¢,dW converges to [ ¢sdW; almost surely.
On the other hand, by the dominated convergence theorem, as n — oo,

2

t t t
E‘/O 1{5§T}¢SdWs _A l{sg‘rn}(bsdws = E/O 1{T<$§Tn}¢§d8 — 0.

Therefore, fg l{ngnk}gbdes — f(f lis<7}®sdWs a.s. for some subsequence ny * co. Thus the
proposition follows. O

It6 integrals for general integrands

We shall define the stochastic integrals for the class

T
Lo 10c 1= {{@}O%T : F-adapted, / Prdt < oo a.s.}
0

that is larger than L£5. To this end, we introduce local martingales.

Definition 2.9. We say that {M;}:>0 is an F-local martingale if there exists an increasing
sequence {7, }n>1 of stopping times such that lim, , 7, = oo and that {M/"};>¢ is an F-
martingale.

Denote by M. the collection of all F-local martingales with almost surely continuous paths.
For {¢:} € L210c, we consider the random variable

Tn:inf{s € 10,7 :/ (biduZn}.
0

Here inf() = oo by convention. Then, since {7, < t} = {fg ¢2ds > n} and fg d2ds is JFy-
measurable by Proposition 1.20, each 7, is a stopping time.
Now, define the process {d)in)} by
ﬁn) = ¢t]‘{t§Tn}'
Then it is bounded and adapted. Thus, in particular, {(bgn)} € L5. By definition, we obtain

t t
/0 oL AW, :/0 Lo 0 VW,

Moreover, by Proposition 2.8,

t tATh
/ P AW, = / AW,
0 0
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Therefore, on the event {t < 7,} = {fo $2ds < n} we have fo AW, = fo qbgnH)dW Also,

since .
{/ ¢sd5<n} :{/ ¢3du<+oo},
0

we can consistently define {.J(¢);} by

n>0

~ t
J($); = /0 PMdW,, 0<t <7, AT.

Then {J(¢)¢} € Mioe and J(¢); = f(f psdW, for any {¢;} € Lo, We write J(¢); = fg DsdWs,
0 <t < T, and call it the Ito integral or stochastic integral of {¢+} € L2 o
Multidimensional cases

We shall define the It6 integrals for multidimensional Brownian motions. Let W, = (W}, ..., W/™),
t > 0, be an m-dimensional F-Brownian motion.

Definition 2.10. Let 0; = (9751,...,95), 0 <t < T, be an R™-valued process such that
{01} oci<T € Lo1oc for each ¢ = 1,...,m. Then, we define the It6 integral of {6;} with re-

spect to {W;} by
t mo o
/ 0 dW, =) / 0L AW,
0 = Jo

Similarly, for R4*™-valued process o; = (afj ), 0 <t < T, such that {azj Yo<t<r € La]oc for
each i, j, we define the It6 integral of {o,} with respect to {W,} by

T

m t
/ade Z/ Ude,---,Z/ o B AW
j=1"0

Pathwise construction

Assume here that m = 1, and let (¢¢)¢>0 be a continuous adapted process. For each n € N, we
define the sequence {7]'}° of the stopping times by

70 =0
T = inf{t > 77" oy — ¢rn| > 27"}, i € NU{0},
Further, for every n € N, we define the process (Y;"):>0 by
Y= en (Wen = Wen )+ ¢ (Wy = Win),  t€ [, 7iy), keNU{0},

with convention Z?:l = 0. Then the process (Y;") converges to the corresponding It6 integral
almost surely.

Theorem 2.11

For T € (0,00), we have

t
}/tn/ ¢s
0

27

lim sup s| =0, a.s.

N0 0<t<T




Proof. Note that Y;” can be written as Y;" = fg ¢5dWs where ¢ = ¢rn for t € [, 73!, ;). Then,
by definition, |} — ¢¢| < 27". Thus, using Doob’s maximal inequality, we see

2

E sup

T
< 41[5/ |97 — ¢ |?ds < 4T27%",
0<t<T 0

t
Y;Sn_/ ¢des
0

This together with Cauchy-Schwartz inequality yields

00 t o0 t
EY " sup Yt”/ ¢sdWs| => E sup Yt”/ bsdW,
0 0

o0
< Z WT2™ < 0,
n=1

n=10StsT n=1 OSt<T
whence
o t
Z sup Y;"—/ ¢sdWs| < 00 a.s.
_, 0<t<T 0
n=1
Thus the theorem follows. O

2.2 It6 Formula
Recall that if the function f(¢,2(t)) is smooth, then the chain rule

d(t.a(t) _ of 0 ) iy dad)
ST = S talt) + 5 ()

holds. By the fundamental theorem in calculus, this can be written in the integral form

f(t, z(t)) :f(O,J:(O))+/O g‘z(s,x(s))ds+/o %(S,x(s))du’c(s).

In this section, we shall derive its stochastic version, i.e., a chain rule for f(¢, X;) when X; is
stochastic process.

In what follows, we fix an m-dimensional F-Brownian motion W; = (W, ..., W), 0 <t <
T.

Ito6 processes

Definition 2.12. A d-dimensional process X; = (X},...,X1), 0 < t < T, is called an [t6
process if each component is written as

t moot
X} :X3+/ K;de/ HIdWi, 0<t<T, i=1,....d, (2.2.1)
0 — Jo
7j=1
where X{ is Fo-measurable, { K/} and {H,’} are adapted with fOT |K}|dt < oo, fOT(HZj)th < 00,
as,t=1,...,d,7=1,...,m.

e Propositions 1.16 and 1.20 means that the processes fg Kids, i = 1,...,d, are adapted
and so is {X;}.

It should be noted that the representation of an It6 process is uniquely determined. To see
this, assume m = d = 1 for simplicity and that {X;} has representations

t t t t
Xt:Xo—i—/ sts—l—/ HSdWS:XO—i—/ K;ds+/ HdW,.
0 0 0 0
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Then,
t t
Ay = / (Ks — Kl)ds = / (Hs — H))dWg, 0<t<T
0 0

is a local martingale, whence, by Lemma 2.13 below, we necessarily have A; = 0 a.e. This yileds
K; = K/, dt x P-a.e., and so H; = H}, dt x P-a.e.

If the It6 process Y; = fg bsds, 0 <t < T, is a local martingale, then by = 0, dt x P-a.e.

Proof*. Since {Y;} is represented with the Lebesgue-Stieljes integral, it is a finite variation, i.e.,
we have V3 ([0,T]) < oo a.s. (see Chapter 1). Hence the random variable

T, = inf{t > 0: Vy([0,t]) > n},

with convention inf() = oo, is a stopping time satisfying 7, ' oco. Then, it follows from
Yinr,| < Vo ([0, A 7]) < n that the stopped process {Y,"} is an L:-martingale. Take an
arbitrary partition 0 = tg < t; < --- <t < tx4+1 =t of [0,¢] to observe

k

> (2= vm)?)

1=0

k

P AN Ak

1=0

E[(¥;7")"] = E —E

<E [Vy([O t/\Tn]) max |Yz+1 — Ytj”q < nk [Olgax |Y1+1 YZ”]] .

Thus, the dominated convergence theorem for the limit maxj<;<j(tit1—1t;) — 0 leads to |Y;™| =
0 a.s. for t. Then letting n — oo and using the continuity of Y;, we obtain

t
/ bsds =0, 0<t<T, a.s.
0
Therefore, if ¢t — b; is continuous, then by differentiating we have by =0, 0 <t < T, a.s. In the

general case, it is sufficient to consider the approximation with continuous processes as in the
proof of Lemma 2.3. O

Chain rule

The following theorem gives a chain rule for It6 processes:

Theorem 2.14: It6 formula

Let X; = (X}, ..., X%, 0<t<T, be an Itd process with representation
¢ ¢
. . t . m t .. .
X§:X5+/K;ds+2/ HY9dWI, i=1,...,d.
0 — Jo

Suppose that f € C12([0, T]xR%). Then {f(t, X;)}o<i<7 is an It process and represented
as

F(t, X4) = £(0, Xo) +ZZ/ O, f (s, Xs) HI AW

=1 j=1

+/t Bsf(s, Xs) +Za (s, XK+ = ZZ f(s, X)) HFHI* b ds.
0

i,=1 k=1
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It is useful to state the Ito formula in the case of m =d = 1.

Corollary 2.15

Assume m = d = 1. Let {X;} be an It6 process with representation
t t
Xt = Xo +/ sts—i—/ HydWs. (2.2.2)
0 0
Suppose that f € CH2([0,T] x R). Then we have

t t 1 [t
ft, Xy) :f(O,Xo)—l—/O asf(s,XS)ds—l—/O axf(s,Xs)HdeS+2/0 92, f(s, Xs)Kds.

e The representation (2.2.2) of an Itd process is often written as the differential form
dXy = Ksds + HsdWs.

Notice that this is only a formal expression and a simplified way of representing the integral
form (2.2.2).

Writing down the It6 formula in one dimension with the differential form, we have
df (t, X;) = Opf(t, Xy )dt + Op f(t, Xi)d X + %agx f(t, X;)(Hs)?ds. (2.2.3)
Now suppose that f(t,z(t)) is smooth. Then the Taylor expansion up to 2nd terms gives
flt+ At z(t+ At)) — f(t,x(t) = Ouf(t, x(t)) At + O, f(t, z(t)) 2’ (t) At
- %@%f(t, z(t)) (A1) + 92, f(t, z(t)) Atz! (t) At + %aﬁmf(t, z(t))z” (t)(At)? + o((At)?).
Formally, this can be written as
df (t, 2(t)) = Ouf (£, 2())dt + Op f(t, x(t))da(t) + %aft F(t, x(t))dtdt
O F(t, 2(t))dtd(t) + %agx F(t2(8))dw (1) d(t).

Comparing each term in the equality just above with one in (2.2.3), we obtain

dtdt = 0,
dtdX; = Kdtdt + HydW,dt = 0,
dXdX; = KEdtdt + 2K HydtdW, + HE AW dW, = HEdt,

from which the Ité6’s rule:
dtdt =0, dtdWy, =0, dWdW,=dt
is derived. In multidimensional cases, similarly we have
dtdWi =0, dWidW; = 5;;dt

where 0;; is the Kronecker delta. Consequently, the chain rule of f(¢, X;) can be derived by
expanding it up to 2nd terms

1
df (t, Xi) = O f(t, Xy)dt + 0 f(t, X¢)d Xy + iat%tf(ty Xy)dtdt
1
+ OF f(t, Xy)dtd X + iaix ft, Xp)dXd X,
and then by applying the Itd’s rule to the expansion.
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Proof of Theorem 2.14. We will show the claim in the case where
m=d =1, f donotdepend ont, f'(z)and f’(z)are bounded, {H;} = {Ht”} € Lo.

For the general case we refer to the references given in the last part of this note.
First, assume that {K;} = {K}} and {H,} are simple processes. Taylor’s theorem gives

f(x) = f(zo) + f'(wo)(z — xo) + %f”(wo)(az —20)% + (z — z0)*r(z, 20), (2.2.4)

where 7(z,z¢) is a bounded function such that limg_,,, 7(x,z9) = 0. We may assume that K;
and H; have a common partition 0 =tg < t] < --- <ty < ty41 = t without loss of generality.
Then we use the representation

N
F(X0) = f(Xo)+ ) _Afi
k=0

with Afy == f(Xy,,,) — f(Xy,). Furthermore, we divide A f, as follows:

277L
Afp =Y (f(Xem) = f(Xsm ),
j=1
where s7" =t + j27 "(tg+1 — tr). Since Ky and H; are constant on [tg,tr+1), we have

KXo = X | = K 27" (bea = t) + Hy (W = Wi ).

Applying (2.2.4) to f(Xgn) — f(Xem ), we obtain
Afy = Zf s V(K 27 (b — t) + Hy (Won — W ) (2.2.5)
+ Z f" s (K 27" (b1 — t) + Hyy(Wen — W ))?

+ Z Ky 27 (g — t) + Hy, (W — Wn )% (Xgm, Xom ).

j—1
By the boundedness of f/(z), the first term of the right-hand side in (2.2.5) converges to

trt1 , tri1 ,
K, / f(Xs)ds + Hy, / fi(Xs)dWs

173 ty

in L? as m — oo.
Next, the second term of the right-hand side in (2.2.5) is written as I; + Iy + I3 with

2m
1 — 2712 " —
Il — 5 .2 m(tk+1 — tk) Ktk jz_:lf (st_n_l)Q m7
2771
Ip = 27" (typr — te) Ko He, Y f" (X )W — W),

j=1

2 2
Htk Z fl/ m m — ngn,l) .

31



Since f”(x) is bounded, as m — oo, the random variable 2321 f”(XS;gl)Q_m converges to

ff:“ 1" (Xs)ds almost surely, and Z?:I f"(Xsm ) (Wem —Wem ) converges to Lif“ (X)) dWs

J
in L2, from which I + Iy converges to 0 in L?. To see a limiting behavior of I3, observe

2
// 2 Pt "
E E (X sm YW, — Wm )= \ 1 Xs)ds

2
<2E Z (X o = W )2 —27™)

2

tet1
L oE Zf" gz = [ s

173

By the boundedness of f”(z) and the argument in the proof of Theorem 1.41, there exist positive
constants C and Cs such that the right-hand side in the inequality just above is at most

om

C1E Z((ngn — WS;_H_I)Q — Qfm)z < (27 ™
j=1

Therefore, I3 converges to (1/2)H7, ft’““ f"(Xs)ds in L? as m — oo.
Moreover, the 3rd term of the rlght hand 51de in (2.2.5) is at most

gm
2sup |r(Xgm, Xom ) § Kit (teyr = t)> + Hi, Y (Won = W )?
J =
The term Z?:l(Wsz_n —Wem | )? converges to tj4+1—t in L?, and sup; \r(XS;ﬂ, Xom | )| is a bounded
random variable that converges to 0 almost surely. Hence the 3rd term of the right-hand side
in (2.2.5) converges to 0 in L.
Consequently, taking an a.s. convergent subsequence, we obtain

lt1 e+l 1 [fte+
A= [ rerds s [ pemaw. g [ oz,

tk Lk tg

from which the It6 formula follows by summing up the both side in the equality just above from
k=0 to n.
In general cases where {K;} and {H;} are not necessarily simple, choose approximating

simple processes {Kt(n)} and {Ht(n)} such that
T T
/ |Ks — KM|ds — 0, as., E/ |Hy — H™[2ds — 0,
0 0

apply the derived It6 formula for simple process, and take limits. We are done. O

Ezample 2.16. Let m = 1. Recall that in Example 2.5 we compute fOT WidWy directly from the
definition of the It6 integrals. Here we shall compute it using It6 formula. Applying Corollary
2.15 with f(z) = 2%/2, we have

df (Wy) = f'(Wi)dWy + (1/2) f"(Wy)dt = WedWy + dt,

T
/ WedWy = —
0
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We obtain the following the product formula by Theorem 2.14 with f(x,y) = zy.

Proposition 2.17: Product formula

For one dimensional Ité processes {X;} and {Y;}, we have

d(X1Y) = X4dY; + YVid Xy + dX,dY;.

Example 2.18. Let us compute fot sdWy. Use the product formula with X; = ¢ and Y; = W} and
dtdW; = 0 to see
d(tWy) = tdWy + Widt.

t t
/ sdWy = tW; — / Wsds.
0 0

Ezample 2.19. Let {W,} is a scalar Brownian motion. Suppose that an R-valued process {X;}
satisfies the stochastic differential equation

Thus,

dX; = bXdt + odWr, (226)

where b € R and o > 0.
Applying the product formula for e =% and X;, we observe

d(e—tht) — —be_thtdt + e_bt(bXtdt + O'th) = O'e_btth~

Hence, the solution of (2.2.6) is given by
t
AQ:Z&¢X°+]/ =) awy,
0

which is called an Ornstein- Uhlenbeck process.

2.3 Girsanov Theorem

In this section, we will see that a Brownian motion with drift bt 4+ W; turns out to be a Brownian
motion under a probability measure different from P.
We start with the two examples of changing drifts.

Ezample 2.20. Let X be a standard Gaussian random variable on (2, F,P), i.e.,

e—a72/2
/MQD:MXeAﬁiAAﬁmd% A€ B[).

Then, for any a € R, the random variable Y := X + a of course follows a normal distribution
with mean a and variance 1 under P. Namely,

o~ (a—a)?/2

MY(A):P(YEA):/A\/%

Since the probability measures px and py are equivalent and

dz, A e B(R).

/ e—a:2/2+(1‘—a)2/2—(x—a)2/2
A

NX(A) = m

dx:Aex2/2+(xa)2/2duy(x),

we have J
X () = Y2 2 e
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Therefore, the probability measure Q on (2, F) defined by

@ _ e—aY+a2/2 _ e—aX—a2/2

dP
satisfies, for A € B(R),

QY € A) = Bl yeaye ™ /%] = / e 2y (o)

A
= d,U/iX X X)) = = 6_12/2 xXr
- [ @) = ) = [ i

Thus, Y ~ N(0,1) under Q.

Ezample 2.21. Consider the symmetric random walk S, = " , X; starting from 0. Then {S,}
is a martingale with respect to the filtration {G,} given by G, = o(X; : i <n). Let {0,} be a
process such that 6, is G, _1-measurable and satisfies |6,,| < 1 for each n. Then

n
L, = H(l + (QZXZ), Lyp:=1
=1

is a positive martingale.
Define the probability measure Q on (£2,Gn) by dQ/dP = Ly, and consider the process

S, :Sn—fjei, Sy = 0.
=1

Then the Bayes formula ) )
EQ[Sn+1|]:n] = Lrle[anLlSnJrﬂ]:n]

and E[(1 + 0,41 X,11)(Xnt1 — Ons1)|Fn] = 0 lead to Eg[S,41|Fn] = Sn, whence {S,}_ is a
@Q-martingale.

Now we consider the change of drifts of Brownian motions. To this end, we show some
preliminary results.

Let {M;}o<t<7 be a nonnegative local martingale. Then {M;} is a supermartingale.
Moreover if E[My] = E[My] then {M;} is a martingale.

Proof. Let {7,}52, be a sequence of stopping times such that 7, /oo and M; is a martingale.
By Fatou’s lemma, we have

E[Mt] = E[nh—ggo Mt/\Tn] é hnl’Il)gf]E[Mt/\Tn] = E[MO] < o0,

whence M; € L' for any t. Then Fatou’s lemma for the conditional expectations yields, for
s <t,
E[M|Fs] < liminf E[Ma-|Fs| = liminf Mgp,, = M,
n—oo n—oo

from which {M;} is a supermartingale. In particular, E[My] < E[M;] < E[M,] < E[Mjy] for
s < t. Thus, if E[Mr] = E[My], then Z := M, — E[M;|F;] satisfies Z > 0 a.s. and E[Z] = 0.
This means Z =0 a.s. O
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Now, Let {W;}o<t<r be a d-dimensional F-Brownian motion, and 6, = (6},...,64), 0 <t <
T, a d-dimensional process such that {0} € L9210c, © =1,...,d. Then consider the process

t 1 t
Zii=exp|— [ 02dW,—= | #%ds), 0<t<T, (2.3.1)
0o 2 Jo °

which is a local martingale (take 7, = inf{t > 0 : fg Zs|0s|?ds > n} as a localizing sequence).
By the previous lemma, {Z;} is a nonnegative supermartingale. Moreover, under the condition
E[Z7] = 1, it is a martingale, and we can define the probability measure Q on (2, Fr) by
dQ/dP = Zy.

Theorem 2.23: Girsanov Theorem

Let {Z;}o<t<T be given by (2.3.1). Then the process
t
XtZ:Wt+/95dS, OStST,
0

is a d-dimensional F-Brownian motion under Q.

. J

Proof. 1t is clear that Xg = 0 and the continuity of ¢ — X;. Thus it suffices to show that
for every s < t and bounded Fj;-measurable random variable Y the increments X; — X is
independent of Y and follows N (0, (t — s)I;). To this end, let « € R? and 8 € R. Then,

EQ[eﬁaT(xﬁxswﬁﬁY] _ EP[ZTe\EaT(XﬁXS)jLﬁﬁY] _ EP[Zte\/jlaT(thXs)+\/jlﬁY]
—Ep [ Z.e SHVTa—05)TdWu+ [f(vV=Ta—6. /2)T9udu+mﬁy]

_ loPt-9)2p, {Zseﬁj(ﬁaféu)Tquf%f: |\/j1a70u|2du+\/jlﬁY} '
Now, by the It6 formula, the process

o t 1 t
Mt( )= exp [/ (V—=1a —6,)Tdw, — 2/ |vV—1la — 9u|2du] , 0<t<T,
0 0
satisfies .
M =1+ / M (V=T — 0,)TdW,,
0

and so is a local martingale under P. This and the boundedness of M; means that it is indeed
t t
a martingale under P. Thus, E]p[@fs (V=Ta—60.)TdWu—3 [, \\/—1a—9u|2du|]."s] = 1. Consequently,

EgleY 10" (X=X +v=182] _ —lof*(t=9)/2, [Zseﬁﬂz] = ¢~ lol(t=5) 2 V=187,

from which the theorem follows. O

We give a sufficient condition for which {Z;} in (2.3.1) satisfies E[Z7] = 1, without a proof,
which is known as the Nowvikov’s condition.

Theorem 2.24: Novikov

Let 6; = (6},...,08), 0 <t < T, be a d-dimensional process such that each component
belongs to L2 10c. Suppose that

T
E [exp <%/ \Ht\zdt>} < 00.
0

Then {Z;}o<t<7 given by (2.3.1) is a martingale.
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2.4 Martingale Representation Theorem

As seen in Section 2.1, for {X;} € Lo the process {I(X);} of Itd integrals is L?-martingale.
In this section, conversely, we will show that any L?-martingale is represented as a process of
It6 integrals. In doing so, we will see that any random variable in L? is represented as an It
integral.

Let {W;}o<t<r be a a d-dimensional Brownian motion. Recall that for any C'!'-function f the
fundamental theorem of calculus tells us that f(t) = f(0) + fg f'(s)ds. In stochastic analysis,
however, Ito formula tells us that the analogous result f(W}!) = £(0) + f(f fI(WHdWw} does not
hold in general.

Throughout this section, we assume that F = {F; }o<;<7 is given by the augmented natural
filtration generated by {W;}, i.e., assume that

Fi=o(FVUN), 0<t<T.

The following is the martingale representation theorem:

Theorem 2.25: Martingale representation theorem

Let {M;}o<t<r be an F-martingale with My € L?. Then there exists a unique Rvalued
process { ¢ fo<t<7 with each component belonging to L5 such that

t
M, = M, +/ praw,, as., 0<t<T.
0

e The uniqueness here means that two processes coincides with each other up to null sets
with respect to the measure dt x P. Namely, if

t t
Mt:M0+/ ¢STdWS:M0+/ ldw,, as., 0<t<T,
0 0

for {¢i}, {vi} € Lo, i=1,...,d, then ¢}(w) = 1}(w) holds for almost all (t,w) € [0,T] x Q
for any i.

Theorem 2.25 is a corollary of the following result:

Theorem 2.26: 1t6 representation theorem

Let X be an Fp-measurable random variable in L. Then, there exists a unique R%valued
process {¢;} with each component belonging to Lo such that

T
X:IE[X]+/ of AWy, aus. (2.4.1)
0

Here, the uniqueness is understood as in above.

Proof. The uniqueness follows from the It6 isometry. We prove the existence. First we prove
that it suffices to show the representation (2.4.1) holds for X = f(Wy,,...,W,,) with bounded
Borel functions f on (RY)" and 0 < #; < --- < t,, < T. To this end, consider

X={Xe L*(Fr) : the representation (2.4.1) holds for some {¢;} € Ly}

Notice that X is a closed subspace in L?(Fr). Suppose that X contains all random variables
of the form X = 14(Wy,,...,W;,) where A € B(RY)") and 0 < t; < -+ < t, < T. Then, for
Y € X1, A and t;’s as above,

EY14(Wyy,..., W, )] =0
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or

EY T 1a(Wyy, ..., Wi, )] = BY L a(Wyy, ..., W)
This means that two probability measures defined by Y+ and Y ! as their Radon-Nikodym
derivatives coincide with each other on the m-system C := {(Wy,,..., Wi, ) € A: 0=ty < t; <
o<ty =T, Ac (RY)", n>1}. This together with o(C) = Fr and Lemma A.44 yields
Y+ =Y~ as., whence X+ = {0}.
Next we show that the martingale representation holds for X = f(W4,,..., W}, ) with f and

t;’s as above. Define the function vy, : [tp_1,tx] x (RH)* = R, k =1,...,n, inductively by

Un(ta L1y )xn) = ]E[f(xlv cey Tp—1,Tp—1 + thft)]v tho1 <t < tn7
and fork=n—-1,n—2,...,1,

vk(t, 1, . xk) = Elvgp (te, 21, -+ Ty T + Wiy )], et <t <ty

Then by Chapter 2, the function (t;_1,tx) x R? 3 (¢, 2x) +— vp(t,x1,...,23) is O and satisfies
1
Opvg + §Amkvk =0,

where A, is the Laplacian with respect to the variable x;. Thus Ito formula yields

Uk(t, th, PN Wtk) = 'Uk(tk—h th, Ceey Wtkfmwtkfl)
t
+ kavk(tk—lu Wtk_la ey Wtk_la WS)TdWS7 tk—l <t< tk)

te—1
where D,, is the gradient with respect to the variable xj, from which we obtain
Uk(tk7 Wt17 L 7Wtk) == vk*l(tk717 Wt17 ceey Wtk_l) + ¢IdWS
tk—1

with ¢s = Dy vgp(tpe—1, We,_(y- oo s Wi, Ws), s € [tr—1,tg]. Notice that ¢ € Lo since f is
bounded. Consequently,

f(th, e ,th) = ’Un(tn,th, .. .,th)

tn
= Un—l(tn—h Wt17 ) thfl) + / ¢IdWS

ln—1
— vna(tno, Wiyse o W ) + ttn STdW.,.
n—2
Repeating this argument, we deduce
FWar, oo Wa,) = 01(0,0) + Otn oTdW,,
as required. ]

We state a more general martingale representation theorem. For a proof we refer to the
references on stochastic analysis.

Theorem 2.27

For every local F-martingale {M;}, there exists a unique R%valued process {¢;} with each
component belonging to L9 ;.. such that

t
M, = My +/ prdW,, as., 0<t<T.
0
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CHAPTER 3

Stochastic Differential Equations

3.1 Introduction

Ordinary differential equations with white noise

We are concerned with ordinary differential equations (ODEs) with random noises. For example,
such ODEs can be of the form

4,

a = b(t,Xt) —|—0’(t,Xt)§t, (311)

where {&} is a stochastic process providing random disturbance to the system process {X;}.
In science and engineering, a natural candidate for the disturbance processes is a Gaussian
white noise, i.e., it is natural to assume that & is a Gaussian process with mean zero and
covariance E[&&s] = 6(t — s), t,s € R, where (-) is the delta function. Unfortunately, this
natural formulation for nonlinear ODEs (3.1.1) comes up against an obstacle since the delta
function is not a usual function but a distribution rigorously. Indeed, {&; }+cr is not a stochastic
process in the usual sense but a random distribution (see Itd [14]).

Changing the approach to (3.1.1), we use the fact that & is given by the time derivative, in
the sense of the distribution, of a one-dimensional Brownian motion W; (see again [14]). Then,
replacing & with dW;/dt in (3.1.1), we get

dXt th
— =b(t, X t, X¢y)——
dt (7 t)+o-(a t) dt ’

whence, by a formal integration,
t t
X = Xo +/ b(s,Xs)ds—i—/ o(s, Xs)dWs. (3.1.2)
0 0

The integral equation (3.1.2) is equivalent to (3.1.1) formally, as well as can be defined rigorously
since the term fot o(s, Xs)dWs is understood as the It6 integral. Then, we write

dXt = b(t, Xt)dt + O'(?‘J7 Xt)th (313)

for (3.1.2). This is a modern approach to stochastic differential equations (SDEs), which is
originated by It6 [34] (see also It6 [13]) and has achieved remarkable successes.
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In this chapter, we present some basic results on SDEs. We refer to [24], [41], [37], [15] for
more detailed accounts. Before presenting examples of SDEs, we give a formal characterization
of the coefficients b and ¢ in (3.1.3). By (3.1.2), we have

t+At t+At
Xerar = X +/ b(s, Xs)ds +/ o (s, Xs)dWs.
t t

Under the assumption that {o(t, X;)} € Lo (recall from Chapter 2), it follows that at least
formally,

. 1
b(t,x) = Al}fI{}O EE[XH-At - Xi| Xy = 7], L)

. 1
o(t,z)? = AI}SIQO EV[XHAt — Xy| Xy = zl.

The functions b and o are called the drift and diffusion coefficients, respectively.

Black—Scholes model for stock prices

Let us consider a stock with price S; at time ¢ > 0. Then the return rate R;;4a; of this stock
between t and t + At is given by Ry ¢yat = (St4at — St)/S. Using the normalization I; ;4 ¢ of

Rypyne, 1e, Lgpne = (Rt,t+At - E[Rt,tJrAt])/\/ V(Rt,t+At)a we have

Riiar = B[Ry ae] + \/ V(R e ae) Ity e
2

Now, assume that the expected return rate b = E[R;+a¢]/At per time and the variance o° =
V(R¢t+a¢)/At of the return rate per time are constant with respect to t. Then,

Sitat — St

S = bAt + oV At[t,t-‘rAt-
t

Thus,

) 1
Alirilo EE[SH-At — Si| St = s] = bs,

. 1
Alir\r,lo EV[SHN — 4|8t = 5] = 022

So, assuming that {S;} is described by an SDE and then using (3.1.4), we obtain

dSt = St(bdt + O'th). (315)
This SDE is called the Black—Scholes model. As remarked in the above, this equation should be
interpreted as the following integral form:

t t
Sy = So + b/ Spdr + o/ SpdW,.
0 0

Now suppose temporarily that there exists a solution S; to the equation (3.1.5). Then,
applying It formula for log(.S;), formally we have

d(lOgSt)—?t—@StU dt—bdt+0th—§U dt.

Thus the solution S; of the Black—Scholes model is explicitly given by

Sy = Spexp((b— %/2)t + aWy).
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Figure 3.1.1: A sample path of Black—Scholes model in the case of b = 0.5 and ¢ = 0.2.

Predator-prey model

Consider a biological system consisting of two species where one is a predator and the other is a
prey, whose populations at time ¢ are denoted by X} and X?, respectively. We assume that in a
small time interval [t, ¢ + At], the probability of the predator being given a single birth without
death and the population of the prey remaining unchanged is

PAX}! =1,AX? = 0| X} = x1, X} = x2) = biw1 At + o(At).
Similarly, we assume
P(AX! =0,AX? = 1| X} = x1, X} = 22) = baxa At + o(At),
P(AX} = —1,AX? = 0| X} = x1, X} = 23) = dyz1 At + o(At),
P(AX}! = 0,AX? = —1| X} = 21, X} = ) = doxo At + o(At).
In view of the predator-prey relation, we further assume that bo, d; are positive constants and

that
by = c1x2, do = coxq,

with some positive constants ¢, co. Moreover, the probabilities of multiple births or deaths are
assumed to be o(At). Then, it is straightforward to see

1
lim —E[AXMX) =21, X? = a9] = —
AmA AX} Xy =21, X{ = 23] = (c122 — dy)21,

1 1yl _ 2_ .1
Alirilo EE[AXt | X; = x1, Xi = x2] = (by — comy) o,

. 1
AllltI{‘lo EV[AXﬂth =21, X7 = 2] = (c19 + dy) 1,

1
lim —

ANO At

. 1
Alir\l"lo ECOV[AX%, AX?’th =1, Xt2 = 332] = 0.

V[AXE|X,51 = l‘l,XtQ = .'EQ] = (b2 + 621'1){[:2,

40



By a multidimensional analog of (3.1.4), we derive the SDE

dX} = (e X? —d) X} dt +\/(a X? + dy) X} dw}},

dX? = (by — o X ) XPdt + 1/ (by + co X} ) X2AW

for the predator-prey system, where (W}, W2) is a 2-dimensional Brownian motion.
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Figure 3.1.2: A sample path of the predator-prey model in the case of dy = 0.01, by = 0.05,
c1 = co = 0.005, and X& = Xg = 100. Generated by the Euler-Maruyama method (see Section

3.4).

3.2 Existence and Uniqueness

In what follows, {W;} is an m-dimensional Brownian motion with respect to a filtration F

satisfying the usual conditions, and we fix a time horizon T' € (0, 00).

Definition 3.1. Let b: [0,7] x R — R? and o : [0, 7] x R? — R be Borel measurable, and
let £ be an Fy-measurable random variable. We say that an R?-valued process {Xi}o<t<r is a

solution of the stochastic differential equation (SDE)
dX, = b(t, X;)dt + o (t, X;)dW,
with initial condition Xy = £ if the following conditions are satisfied:
(i) {X;} is a.s. continuous and F-adapted.
(i) fi |b(s, Xs)|ds + [ |o(s, Xs)[2ds < oo, aus.

(iii) {X;} is represented as
t t
X = 54—/ b(s, Xs)ds —I—/ o(s, Xs)dWs, as., 0<t<T.
0 0

The following is the fundamental existence and uniqueness result for SDEs:
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Theorem 3.2

Suppose that the functions b, o and the random variable £ in Definition 3.1 satisfy

(i) Lipschitz continuity: there exists Ky > 0 such that

|b(tv$) - b(tvy)| + ‘U(t7w) - U(t7y)‘ < K0|l‘ - y|7 (t’ l‘), (t7y) € [OvT] X Rd,

(ii) Linearly growth condition: there exists K7 > 0 such that
b(t,z)| + |o(t,z)| < K1(1+ |z]), (t,z) € [0,T] x R<.
(iii) ¢ € L2
Then, the stochastic differential equation
dX; = b(t, Xy)dt + o(t, Xy)dW, (3.2.1)
with initial condition X¢ = £ has a solution { X };c(o,7) satisfying E [supg<i<r | Xt[?] < 0.

Moreover, the existence of the solution is unique in the sense of the indistinguishability,
i.e., for any other solution {Y;} we have X; =Y}, 0 <t < T, as.

We prove Theorem 3.2 with arguments similar to those in the existence proof for ordinary
differential equations. Recall that Gronwall lemma play an important role in that case.

Lemma 3.3: Gronwall lemma

Suppose that a nonnegative, bounded and Borel function v : [0,7] — R satisfies
t
v(t)SC—i—A/ v(s)ds, 0<t<T
0

for some positive constants C, A. Then,

o(t) < Ce, 0<t<T.

Proof. By an iterative application of the condition on v, we obtain

t s
v(t) < C + CAt + AQ/ / v(r)dr
0 JO

A2t2 Antn t S1 Sn
<C+CAt+ 02 4+ 4 ¢ —l—A"H/ / / V(Snt1)dspy1dsy - - - dsy
0 JO 0

n!

for n > 1. The last term is at most supg<;<7 v(£)(At)"/(n 4 1)! and goes to zero as n — co.
Thus the lemma follows. O

Proof of Theorem 3.2. First we show the uniqueness. Let {X;} and {Y;} be two solution, and put
as = b(t, Xt) — b(t, Y;g), Yt = U(t, Xt) — J(t, Y%) Then, from E[maXOStST ‘Xt — Y;’Z] < 0o and the
Lipschitz continuity, we have {~;} € L5. This together with the inequality |x+y[? < 2(|z|?+|y|?)
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yields

2
<2E

2
+2E

t 2

YsdW
0

t
/ asds
0

t t
E|Xt—Yt]2:]E’/ asds+/ YsdW
0 0

t t
< m/ a52d3+2E/ s [2ds
0 0
t
2(1+t)K§/ E| X, — Ys|?ds.
0

Hence the function v(t) := E|X;—Y;|? satisfies v(t) < 2(1+T) K2 fo s)ds. Gronwall lemma now
implies that v(¢) = 0, which means that X; and Y; are modlﬁcatlons of each other. Moreover,
since these two are continuous, by Proposition 1.18, X; and Y; are indistinguishable.

Next we prove the existence. Put Yt(o) = X, and then define Yt(k), k=1,2,..., recursively
by

t t
v = X+ / b(s, Y¥))ds + / o(s, Y{)aw.. (322)
0 0

Then by Xo € L? and the linearly growth condition for o, we find {o(s, v )} € L9. From
this and Doob’s maximal inequality it follows that E[maxo<i<r \Y;( )\ ] < oo. Applying this

argument recursively, we deduce that E[maxo<;<r |Yt(k) 1] < oo for every k > 0. Then, as in the
case of the uniqueness proof, for k& > 1,

E max [Y ) — v (0|2 < (2 4 8T)KHE max |V — y =12, (3.2.3)
0<s<t 0<s<t

Here, we can use Doob’s maximal inequality to estimate Emaxg<s<; | f(f 'yudW8’2. Hence, by
repeating the estimation (3.2.3) recursively, we obtain

Kka
E max |Y,*™ - y,F 2 < K, =3 k>0,
0<t<T k!

where
Ky =E max [VY - V912 < o0
0<t<T

and K3 = (2 + 8T)KZ. Chebyshev’s inequality then leads to

(4K3T)k+1
(k + 1)

The series for the sequence in the right-hand side of the inequality just above converges, whence
by Borel-Cantelli lemma, there exists Qo € Fp with P(Qy) = 1 such that

P ( max |V;*T — v, )| > 2<k+1>> < 4K,
0<t<T

(k+1) (k) —(k+1)
m Y, -Y. <2 > Q
OgtaSXT’ f (w) (W) < , k>no(w), we o,

for some ng(w) defined for each w € y. From this Zzino(w) maxo<;<7T |Yt(k+l)(w) — Yt(k) (w)] <

oo and so Yt(k) (w) converges uniformly on [0,7]. Therefore, there exists a limiting function
Xi(w) such that supOStST]Y;(k)(w) — X¢(w)] — 0 (see, e.g., [39, &H 13.4]). Since a uni-
formly converging limit of continuous functions is also continuous, we deduce that {X;}o<i<r
is adapted and a.s. continuous. Further, by Fatou’s lemma, E[maxo<i<r |X:|?] < co. Hence
in particular, {X;} satisfies the conditions (i) and (ii) in Definition 3.1. Moreover, since
fOT |a (t Y(k)) — o(t, Xt)|2dt — 0, a.s. and there exists some subsequence k, / oo such that
fo s, YF)dW, — fo s, X,)dW, a.s. On the other hand, we have Y™ — X, as. and
fo (5,YFn)ds — fo (s, Xs)ds, a.s. Thus, letting k = ky,, n — oo in (3.2.2), we deduce that
{X}} satisfies the condition (iii) in Definition 3.1. O
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3.3 Explicit Solutions

We describe classes of SDEs having explicit solutions.

Linear cases

First assume that m = 1, i.e., consider the case of a scalar Brownian motion. It follows from
Example 2.19 and Theorem 3.2 that the unique solution of the SDE

dX; = bXidt + odWy
is given by
X, =X+ / t =) aw.
Then let us consider the more general SDE ’

dX, = [a(t) + b(t) X, ]dt + o (£)dW;, (3.3.1)

where a,b,0 : [0,7] — R are bounded and Borel measurable. As in Example 2.19, using the
product It6 formula, we observe

@ (e Io¥BX, ) = e Do MO a(t)dt + o (£)aW).

Thus, the unique solution of (3.3.1) is given by

t t t
X, = el s x4 / els M (q(s)ds + o (s)dW).
0

Problem 3.4. Here consider general cases m > 1 and the scalar SDE
dX; = [a(t) + b(t) Xg)dt + [ Xy (t) + o(t)]TdW3, (3.3.2)
where a,b : [0,7] — R and 7,0 : [0,7] — R™ are bounded and Borel measurable. Show that

the unique solution of (3.3.2) is

Xo= 2 [Xo+ [ 270l =26 oteds + [ 270t Taw]

zi=ep [ (at0) = jteias)ds [ otTaw]

Problem 3.5. Consider the d-dimensional SDE
dX; = (a(t) + b(t) Xy)dt + o (t)dWs, (3.3.3)

where a : [0,T] — R, b : [0,7] — R™4 and o : [0,7] — R¥™ are bounded and Borel
measurable. Assume that Xy has a d-variate normal distribution with mean vector p and
covariance matrix p. Then, show that {X;};>¢ is a Gaussian process with the representation

where

X, =o' (b) (XO + /Ot d(s)a(s)ds + /tq)la(S)dWs) ;

0

and that the mean vector p(t) = E[X;] and the covariance matrix p(s,t) = E[(Xs —m(s))(X; —
m(t))7], s,t > 0, are given respectively by

e = o) [+ [ @7 palo)as]
p(s,1) = B(s) [p + /0 o <I>1(r)a(r)(<1>1(r)o(r))Tdr} o(1)T.
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Here, a process is said to be Gaussian if any finite dimensional distribution is jointly normal,
and ®(¢) is the unique solution of the matrix ODE

Problem 3.6. Solve 2-dimensional SDE

0 -1 0
dX; = (1 ; )Xtdt+ <02> AW,

where {W;};>0 is one-dimensional.

Reducible cases
Here assume m = 1. Consider the one-dimensional SDE

1
dXt = §U(Xt)O'I(Xt)dt + O'(Xt)th, (334)

where o(-) > 0. To obtain the solution, we use the function

|
g(x):/o @df, (3.3.5)

defined for x in a possible state space of {X;}. Then, since

(g7 (@) =0(g (), (g )"(x)=0(g" (z))d' (g7 (z)),

the process X; := g Y(W; + g(Xy)) satisfies (¢71)(W; + 9(Xo)) = o(X;) and (¢~ 1)"(W; +
9(X0)) = o(Xt)o'(X¢). Thus, by Ito formula, we find that X is a solution to (3.3.4).

1
dX; = 5a2Xtdt +ay/1+ XZdW,.

1 2/ /a
dX, = ia(a—l)th 290t + ax} AW,

Problem 3.7. Solve

Problem 3.8. Solve

Next consider the SDE of the form

X, = (aa(Xt) + ;U(Xt)al(Xt)> dt + o(X,)dW,, (3.3.6)

As in the previous case, we observe the process X; := g~ (at + W; + g(Xo)) satisfies (3.3.6),
where g is given by (3.3.5).

Problem 3.9. Solve

1
dX; = <2Xt+\/1+Xt2> dt + /14 X2dW,.

Problem 3.10. Solve

dX; = —(a+ B2X,(1 — XP)dt + B(1 — X7)dW;.

45



Generalizing these results, we have the following. The proof is left to the reader.

Proposition 3.11

Suppose that b is Lipschitz continuous on R and ¢ is of class C?(R) with bounded first
and second derivatives. Then the unique solution {X;};>¢ of the one-dimensional SDE

dX; = [b(Xt) + %U(Xt)a'(Xt)} dt + o(Xy)dW, (3.3.7)

is represented as X; = u(W;,Y;), where u : R? — R is the solution of the ODE
u(z,y) = o(u(z,y)), u(0,y) =y,
and the process {Y;}1>0 is the solution of the ODE
dY; = (Wi, Y)dt, Yo=Xo

with

e =esp (= [ o (uz )iz ) ute. )

3.4 Numerical Solutions

When explicit solutions of SDEs are unavailable, we need to approximate the equations to
generate the sample paths in computer simulations or to compute the expectation of quantities
involving the solutions. Here we present the Euler-Maruyama method, which is a most popular
one for the time discretization, and can be seen as a stochastic version of the Euler method in
ODEs.

Consider the SDE (3.2.1) with the drift coefficient b and the diffusion coefficient o. We
impose the following conditions on b and o:

There exists a positive constant Cy such that

’b(ta$) - b(s,y)| -+ ’U(tam') - O'(S,y)’ < CO(’t - 3’1/2 + |x - y‘)a t,s € [0>T]? T,y € RY.

Assumption 3.12 means the conditions in Theorem 3.2. Thus, under Assumption 3.12, there
exists a unique solution {X;} of (3.2.1).
First, set ty = kT /n, k =0,...,n. We start with the representation

2 23
X, = Xt,_, +/ b(s, Xs)ds +/ o(s, Xs)dWs.
th—1 tr—1
Since {X.;} has continuous sample paths, the approximation X, ~ X;, ,, s € [tg_1,t], is

reasonable for sufficiently large n. Applying this approximation, we have

1k ti
th ~ th,1 +/ b(tk_l,thil)dS +/ o-(tk—letkfl)dW.%

te—1 te—1

which is equivalent to

Xt = Xy + 01, Xop )tk — te1) + o (te—1, Xoy ) (Wey, — Wy ).
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The random variable W;, — W;, | follows the normal distribution with mean vector 0 and
covariance matrix (7/N)I4, which can be generated by pseudo random numbers. Therefore, the
sequence {Yj}7_, defined by

Y1 =Y + b(tk, Yk)(tk+1 - tk) + O'(tk, Yk)(Wthrl - Wtk) (3.4.1)

with Yy = X is a candidate of an implementable numerical solution for (3.2.1).
Hereafter, we discuss a rate of convergence of {Y;} to {X;}.

Suppose that Assumption 3.12 hold. Let {X;}o<t<7 be as above. Then, there exists a
positive constant C' such that

E|X; - X,?<C(t—s), 0<s<t<T.

Proof. Using the inequality (a + b)? < 2(a® + b?), we see

2

t t
/b(r,Xr)dr +2E /O‘(’I“,Xr)dWT

E|X; — X,|> <2E [

2
] . (3.4.2)

By the linear growth condition, the 1st term of the right-hand side in (3.4.2) is at most

2

t
2R < 2(t — s)/ E|b(r, X,.)|dr < 4TK? (1 +E

sup |XT\2]> (t—s).

0<r<T

t
/ b(r, X, )dr

A similar estimation works for the 2nd term of the right-hand side in (3.4.2). O

Roughly speaking, the approximation error for the Euler-Maruyama methods is O(n_l/ 2).

Theorem 3.14

Suppose that Assumption 3.12 hold. Let {X;}o<;<7 be as above and let {Y;}}_, n € N,
be the sequences defined by (3.4.1). Then, there exists a positive constant C' such that
C

max E|X;, — Yi> < =.
k=0,1,....,n n

Proof. By C we denote positive constants that do not depend on n and £k =0,1,...,n and that
may vary from line to line.

First notice that Y}, is F;,-measurable and in L? for each k = 0,1,...,n. To confirm the
latter property, assume that Y; € L? for some k and observe

‘Yk+1’2 < 3‘Yk’2 + 3‘b(tk,Yk)‘2(At)2 + 3‘U(tk, Yk)AWk+1’27 (3.4.3)

where At = T'/n and AWy = Wy, ., — Wy, . From (3.4.3), the linearly growth conditions on
b,o, and E|Y;|2|AWi11]? = E|Y|*E|AW,41|? it follows that E|Yj41|?> < CE|Y;|? < .
Next, observe

tht1 tht1
thH — Yk+1 = th -Y. + / Abgds + / Ao gdWs,

tr tr

where
Abs = b(s, Xs) — b(tx, Yx), Aos=o0(s,Xs)—o(tk,Yr), SE [tk,tht1)-
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Furthermore we have

Xt — Yara |
2
+

2 tet+1

+2(Xy, — Vi)' / Abgds
tg

9 tr4+1
=Xy, — Vi]? + / Ao dW,

tr41
/ Abds
tr tr

tet1 et T rtea
+2(Xy, — Yi)T / AcsdWs + 2 ( / Absds> / Ao dWs.
123

tk ti

By Cauchy-Schwartz inequality, the Lipschitz continuity of b, and Lemma 3.13,

Tt 2
E / Abgds
ti

tet1
< At/ E|Ab,|%ds

ty

tpi1
S CAt/ EHXS - th|2 + |th - Yki|2]d8
tk

< O(AL)? + C(AH’E| Xy, — Y32

Using It6 isometry, similarly we have

tr41 2
/ AogdW,| < C(At)? + CALE|X,, — Yil?,
tr
lkt1
/ Ao gdW

tht Tt tit1
2E </ Absd3> / Ao, dWs <E / Abgds
tr tr tr tE

< C(At)? 4+ CALE| Xy, — Yil*.

E

whence
2

+E

2

Using Young’s inequality ab < ca® + b?/c for a,b € R and ¢ > 0, we find
tk+1 1 2

tet1
E(X, — Yk)T/ Abgds < AtE| Xy, — Yk|2 + Al /t Abgds
k

ti
< C(A)? + CAE| Xy, — Vil

E

As for the remaining term, we have

bt let1
E(th - YR)T/ Ao, dWs =E {(th — Yk)TE |:/ Ao dW

173 123

SR
Collecting the estimates above, we deduce
E|Xy,,, — Yes1]> < (1 + CAYE[X,, — Vi[> + C(AY?, k=0,...,n— L.
From this the theorem easily follows. O
Ezample 3.15. Let us examine the Euler-Maruyama approximation for the SDE
dX, = X,(0.5dt +0.2dW;), 0<t<I,

with Xy = 1. The time grids are set to be t; = i/n, i = 0,1,...,n. We execute the simulation
M =10 times and compute the resulting mean squared error

M
1
2 _ (k) v (k)\2
L*-error = max o kE_l(Xti Y,)7

where {Xt(ik)} and {Y;Ek)} denotes the k-th sample paths of the true and approximate solutions,
respectively.

Problem 3.16. As in Example 3.15, evaluate the performance of the Euler-Maruyama method
for the SDE in Problem 3.7.
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Figure 3.4.1: Sample paths of the true and approximate solutions in the case of n = 2% (left)
and plotting L2-errors for n = 23,24 25 26 27 28 (right).

3.5 Fundamental Properties

We write {X;*}s<¢<7 for the solution of the SDE with initial condition X, = z, i.e.,
t t
X7 = x—l—/ b(r, Xf’w)dr—I—/ o(r, X;7*)dW,. (3.5.1)
S S
Notice that we can ensure the existence and uniqueness of this SDE by considering the SDE on
[0, T] with coefficients b(r,x) = b(r, )1}, 7)(r) and 7 (r, ) = o(r,z) 1[5 7)(7).
In what follows, we often drop the superscripts ¢, z in (X;x) and write E*[Z] for E[Z] when

Z depends on (X4"). Using It6 formula, we observe

1
b(t,z) = lim —E"[Xya — Xy,

olt,x)oT(tz) = lim =E[(XPN, — X0 (Xerar — X)T]:

Here, the expectations are taken to be component-wise. In general, the coefficients b(¢, z) and
o(t,x) of the SDE are called the drift term and the diffusion term, respectively.

Markov property

We begin with Markov property.

Suppose that b, o, and & satisfy the assumptions in Theorem 3.2. Then the unique solution
{Xt}o<t<r of the SDE (3.2.1) is an F-Markov process.

Proof. Fix t € [0,T] and s € [0,T — t]. Then {X,} satisfies.
Xips =Xy +/ b(r, Xr)dT+/ o(r, X, )dW,.
t t

Let tp, = ks/n+1t, k =0,...,n, n € N, and {Y;, }}_, the Euler-Maruyama approximation of
{X, b<r<tys, L€,

thk = Y}/kfl + b(tk;—la Y;ﬁkfl)(tk - 7fk:—l) + U(tk—17 thk,l)(Wtk - Wtk,1)7 k= 1’ s Ny
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with Y;, = X;. Theorem 3.14 then yields X;;¢ = lim,,, Y}, a.s. possibly along subsequence.
Since Wy, — Wi, = Wig/ngt — Wi — (W(k—1)s/nt+ — Wi), by induction, we observe that Y}, is
o(X¢, Wrar — Wy 1 0 < r < s)-measurable, whence so is limsup,,_,, Y%,. Therefore, by Theorem
1.9, Xiys = Feys(Xt, Wit — Wi)o<r<s) a.s. for some Borel function Fiys on R? x C(RY) for
0 <s<T—t. Since (Wy4+ — Wy)o<r<s is independent of F;, using Lemma 1.44, we have, for
every bounded Borel function f,

Elf (Xers) | Fe] = E[f (Fias(Xe, (Wigr — We)r<o)|Ft] = E[f (Figs (@, (Wigr — We)r<s)]la=x,
= E[f(Xt+s)|Xt]v

as required. O
Next consider the homogeneous case, i.e., the SDE of the form
dXt = b(Xt)dt + O'(Xt)th, XO = X. (353)

Here, b : R — R and o : R — R¥™ are assumed to be Lipschitz continuous. Then, by
Theorem 3.2, the SDE (3.5.3) has a unique solution {X;}+>0. Then we have the following strong
Markov property for {X;}:

Theorem 3.18

Let b, 0, and {X;} be as above. Further, let § be a stopping time with § < oo, a.s. Then,
for any bounded Borel measurable function f on R?, we have

E[f(Xi10)|Fo] = E[f (Xi10)| Xo], a.s.

Proof. The proof is similar to that of the previous theorem. Fix t > 0. Let ¢, = 0 + tk/n,
k=0,...,n,n € N. Then consider the Euler-Maruyama approximation {Y}}7_, of { X }o<s<o+t,
defined by

Yig1 = Y +b0(Ye)(thg1 — tr) + o(Ye) (W, — We,), Yo = Xo.

Then, we see that Y, is o(Xp, (Wsrs — Wh)o<s<t)-measurable and X;1p = lim, o Yy, as.
possibly along subsequence. Thus, there exists a Borel measurable map F; from R? x C'(R?) into
RY such that X; 19 = Fy(Xg, (Wsrg — Wo)o<s<t) a.s. Since (Wyyg — Wa)o<s<t is independent of
Fo by Theorem 1.45, we have

E[f(Xt+0)|Fo] = E[f (Fr(Xo, Wsro — Wo)s<t)|Fol = E[f (Fi(y, Wsro — Wo)s<t)]ly=x,
- E[f(Xt+9)’X9]a

whence the claim. O

e In the theory of Markov processes, a strong Markov process with continuous sample paths
is called a diffusion process.

Feynman-Kac formula

Let {X:} be the unique solution of the SDE (3.2.1) with nonrandom initial condition. With the
coefficients b and o, we consider the differential operator

d d m

(Acf) (@) == bi(t, 2)0s, f () + % >N ot x)oi(t,2)02,, f(x), fe€C*RY).
i=1 i,j=1k=1

We write (A f)(t,z) = (Aif(t,-))(z) when f also depends on the time variable t. Notice that
the term A; f appears in applying 1t6 formula to f(t, X¢).
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Now, suppose that the partial differential equation (PDE)
o+ Au=0, on [0,T)xR%
e [ ’ ) (3.5.4)
w(T,)=g, on R

has a solution u(t, z) of C*? class. Then by Ité formula,

9(Xr) =u(T, Xr)

T d m .7
= u(0, Xo) + / (Opu+ Apu)(t, Xp)dt + > > / O u(t, X ) o (t, Xy ) dAWE.
0 i=1 k=170

Since u satisfies the PDE (3.5.4), the “dt term” turns out to be zero. Moreover, if the term of
the stochastic integral is a martingale, which is the case of the integrand belongs to L2, then by
taking the expectation, we get

Elg(X7)] = u(0, Xo).

Let us generalize the argument above. Consider continuous functions g : R? — R, f :
[0, 7] x R = R, £:[0,T] x R = R such that for any ¢ € [0,7] and z € R?

lg(@)] +f(t,2)] < Co(1 + |z,

3.5.5
t,x) >0 ( )
for some constant Cy > 0. Further, consider the PDE
o+ Amu+h—ku=0, on [0,T)xR%
(3.5.6)

u(T,) =g, on R<

Theorem 3.19: Feynman-Kac

Suppose that b, o, and ¢ satisfies the conditions in Theorem 3.2. Let {X;}o<t<7 be the
unique solution of (3.2.1). Suppose moreover that (3.5.5) holds and the PDE (3.5.6) has a
classical solution u(t, x) of C12-class. Further, assume that there exists a constant M > 0
such that

max |u(t,z)] < M(1+ |z|?), zeR<

0<t<T

Then,
T
u(t,z) = Ete |:g(XT)6_ ftTg(r,Xr)dr _'_/ f(s,Xs)e_ft Z(T,Xr)drds:| )
t

e This result and Markov property imply

T
o |:g(XT)e_ ftT £(r, Xy )dr +/ f(S,Xs)e_ft Z(T,Xr)drds ft] _ u(tth)'
t

e The condition (3.5.5) and the growth condition on u can be weakened. We refer to [15,
Chpater 5] for details on this point and for a sufficient condition for which the PDE (3.5.6)
has a classical solution.

Proof of Theorem 3.19. Consider the stopping times 7, = inf{s > ¢t : \Xﬁx
Applying It6 formula to e~ J¢ é("X:’z)dru(s, X0"), we find

> n}, n > 1

TNATn ¢ Xi,z d t.x Tt s g Xt,:z d t
e I (r,X") TU(T/\TnaXfATn) — u(t,x) — / e~ S X®) Tf(S’stﬂU)dS
t

d m TNATh
—i—ZZ/t D, u(s, X% o (5, X1¥)dWE.

i=1 k=1



Since |X§x| < n for s <T ATy,, the process 0,,u(s, Xﬁ’z)aik(s,XE’x)l{ngn}, t < s <T, belongs
to Lo. Therefore,

7IT/\TTL E(T‘Xt’x)dr t,x TATn 7f‘§£(r dr t,x
u(t,r) =E e e AT N T, X ) + /t «r Js, X7)ds

By (3.5.6), the growth condition on u, and maxg<s<r |Xs|? € L?, we can use the dominated
convergence theorem to obtain the required result by letting n — oo. O

Transition density

Let {X;""}s<t<r be the solution of (3.2.1). A nonnegative function p(s,z;t,y), 0 < s <t < T,
z,y € R? said to be the transition probability density of {X;} if it satisfies

P(X;" € A) = / p(s,z;t,y)dy, A€ B(R?).
A

to,

Now suppose that { X;°“°} has the transition density. Then we will find the finite dimensional
distribution of {Xto’xo} To this end, choose ty < t; < to < t3 < T and a function f on R? with
a suitable regularity. Also, we write X; = Xfo’xo for simplicity. Then, by the Markov property,

E[f(XtS)‘ftQ] = g(Xt2)v

where
g(z2) = E[f(X;2™%)] = f(x3)p(ta, xo; t3, x3)dxs.
]Rm

Hence, by the definition of the conditional expectation,

Elf(Xes)lix, eB1.x0,eB23) = El9(Xeo)1(x, By X, eBa} s

whence
E[Q(th ) 1{X11 €B1,X1, 632}] = E[h(th ) 1{Xt1 €B1}] .

Here,
h(zy) = E[Q(Xg’xl)l{XQeBg}] = /B g(z2)p(t1, z1; t2, x2)dxs.
2

Consequently we obtain
E[f(Xt3)1(x, eB1,x1,eB:}] = E[MX4,)1(x, ey} :/B h(z1)p(to, wo;t1, x1)dxy
1
=/ / f(z3)p(te, w25 t3, x3)p(t1, x1; ta, w2)p(to, To; t1, x1)dx1dradrs.
m J By JBq

Repeating this argument, we find that for 0 <ty < t; < --- < t, < T the joint distribution of
(X4, ..., Xy, ) is given by

]P)(th EBl,...,th EBn):/ / Hp tio1, Ti— 17t1,$l)d1‘1 dl’n, Bl,...,BnEB(Rm).
n B

1i=1

Remark 3.20. In general, the transition probability density p of {X;"*} can be seen as the
fundamental solution of the corresponding PDE. Indeed, under suitable conditions,

uto) = [ ptnT gy, te0.T], xR
Rd
turns out to be a classical solution of the PDE (3.5.4). We refer to [15, Chpater 5] for details.

92



3.6 Statistical Inference

In this section, we discuss estimation methods for the drift and diffusion coefficients in SDEs
with observed data. We refer to Prakasa Rao [26] and Iacus [11] and the references therein for
more details.

Maximum Likelihood Estimation
Consider the following parametrized SDE:
dX; = b(Xt, Q)dt + O'(Xt, G)th, (361)

where {W;}i>0 is a one-dimensional Brownian motion. ¢ € RP denotes some parameters of
this system, and 6 belongs to some parameter space © C RP. We assume that (3.6.1) admits
a unique solution and do not impose explicit conditions on the coefficients b : R x ® — R
and 0 : R x © — (0,00). Moreover, we assume here that there exists the transition density
po(t,y;s,x) of {Xy}.

Suppose that sample X; is observed at time ¢; =4iA, i =0,...,n, where A = A, r = T/n.
Denote by 6 a true parameter of the system to be estimated. The mazimum likelihood estima-
tion (MLE) is an estimation method based on the hypothesis “most likely data are observed”.
Namely, MLE adopts parameters that maximize some likelihood function. In general, for the
sample Y7, ..., Y,, the likelihood function is defined by the joint density of Y7,...,Y,, as a func-
tion of #. For example, let Y a random variable with density p(z, 6y), and consider the estimation
problem of the parameter 0y from an IID sample Y7,...,Y,. Then, by the independence, the
joint density is given by the products of p’s. More precisely, the likelihood function L(#) here is
given by

n

L) = [[ p(%..0).

i=1
As an estimated parameter, we adopt a local maximizer of the logarithm of the likelihood
function, i.e., a solution # of the equation

0
20 log L(#) =0

is adopted as an estimator.
In case of SDEs, as seen in Section 3.3, the finite dimensional distribution can be described
by the transition density. Thus we adopt it as the likelihood function and a maximizer 6 of

L(0) = [[ oA, Xj5 (5 — 1A, X; 1)
j=1
as an estimator of 6.

Ezxample 3.21. Consider the following Ornstein-Uhlenbeck process
dXt = —bXtdt + O'th.

Recall from Example 2.19 that the unique solution with initial condition X; = z is given by
X;’I — efb(sft)x + U/s efb(sfr)dwr.
t

Since X* follows a Gaussian distribution with mean m(s — t,z) = ze *~" and variance

v(s —t,x) := 02(1 — e~ 2(5=1)) /(2b), the transition probability ps with 8 = (b, o) is given by

exp (—(y — m(s — t,2))%/(20(s — t,2)))
2u(s — t,x) '

p@(say;t7x) =
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Hence

n
log L(0) = Z log py(tj, Xjitj—1, Xj-1)

- Z [ 2v AAXijl)l)) ;log(Qﬂv(A,le))} :

Therefore, the maximum likelihood estimator b for b is explicitly given by

g:_llo M .
Z]l

Note that this quantity can be defined only when Z?Zl X;-1X; > 0. Under this condition, it is
straightforward to see that the maximum likelihood estimator & for ¢ is given by

2b & .
(3’ e _— X _ X._le—bA 2'
Sy D e

SO0
2000

data
astimated SDE

1500 L

1000 | oy "L'rﬂ\n_

0 100 200 300 400 500 600 700

Figure 3.6.1: The difference of the stock prices of Tokyu Corp. and Keikyu Corp. from 2016/1/4
to 2018/9/4 (blue line), and a sample path of the Ornstein-Uhlenbeck process with estimated
parameter b = 0.2111 and 6 = 372.6866 (red line).

Ezample 3.22. Consider the geometric Brownian motion
dX; = bXydt + o Xy dWy,
where b € R and ¢ > 0. As seen in Section 3.1 in Chapter 3, we have
X =gexp ((b—02/2)(s —t) +o(Ws —Wy)), s>t x>0,
whence

P(X; A <y) =P((b—0°/2)A + oWa < logy — logz).
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Thus the transition density pg is given by

po(t+ Ayt x) =

1 . 1 (logy—logm— (b—02/2)A>2
———exp|—= :
oyV2rA P 2 oV A

Hence,

= ogX; —log X; 1 — (b—o0? 2
log L(0) = —Z{; <1 g X~ 1 g)fj\/lﬁ (b /2)A> —log(an\/ZWA)}.

Unfortunately, the transition probability density for diffusion processes are rarely available.
One of approximation methods for the likelihood functions is to apply the Euler-Maruyama
approximation

J=1

Xiya — X = 0(Xy, 0)A + 0(Xy, 0)(Wipn — W)

to (3.6.1). The right-hand side in the equation just above follows a (conditional) Gaussian
distribution with mean b(Xy, #)A and o(X¢, #)2. Thus, the transition density py is approximated

with 1 {_1(y—x—b(:p,9)A)2}
V21 Ac?(z,0) P '

2 Ac?(x,0)
Now, we will present a consistency result for the pseudo-likelihood methods. To this end,
we restrict ourselves to the case where the SDEs are described by

Po(t+ Ayt x) =

dXt = b(Xt, G)dt + O'th, (362)

where 6 € O is as in above and ¢ > 0 is also a unknown parameter independent of . Then, the
maximization of L(0) is equivalent to the least-squares problem

n

Li(0) = ) (Xj — Xjo1 = b(Xj-1,0)A)*.
j=1

We denote by 0 its estimator, i.e.,

6 = argmin L (6).
0cO

With this é, we adopt
A 1 ¢ j
6% = nA D (X — Xj1 = b(Xj1,0)A)
j=1

as an estimator for 2.

To prove the consistency of the estimators above, we assume that

/ exp {—2/ b(z)dz} dy — +oo, asx — Foo,
0 = Jo

o 2 x
c::/ exp{UQ/O b(z)dz}dx<oo.

Then, it is known that {X;}>0 is ergodic with invariant measure v defined by

dv 1 2 [*
e Cexp{(ﬂ/o b(z)dz}

for 0 = 0y, i.e., for any Borel measurable function h on R that is integrable with respect to v,

(3.6.3)

lim ;/OTh(Xt)dt:/oo hz)v(dz), as.

T—00 PN
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Moreover, we assume that the following conditions are satisfied:

Assumption 3.23

(i) There exists a unique solution {X¢};>0 of (3.6.2) satisfying sup, E|X;[P < oo for
every p > 1.

(ii) There exist a positive constant Cj and ¢ such that for any 2 € R and 6 € 0,
[b(z,0)] < Co(1 + |[%),
[b(z,0) = by, 0)| < Colz —yl.
(iii) The function b(z,-) € C%(0O) for any = € R and
|00,b(,6)| + 105,9,b(z,0)] < C1(1 + |z|®), x€R,

for some constants C1,q > 0.

(iv) The function
/R b(0, 2) {b(eo, z) — %b(@,x)} v(dz)
has a unique maximum at 6 = 6y in O.

(v) The functions b and 9p,b, i = 1,...,p, are smooth in = and their derivatives are of
polynomial growth in 2 uniformly in 6 € ©.

(vi) The matrix

P = / Dob(8o, )T Dab(8o, )v(dz)
R

is positive definite.

Under the complicated conditions in Assumption 3.23, we can show the consistency of 6 and
0. More precisely, we have the following result:

Theorem 3.24

Suppose that (3.6.3) and Assumption 3.23 holds. Then,
(v/n(6 = 00), VT (6 — 6)) — N(0,H)

in distribution, provided that n,T — oo, A, 7 — 0, and (A, 7)3n = o(1), where

2
_ (o5 0
H_(O 1).

For a proof we refer to Yoshida [33] (see also Section 3.4 in [26]).

Nonparametric estimation

Let D be a domain in R?. Here we consider a nonparametric estimation for the D-valued SDE

Namely, we consider the problem of estimating the functions b and o from observed data.
Accordingly, we assume that b and o are Lipschitz continuous so that (3.6.4) has a unique
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solution {X;};>0. Moreover, assume that we observe X; at time ¢; = iA, ¢ = 1,...,n, where
A= An,T = T/n
Put a(x) = o(x)o(z)", x € D. By (3.6.2), the functions b and a can be represented as

b(z) = lim E[X;,, — 2],

At—0
a(z) = Jim E[(X} s, — ) (X[{a, — )]

Actually, we obtain the following sharper results:
E[XffAt — z] = Atb(x) + o(At),

E[(X;7a, — 2)(X[0a — 2) 7] = Ata(t) + o(Al).

(3.6.5)

Problem 3.25. Prove (3.6.5).

By (3.6.5), formally we have

1
b(z) ~ KE[XHA —z| X = x],
1

a(2) = FE[(Xisa = 2)(Xisa — o)X, = 2],

Thus, by kernel regression, the functions

_ S K (X = 2)/h)(Xi — Xi)
AY i K(Xi—a)/h)
— S K (X — 2)/h) (Xips — X3) (Xopn — X3)T
A K((Xi—x)/h)
are adopted as estimators for b(x) and a(z), respectively. Here, K is a nonnegative function on

R?, called a kernel, and a parameter h = hyn, 7 > 0 determines the smoothness of the estimators.
For examples, the function K can be

b()
a(x)

e the naive kernel: K(x) = lyjz<13;
e the quadratic kernel: K(x) = (1 — |z|?)4;
elel?,

e the Gaussian kernel: K(z) =

We refer to, e.g., Gyorfi et.al [9] for the theory of nonparametric estimation of the conditional
expectations.

Problem 3.26. Perform the kernel-based estimation above using simulated paths from a geo-
metric Brownian motion as the sample data. Observe how different between the original model
and the estimated one.

Now let us see the theoretical side. To guarantee the consistency of the estimators, we impose
the following conditions on the coefficients of the SDE to be estimated:
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Figure 3.6.2: The stock prices of Tokyu Corp. from 2016/1/4 to 2018/9/4 (blue line), and a
sample path of the SDE estimated by the kernel regression (red line). The quadratic kernel
K(z) = (1 —|z*)4 with h = 0.8 is used.

Assumption 3.27

(i) There exists a positive constant Cy such that
lb(z) = b(y)| + |o(z) —o(y)| < Colz —yl, =,y D.

(ii) For every open and bounded set A C D,

€A

for some i € {1,...,d}, where A is the closure of A.

(iii) There exists a function ¢ : R?\ {0} — R of the class C? such that

b(:v)TDgp(w) + %tr(a(:v)DQQO(w)) <0, xeR? \ {0},

and that the function r — min;—, ©(x) is strictly increasing and diverges to infinity
as r — oo.

It is known that, under Assumption 3.27, there exists a o-finite measure v on (D, B(D))
such that

V(A) = /DIP’(X,?’”” € A(dz), AeB(D). (3.6.6)

We restrict ourselves to the case where the kernel K is of the form K(z) = H?Zl p(z;) for
x = (x1,...,19)" € R Moreover, we make the following conditions on p:
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Assumption 3.28

(i) The function p is nonnegative, bounded, continuous, symmetric function on R with
Jrp(s)ds =1, [ p*(s)ds < 0o, and [ s*p(s)ds < oo.

(ii) There exists a nonnegative function H on R x (0, c0) such that
[K () = K(§)] < H(E €)|z —¢]

for z, & € R? satisfying |z — £| < € and that

lim | H( ¢e)dE < oo, / H(& e)v(dE) < oo
D

e—0 Rd

for any € > 0.

Further, we introduce the quantity
n
Log(T,x) =AY Kp(Xjn—x), z€D,
i=1

and impose the following conditions on this and the other parameters:

Assumption 3.29
When n,T — oo, we have A, 7 — 0, hy, 7 — 0, and
Lo (T,2) =0, (Anrlog(1/Anr)? hh =0, as,

for any = € D.

Under the assumptions above, we have the following consistency results:

Theorem 3.30

Suppose that Assumptions 3.27-3.29 hold. Then, for any x € D, we have
Bn,T(ﬂf) —b(z), anr(r)—alz), as.,

as n,T" — oo.

For a proof of this theorem we refer to Bandi and Moloche [1], where the asymptotic normality
of the estimators are also obtained under additional conditions.



CHAPTER 4

Stochastic Controls

The term stochastic controls generally refers to the optimization problems defined for stochastic
dynamical systems with control inputs. Here we present a basic approach to stochastic controls
in the framework of SDEs. We refer to Qksendal [24], Fleming and Rishel [7], Bensoussan [4],
Fleming and Soner [8], Pham [25], Yong and Zhou [32], and to the lecture notes Touzi [27] and
van Handel [28] for more quick overviews and for more detailed accounts.

Throughout this chapter, T" € (0,00) is a fixed constant representing a time maturity, and
we assume that {W;}o<t<7 is an m-dimensional Brownian motion unless stated otherwise.

4.1 Optimization Problems

We consider the stochastic dynamical systems with control input through the SDEs with exoge-
nous variables. Namely, we consider the controlled stochastic differential equations, described in
the form

dXs =b(s, Xs,as)ds + o(s, X5, as)dWs. (4.1.1)

We call {a;} a control process. Suppose that our objective is to optimize a performance of
the controlled SDEs with suitable criterion over control processes. This leads to the following
optimization problem: .
min [E [g(XT) —|—/ f(s,Xs,ozs)ds} . (4.1.2)
{at}o<i<r 0
The function g evaluates the terminal value of the SDE and f indicates a running cost. The
problem (4.1.2) is generally called a stochastic control problem.

Before discussing the stochastic control problems rigorously, we shall presents a few examples.
Ezample 4.1 (Merton Problem [18], [19]). Let S; be the price of a stock at time ¢, and B; the
price of a riskless bond at time ¢. Suppose that we are in a position to invest our wealth into
these two assets by dynamically changing the fraction of the wealth to the stock. Denote by X;
our wealth at time ¢. If we have ¢; shares of the stock at time ¢, then the resulting fraction oy
to the stock is

_ s

Oy = X,
whence ¢, = 4 X;/S;. The remaining fraction 1 — a4 is invested into the riskless bond, and so
the number of shares invested into the riskless bond at time ¢ is (1 — o) X¢/B;. Thus, assuming
there is neither income nor consumption in the period [¢,t + At], we obtain
o Xy 1— o Xy

St By

Xigar — X = (St+at — S) + (Beyat — By).
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This leads to the SDE
AX, _ dS. |, dB.
X, 'S Y'B,

for the wealth process. In the simplest case, the price dynamics of the two assets are assumed
to be described respectively by

(4.1.3)

dSt = St(bdt + O'th),
dBt = TBtdt,

where m = 1, and b, o, r are constants with o > 0 and » > 0. Then (4.1.3) turns out to be
dX; = Xy[r + (b — r)oy)dt + Xy dWy. (4.1.4)
The investor’s problem here is to maximize the expected utility of the wealth
E[U(X7)] (4.1.5)

over all portfolio proportion processes {a;}. Here U : (0,00) — R satisfies U’ > 0 and U” < 0,
which is called a wutility function.

Ezample 4.2 (Aircraft trajectory planning [17]). Consider an aircraft’s motion in the 2-dimensional
horizontal plane. We assume that the local navigation frame is described by the 2-dimensional
FEuclidean plane where x-axis points the east and y-axis points the north. Then, the state X,
of the aircraft is described by a vector in R2. We further assume that the current heading of
the aircraft is determined by the control variable ay € A = [0, 27). With these assumptions, the
dynamic of X; can be described by

dX; = (Cf’s(o‘t)) vedt + dY;.
sin(ay)

where v, is the aircraft’s cruise speed, assumed to be constant, and Y; = Y;(x) describes the
wind disturbance at the position z. A simple model for the wind disturbance is

dYy(z) = y(t,x)dt + o(t, z)dWs.

Here y(t,z) describes a mean behavior of the wind, which is a deterministic vector field, and
o(t,z) is a magnitude of random fluctuations at (¢,x), both of which are estimated by weather
charts. Further, W; is a 2-dimensional Brownian motion. Thus, the controlled process X; is
given by
cos(ay)
X = X X .

dX; [(sin(o@) ve +y(t, t)} dt + o(t, X¢)dW;
The objective of the trajectory planning here is to control the movement of the airplane so as
to enter a given area Sy at the terminal time T while avoiding a forbidden area S;. Then the
problem is

T
?nr]}E [d(XT,So) +A / eV‘“Xt»Sl)dt} :
ot 0

where A,y > 0 and d(z, S1) denotes a distance between a point = € R? and a set S C R2.

We turn to the rigorous formulation. In what follows, we fix an Fg-measurable random
variable Xo € L? and a closed subset A of R%. We assume that the evaluation functions g on
R? and f on [0,T] x R? x A are Borel measurable. Denote by A the collection of all processes
a = {o }o<t<7 such that

(i) «ais A-valued and F-adapted;
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(ii) the SDE (4.1.1) has a unique solution {Xj*}o<¢<7 with initial condition X§ = Xo;

(iii) The criterion is finite, i.e.,

E |oxs) + [ " ps.xe, )i

is finite.

We call elements in A control processes. Then, given a subset Ac A, our stochastic control
problem is describe by

T
inf E [g(X%) —I—/ f(s,XSa,aS)ds} : (4.1.6)
acA 0

e We say that (4.1.6) is a finite time horizon problem.

e The stochastic control problem

T(l
inf E [g(XE:f’O‘) +/ f(s,Xg’x’a,as)ds} ,
acA 0

0,z,x

where 7% is the first exit time of {X;*“} from a given set S C RY, is called an indefinite
time horizon problem, and the one

o
inij/ e (s, X0 q,)ds,
acA 0

where A\ > 0, is called an infinite time horizon problem. The both have many important
applications. However, we omit to deal with them for simplicity of the presentation.

e Suppose that { X/ }o<t<7 is a unique solution of
dX; =b(t, X, a(t, X7))dt + o(t, X], a(t, X]))dW;

for some Borel function a and that of = a(t, X;), 0 <t < T, is in A. Then, by the
uniqueness, X = X;. We call such a* a Markov control.

e Of course oy := a(t, maxp<s<¢ XJ), 0 <t < T, is not a Markov control. Thus, in general,
the controlled SDEs (4.1.1) differ from those considered in Chapter 3 in that the former
depends on possibly non-Markovian processes.

To discuss the existence and uniqueness of (4.1.1), we assume here that b : [0, T]xR¥x A — RY
and o : [0,T] x R? x A — R¥™ continuous functions and that there exists a positive constant

Co such that for (¢,z,y,a) € [0,T] x R x R% x A,
|b(t, z,a) —b(t,y,a)| + |o(t,x,a) —o(t,y,a)| < Colz —yl, (4.1.7)

and that -
E/ (1b(2,0, ) 2 + 0 (2,0, a0)|?) dt < o (4.1.8)
0

for a given A-valued and adapted process a.
We can apply the same argument as in the proof of Theorem 3.2 to obtain the following:

Theorem 4.3

Suppose that the conditions (4.1.6) and (4.1.7) hold. Then, there exists a unique solution
{X?}o<t<r of (4.1.1) with initial condition X§ = Xp.
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Actually, Theorem 4.3 is a corollary of the following result:

Theorem 4.4

Let ¢t € [0,T]. Consider the equation
Xs=¢ +/ b(s, Xs)ds +/ (s, Xs)dWs, t<s<T, (4.1.9)
t t

where €, b: Q x [t,T] x R? and & : Q x [t, T] x R>*™ satisfy
(i) ¢ is an R%valued and F;-measurable random variable with E|¢|? < oco.
(ii) b(s,z) and &(s,z) are adapted for each (s,z) € [t,T] x R%.

(iii) There exists a positive constant C such that

b(s,2) = b(s,y)| < Cile —yl, s€t,T], ,yeR™
(iv) The processes {b(s,0)} and {7(s,0)} are in £, i.e.,

T
E/t (/5(s, )% + |3 (s, 0)[?) dt < oc.

Then, there exists a unique solution { X };<s<7 of (4.1.9) satisfying E sup,< p | Xs|* < oo.

e As in Chapter 3, we write {Xﬁ’g’a}tgng for the unique solution of (4.1.1) with initial

condition Xf’g’a =¢.

4.2 Dynamic Programming Principle

The dynamic programming principle (DPP) by Bellman [3] gives a recursive method of solving
optimal control problems. In discrete-time framework, by the dynamic programming, we can
directly obtain optimal control processes at least theoretically. In continuous-time, the situa-
tion is slightly different, and the DPP leads to nonlinear partial differential equations for the
stochastic control problems, so-called Hamilton-Jacobi-Bellman (HJB) equations. This section
is devoted to the statement and the proof of the DPP under mild assumptions, and in the next
section, the connection between the DPP and HJB equations is discussed.

Consider the stochastic control problem (4.1.6). Here we assume that the following is satis-
fied:

Assumption 4.5

(i) The set A is compact and convex in R%.
(ii) For each ¢ = b, 0, f, the function ¢ is continuous on [0, 7] x R% x A.

(iii) There exists a positive constant Cjy such that for each ¢ = b, 0, f and for every
(t, ¥, x,2' a,a") € [0,T]? x (RY)? x A2,

|¢(t,£1}, a) - (p(tlaxla CLI)’ < C()|t - t/’1/2 + C()|$ - IIZ‘/| + C()|CL - al|7
](b(t,x,a)] S CO-

(iv) The function g is bounded and uniformly continuous on RY.
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o It follows from Assumption 4.5 that (4.1.7) and (4.1.8) holds. Thus, by Theorem 4.3, there
exists a unique solution { X"}, <7 of (4.1.1) with initial condition X" = 2 for any
(t,x) € [0,T] x R? and for any A-valued and adapted process a.

e The above fact together with the boundedness of g and f shows that A is the set of all
A-valued and adapted processes.

e We take here A = A.

The preceding arguments show that the value function

T
v(t,x) = iniE [g(erp’m’a) +/ f(s, X% a)ds|, (t,z) €[0,T] x RY, (4.2.1)
(¢S t

is real-valued. Moreover, Lemma 4.8 below means that v is bounded and Borel measurable.
In addition to Assumption 4.5, we make the following assumption:

The filtration F is the augmented one generated by {W}o<i<7.

Now the DPP is stated as follows:

Theorem 4.7

Suppose that Assumptions 4.5 and 4.6 hold. Let v be as in (4.2.1). Then, for any
t,s € [0,T] with t < s and € R? we have

v(t,z) = inf E [U(S,Xﬁ’x’o‘) +/ f(r, Xﬁ’x’o‘)dr} .
acA t

e Assumptions 4.5 and 4.6 can be weakened. See Krylov [16] for the DPP under a more
general setting.

The rest of this section is devoted to the proof of Theorem 4.7. There are several variations
for the proof of the DPP and all of them are lengthy and technical. Our proof is close to that
in Nisio [23] and can be skipped on a first reading.

To obtain Theorem 4.7, we need several preliminary results. First we show the uniform
continuity of the value function.

Under Assumptions 4.5 and 4.6, the value function v is uniformly continuous on [0, 7] x R?.

Proof. Let s,t € [0,T] with s > t, z,y € R? and a € A. We write C for positive constants that
do not depends on particular points in [0,7] x R? x A and may vary from line to line. First
observe, for r > s,

S S
Xﬁ,x,a _ Xf’y’a =x—y _|_/t b(U,Xi’x’a,Otu)du +/t U(quZ,x,a7au)qu
+ b(u, XE5 ) — b(u,Xi’y’a,au)] du
g

+ (uaXZ7x7a7QU) - O’(u,XfL’y’a,au)] dWy.

/|
/!

64



From this and Assumption 4.5, we obtain
T
E| X050 — X5U22 < Cloz —y|* + C(s —t) + C/ E ‘Xf;x’a — sz’y’o‘|2 du.
S

Thus, by Gronwall’s lemma,

sup E|XE™e — X5Ue )2 < Cla —y|? + Cs — t|. (4.2.2)
s<r<T

Now, by Assumption 4.5,
v(t, z) —v(s,y)

< sugE{!g(X?”"’) —g(X7"%)| +/ [f(r, X759, ag)|dr
ac t

T
+ [ 15 X ) = G X3 aT>|dr}
S

T
< Csup [Bllg(X) = (X2 + s =)+ [ BLxE= = xpvelar .
acA s

Since g is uniformly continuous, for € > 0 there exists dp > 0 such that [g(z) — g(2’)| < e
whenever z, 2’ € R? satisfy |z — 2/| < §p. Thus, by (4.2.2),

t’ b 17 t7 b b K
Elg(X5"") — g(X37)] = E [J9(X2") = g(X55 VL xtime ez <poy  Lpxtime a0

C C
<e+ §E|X%m’a - X7V <e+ 57(|5 —t|+ |z —yl?),
0

0
whence
1
o(t.0) = ol £ € (4 gy lls =t o =) 1=l 4o —y]) < C
0
whenever |z — y|, |s — t| < 81 := o1/ A 63e A . Thus the lemma follows. O

Suppose that Assumptions 4.5 and 4.6 hold. For any s, ¢ € [0,T] with s > ¢, F;-measurable
random variable ¢ € L?, and o € A, there exists a Borel measurable map Fy; on L? x
Ly x C(R?) such that

X = P60 (Wr — Woigres), a5

\.

Proof. Fix s,t € [0,T] with s > t, Fi-measurable random variable ¢ € L?, and o € A.
Step (i). For any n € N, put

An = {5 cA: 5(7“) = a(tk,n) for r € [tk,mthrl,n)y k= 0, 1, ey 2m — 1},

where tg, =t + (s — t)k27", and A = U, A,. Here we have denoted B, = f(r) just for
notational convenience. Then, as in the proof of Lemma 2.3 we can show that there exists
{a™} c A such that

n—00

lim ]E/ la, — o™ |2dr = 0. (4.2.3)
t
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To prove (4.2.3), put a,, = ag for r < 0. Then define the adapted process {B,(«N)}OSTST with
continuous paths by

BWMQN/ audu, N €N.
r—2—N

T

Notice that (V) € A since A is assumed to be compact and convex. Moreover, since 3N is
differentiable a.e., we have ﬁﬁN) — «p, dt x P-a.e. This together with the boundedness of «
yields

r

T
E/|m—ﬂmﬁam N — .
t

Further, put B,(N’g) = B(N)(tw) for r € [tin,tht1,n) and B,QN’E) = ,(ﬁN) for r € [0,t) U [s,T],
¢ € N. Then, again 3NV e A for each N, ¢ and limy_,o Bﬂv’e = ,(~N) for any r and N by the
continuity of SV). Consequently, we obtain

lim lim IE/ la, — BV 12dr = 0.
t

N—00 £—00

This means that there exists a sequence {(Ny, £,)}°°, such that N,,¢, — oo as n — oo and
that

S
mnE/|%—5WM“ﬁﬁ:a
t

n—o0

Thus the process CY?(on) = 67(«N"’Z"), 0 <r <T,is the one we aim to construct.

Step (ii). Consider the sequence {Yk(n)}kK:”O of the random variables defined by
Y(n) — Y(") b Y(") _ Y(”) W, — W
k+1 T (tk, k 704tk)(tk+1 tk) + o (t, k ’atk)( tet1 tk)

for k = 0,1,..., K, — 1 with Yo(n) = ¢. Here we have denoted K, = 2 and ¢, = U 26n

. . .. . . . . (n)
for notational simplicity. That is, {Yk(n)} is the Euler-Maruyama approximation of {Xﬁ’z’a }.

Then, as in the proof of Theorem 3.14,

lim E[xL4" — v 12 = 0.

n—oo

Further, it is now straightforward to see
S
EjX16e — X162 < OF / lar — o™ 2dr
t
for some constant C' > 0. Therefore, using (4.2.3), we obtain

lim Y = X0 as. (4.2.4)

n—o00 n

possibly along subsequence.
On the other hand, by an inductive argument, Y[((Z) turns out to be (&, o, (Wy — Wi)i<r<s)-
measurable. This and (4.2.4) together with Theorem 1.9 lead to the claim. O

For (t,z,a) € [0,T] x R% x A we write
T
J(t,z,a) =E [g(Xélx’a) +/ f(s, X552 a)ds| .
t
Then of course v(t,z) = infaes J(t, 2,0), (t,2) € [0,T] x RY. Further, consider the set A; of
the controls o € A such that ay = Gs(W, — Wy)i<r<s) a.s. for some Borel measurable map G

on C(RY) for each s € [t,T]. Then we have the following:
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Under Assumptions 4.5 and 4.6,

o(t,x) = inf J(t,z,a), (t,z)e0,T] xR

ac Ay

Proof. By Assumption 4.6 and Theorem 1.9, any o € A can be represented as as = &5 :=
Go.s({Wy}o<r<s) a.s., s € [0, 7], for some Borel function G, s on C(R?). Using the It6 isometry,
we find

S S
/ o(r, X2 a,)dr = / o(r, X\ & )dr, t<s<T, as.
t t

for any ¢ € [0,7]. This means that X:™® = X5™% ¢ < s < T, a.s. Further, by Lemma 4.9, we
find that for any s € [t, T, there exists a Borel function Fs; on R? x £3 x C(R?) x C(R?) such
that

X;@a = Fs,t(l"» Ga,-({WT}Ogrgta {Wr - Wt}tgrg-)a {Wr - Wt}Og'rgs)a a.s.

for some Borel function éa,r on C(R%), t < r < s. This together with the tower property of the
conditional expectations yields

Elg(X;")] = E [E | g(x;")| 7]
=E :]E [Q(FT,t(% Ga,.-({(WrYo<r<t, {Wy = Wihi<p<), AWr — Wt}tSrST))’ J'"t”

=E|E |:g(FT,t(xa G (0, AW — Wikicr<.), {W, — Wt}tgrgT))] }¢={W Yocne }

=E E [Q(X;x’ﬁ(@)} ‘¢{WT}OSTSt:| ’

where B(¢) = Go.(¢, {W, — Wi }1<r<.). Similarly, we obtain

E[f(s, X479, a,)] = E [Ews, X159 6(6),)]

¢:{WT}0<r<t:| '
Thus, since 8(¢) € A;, we deduce

J(t,2,a) = E |E[J(t, 2, B(8))]], {Wr}og@] >E L}Qﬂ t J(t,x,o/)] = inf J(t.x.a),

whence v(t,z) > infc 4, J(t,z,a’). The converse inequality is obvious from A; C A. Thus the
lemma follows. O

Proof of Theorem 4.7. Fix s,t € [0,T] with s > t, and » € R%. By the uniqueness, Xt =
t,x,o
X% a5 for r € [s,T] and for a € A. As in the proof of Lemma 4.10,

| 7]

=E|E [g(Fm(g, Ga, (6, {W, = Wlecr<.), {W, — WS}SSTST))] ‘

Elg(Xy")] =E [E [g(x3"")

sxg'“”’“,¢{wy}t<r<s]

~E |Bly ;)

g—Xg’z’a7¢—{WT}t§r§s]
where B(¢) = Ga. (¢, (W, — Wy)s<r<.). Similarly,

E [f(r. X[ oy)] = E [IE £ X347, (), )] } ] :
E=X0 p={Wr hi<r<s
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Hence, for a € A,

s T
ﬂuaszwu$Wﬂ+p/fmxwﬂamw+/'Mﬂnﬁ%%mmh
t s
=E@U@X?MWM4MMKJ+E/meWﬁmMr
- t
> B [o(s, Xi7)] + B [ fr. X0 0)ar
t

whence

S

v(t,z) > inf E |:U(S,X§’x’a) +/ f(r, Xﬁ’%a,ar)dr} .
acA t

To prove the converse inequality, let € > 0 be arbitrary and take § > 0 so that

lv(s,y) —v(s, )| <e, suj) |J(s,y,a) — J (8,9 )| < ¢ (4.2.5)
acAg

whenever y, 7’ € R? satisfy |y — /| < 6. This is possible due to Lemma 4.8 and its proof.
Let {B,}22, C B(R%) be a disjoint partition of R? such that diam(B,,) < §. Then, for every
n, take x,, € B, arbitrary. For this z, there exists a,, € A such that

v(s,zpn) > J(s,xpn,a") —¢.
From this and (4.2.5) it follows that, for each n,
J(s,y,a") <w(s,y) +3¢, y€ Bn. (4.2.6)

Now, fix a € A and define & € A by

o0
ay = av'l{rgs} + 1{r>s} Z a?an(X?Jf,a)’ 0<r<T.

n=1

Since each @™ is independent of F, as in the proof of Lemma 4.10,

0 s

J(t,z,a) =Y E[J(s,X0™" a")1p, (XL")] + E / Flr, X5 o) dr.

n=1 t

This and (4.2.6) yield
S
olt.) B ol X+ [ 1 Xt )] 4 30
¢

leading to the inequality we wanted. O

4.3 Verification Theorem

Suppose for a moment that Assumptions 4.5 and 4.6 hold. Then by Theorem 4.7 we have the
following DPP:

t+h
v(t,x) = ;relaE v(t + h,Xff;la) —I—/t f(s, X% ay)ds
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for t € [0,T — h], h € (0,T), and = € R? Suppose moreover that the value function v is of
C12-class. Then, It formula gives, for a € A,

t+h

U(t-f— ha Xt+h) + f(stsaaS)dS
t

t+h
=v(t,x) +/ {Ow(s, Xs) + H* (s, Xs, Dv(s, Xs), D*v(s, X))} ds
t
t+h

+ DU(S,XS)TU(S,Xs,as)dWS
t

where X = X5*® and
1
Hs,z,p, M) = b(s,z,a)"p + itr(a(s,x,a)a(s,x, a)TM) + f(s,x,a)

for a € A and (s,z,p, M) € [0,T] x R x R? x S¢. We further assume that the integrand in the
stochastic integrals belongs to Lo, i.e., the expectation of the stochastic integral vanishes. From
this assumption and the DPP above it follows that

t+h
0< me/ {0 (s, Xs) + H%(s, X5, Dv(s, X)), D?u(s, X,) )} ds.
t

acA

since the constant controls belong to A. Dividing the both side by h and then letting h — 0, by
the continuity of v, we obtain

0 < dw(t,z) + inf H“(t x, Du(t, z), D*v(t, z)).
acA

On the other hand, since in general the infimum of the expectation is greater than the
expectation of the infimum, formally we have

t+h
0> IE/ in£ {Ow(s, X;) + H(s, X5, Dv(s, X;), D*v(s, X)) } ds.
t ac

The continuity of s +— inf,e4 H%(s, X5, Dv(s, Xs), D?*v(s, X)) yields, as in above,

0> ow(t,x) + ing H(t,z, Dv(t,z), D*v(t, x)).
ac

Consequently, v satisfies the Hamilton-Jacobi-Bellman (HIB) equation

Ov(t,z) + inf H“(t z, Du(t,z), D*v(t,x)) =0, (t,z) € [0,T) x RY,
a€A (4.3.1)
o(T,z) = g(z), =R

Namely, if the DPP holds and v is smooth, then the value function is a solution of the corre-
sponding HJB equation.

Conversely, by solving HJB equations, we can construct optimal controls, which is guaranteed
by the following wverification theorem:
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Theorem 4.11: Verification theorem

Suppose that there exists a C'2-function V on [0,7] x R? that is a solution of (4.3.1).
Suppose moreover that the following are satisfied:

(i) For every o € A,

E

iy
sup |V (t, Xa)]—i—/ !f(t,X;’,at)\dt] < o0.
0<t<T

(ii) There exists a Borel function a* on [0,T] x R? such that

inf H%(t,z, DV (t,z), D*V (t,z)) = H* &@)(t, 2, DV (t, ), D>V (t,z)), (¢, z) € [0,T]xR%.
acA

(iii) There exists a unique solution {X; }o<¢<7 of the SDE

dX{ =b(t, X, a"(t, X]))dt + o(t, X[, a*(t, X]))dW:, X5 = Xo.

(iv) The process af := a*(t, X;), 0 < t < T, belongs to A.

Then o is optimal for the problem (4.1.6).

Proof. For a € A and n € N define the stopping time 7 by
=inf{t € [0,T]: |X;*| >n} AT.

Then, using It6 formula and (4.3.1), we have

E [V(Tg,xgg)+/Tg f(s,X;’,as)ds} > E[V(0, Xo)].
0

Then, by the dominated convergence theorem,

E [g<X%> +f " psxe, as>ds] > B[V(0, Xo)],

whence

int B [g<X%> " /0 " s xe, as>ds] > E[V(0, Xo)].

On the other hand, by the uniqueness, X§ = X}, 0 <t < T, a.s. Thus, using the conditions
in Theorem 4.11 and the localizing argument as in above,

B |o(x¢) /sta Dds| = B[V (0, X0)]

T
< int B g0XF) + [ (5. X5 0]
0

acA
Since a* € A, we deduce that o is optimal. O
e [t should be emphasized that Theorem 4.11 holds without Assumption 4.5 or 4.6 or both.
o It is straightforward to see that
o(t,r) = V(t,x), (t,z)e0,T] xR,

provided that v is well-defined and the conditions in Theorem 4.11 hold.
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Ezample 4.12 (Linear regulator problem). Consider the controlled SDE
dX7 = (b(t) X + c(t)ay) dt + o(t)dWr, (4.3.2)

where b : [0,T] — R4 ¢:[0,T] — R>% and o : [0,7] — R¥™, all of which are continuous.
The problem is to minimize

e [oenmrxg+ [ {xoTPOXE + @0 ai

over all R%-valued process o = {at}o<t<r with each component belonging to Lo. Here, R € S¢
and the functions P : [0, 7] — S, @ : [0, 7] — S¥ are assumed to be continuous and nonnegative
definite. Further, Q(t) is assumed to be positive definite for any ¢ € [0,7]. By Theorem 4.3 (and
Theorem 4.4 or by a direct esitmation), there exists a unique solution {X}o<;<7 of (4.3.2) for
any o = {ay }o<¢<r as in above and initial condition Xy € L? such that Esupy;<r | X{** < oc.
Thus the criterion is always finite. So we take A to be the set of all R%-valued processes o such
that each component is in £y. Then A C A.

Theorem 4.11 suggests that if the HJB equation has an explicit solution then the solution
gives a candidate of an optimal solution. In our case,

H%(t,x, Dv(t,z), D*v(t, z))

= (b(t)x + c(t)a) "DV (t,z) + %tr(o(t)a(t)TD2V(t, z)) 4+ 2" P(t)z + a' Q(t)a.
Therefore, the infimum of H%’s is attained by
a*(t,x) = —%Q(t)_lDV(t,x)Tc(t).

In view of the linear-quadratic structure of the problem, we look for a solution V of the HJB
equation by assuming V (t,x) = 27 F(t)x 4+ G(t) for some deterministic functions F : [0, T] — S¢
and G : [0,7] — R. Substituting this form into the HJB equation, we see

T [F'(t) — F(t)e®)Qt)Le(t)TF(t) + P(t) + b(t) T F(t) + F(t)b(t)] T
+ G+ tr(o(t) o) TF() =0
for (t,z) € [0,T) x RY, where L(t) = dL(t)/dt. This leads to the ODEs
F'(t) — F()e(®)Qt) () TF(t) + P(t) + b(t)TF(t) + F(t)b(t) =0, F(T)=R, (4.3.3)
G'(t) + tr(o(t)o(t) T F(t)) =0, G(T)=0.

It is known that there exists a solution of the matriz Riccati differential equation (4.3.3) (see
Theorem 5.2 in [7]). With this F, the function G is explicitly determined and so V(t,z) =
x T F(t)z + G(t) is a solution of the HJB equation. Consequently, a*(t,z) = —Q(t)"te(t)T F(t)x.

Problem 4.13. In Example 4.12, complete the remaining arguments to be done and obtain an
optimal control using Theorem 4.11.

Problem 4.14. Try to find an optimal control for a more general problem than that in Example
4.12.

Before turning to next example, we observe that the following theorem holds:

71



Theorem 4.15

Let {b;}o<t<r and {o:}o<i<r be R-valued and R™-valued adapted processes such that

T T
/ |bt|dt+/ |o¢|2dt < 00, as.,
0 0

respectively. Then there exists a unique solution {Z; }o<i<7 of the SDE

dZ; = Zs(bedt + ol dWy), Zo =1. (4.3.4)

Proof. Put

t 1 t
Yt:/ (bs—2|as|2> ds+/ a;rdWS, 0<t<T.
0 0

Then, with It6 formula, it is straightforward to see that Z; := e¥*, 0 < t < T, is a solution of
(4.3.4). Let Z}, 0 <t < T, be an another solution. Then, It6 formula yields dZ/e~** = 0. Thus
Zy=27;,0<t<T. O

Ezample 4.16 (Merton problem). Recall the investment problem in Example 4.1. By Theorem
4.15 there exists a unique solution {X}o<;<r of (4.1.4) for any R-valued adapted process
ac £2,loca given by

t 1 t
X: = Xpexp [/ <r—|—(b—r)ozs—2a2a§> d5—|—0/ adeS] , 0<t<T.
0 0

Here we take U(z) = 29, z > 0, for some ¢ € (0, 1), and then define A by the set of all R-valued
processes a € L 1, such that Esupg<,<p U(X§) < oc.
To solve the control problem, we consider

t 1 t
Y = q/ (r +(b—r)as — 202043) ds + qa/ asdWs, 0<t<T.
0 0

as a state variable. Then the corresponding HJB equation is

d(t,y) +sup H(y, Dv(t,y), D*v(t,y)) =0, (t,y) € [0,T) x R,
a€cR (435)
v(T,y) =¢¥, yeR.

where

1 1
H(z,p,7) = q(r+ (b= r)a— So*a’)p + Sq’0"a*y.

We look for a solution of (4.3.6) of the form v(t,y) = w(t)e¥, where v is a positive deterministic
function. Substituting this form into (4.3.6), we observe

0=eY {w’(t) + qu(t) Sup {7” +(b—r)a- %(1 - Q)U%ﬂ }

oy {w’(t) + qu(t) {7’ + M] } 7

where the supremum is attained by a* := (b—17)/(0%(1 — q)). Thus, v(t,y) = exp(qd(T —t) +y)
with 0 = 7 + (b —1)2/(202(1 — q)) is a solution of (4.3.6), and the constant control o := a* is
a candidate of an optimal portfolio proportion. By the verification theorem, we can show that
a* is indeed optimal.
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Problem 4.17. In Example 4.16, check that the conditions in Theorem 4.15 hold to confirm
the optimality of a*. Doob’s maximal inequality will help you.

e As we have seen so far, the verification theorem gives a way of constructing an optimal
control. In particular, Theorem 4.15 gives sufficient conditions for which optimal control
extsts.

e To apply Theorem 4.15 for applications, we need to obtain an explicit solution of the HJB
equation, which is rarely available, however. Even more, a classical solution may not exist.

As for the existence of optimal Markovian controls, we have the following result:

Theorem 4.18

Suppose that A is compact, b, 0, g are all bounded continuous functions, and f = 0.
Suppose moreover that the set

{(J(t,x,a)a(t,x,a)T, b(t,z,a)):a € A}

is convex for all (t,z) € [0,7] x R%. Then, there exist a filtered probability space
(Q*, F*,F* P*), a process a* € A, and a Borel function a* on [0,7] x R? such that
a* is optimal for the stochastic control problem (4.1.6) defined on this filtered probability
space, where A = A is defined by the set of all A-valued adapted processes, and that

of =a*(t, X)), as., 0<t<T.

For a proof of this theorem, we refer to Haussmann [10].
We close this section by giving an example of non-smooth value functions.

Ezample 4.19. Consider the case where the controlled SDE {X§'} is given by
dXta = Oétth,
with a nonrandom initial condition, and then the optimal control problem

sup E[g(X7)]
acA

where A is the set of all R-valued processes in Lo, and

_ Jsinz  (z>0),
9@) = {x (x <0).

Suppose that there exists a C12(]0,T] x R)-solution V of the corresponding HJB equation

1
OV (t,x) + 3 sup[a’D?*V (t,z)] =0, (t,z) €[0,T) x R,
a€R

V(T,z)=g(z), x€cR.

Then, D?V (t,z) < =20,V (t,x)/a® for a # 0, and so letting a — oo we have D?V (t,z) < 0 for
every (t,z) € [0,T) x R. Hence V (t,-) is concave on R.
On the other hand, by Theorem 4.11

Vita) = olt.) = swp B(XG™)] 2 Ely (7] = glo), (1) €0.T] xR (130)

The concavity of V(¢,) now implies that
V(t,z) 2 crg(z1) + cag(w2)
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for any x; € R, ¢; > 0, ¢ = 1,2 such that c1z1 4+ coxs = x and ¢; + co = 1. From this it is
elementary to derive V (t,z) > g(x), where

1 (@),
g(x) = ¢sinz (0 <z <7/2),
x (x <0).

However, by g(z) > g(x) and (4.3.6), we find V(¢,x) < §(z), whence V(¢,z) = §(z). This shows
V(t,) ¢ C*(R).
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CHAPTER b

Viscosity Solutions

As seen at the end of the previous chapter, in general we cannot expect the existence of smooth
solutions of HJB equations. The wiscosity solutions are the most useful and elegant notion for
weak solutions of nonlinear elliptic and parabolic partial differential equations (PDEs), as well as
open up the possibility of rigorous numerical analysis of HJB equations whose classical solutions
might not exist. In this chapter, we describe basic parts in the theory of viscosity solutions. We
refer to Crandall et.al [6], [8], [25], and [27] for more detailed accounts.

5.1 Definition
Let I be a real-valued function on [0,7] x RY x R x R x R? x S, and consider the PDE
F(t,x,v(t, x), Ov(t, ), Du(t,x), D*v(t,z)) =0, (t,z) € [0,T) x R% (5.1.1)

We are mainly interested with the case where F' is of the form

1
F(tvxau7Q7p> M) = —¢ +sup _b(taxva)—rp - §tr(a(t,x,a)a(t,x,a)TM) - f(t,.%',(l) ) (512)
acA

which is the case of HJB equations.
e The function F' is assumed to satisfy the ellipticity condition:
F(t,z,u,q,p, My) > F(t,x,u,q,p, Ma), (t,x,u,q,p) € [0,T] x RYx R x R x RY, (5.1.3)
for My, My € S with My < M.
e For A, B € S¢ we write A < B if B — A is positive semi-definite.
e The function F is also assumed to satisfy the parabolicity condition:
F(t,z,u,q1,p, M) > F(t,x,u,q2,p, M), (t,z,u,p, M) € [O,T]dexRdede, (5.1.4)
for q1,q2 € R with ¢ < ¢o.

e The nonlinearity F' defined by (5.1.2) clearly satisfies (5.1.3) and (5.1.4).
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To motivate the notion of viscosity solutions, let us assume that a classical subsolution
v of (5.1.1) exists, i.e., (5.1.1) holds with = replaced by <. Let ¢ € C%2([0,T] x R%) and
(t,z) € [0,T) x R? be a global maximum point of v — ¢. By adding a constant if necessary, we
can always assume that (v — ¢)(t,2) = 0. Then, we have the three conditions

Or(v—)(t,z) >0, D(v—p)(t,z)=0, D*w—¢)tz)<O0.

Note that the first inequality holds with equality if ¢ > 0. From these conditions, (5.1.3) and
(5.1.4) it follows that

F(t,z,0(t, @), 0p(t, ), Dolt, ), D*p(t, 2)) < F(t,z,0(t,x), 0v(t,x), Du(t,z), D*v(t,x)) < 0.

Thus the subsolution property holds at (¢, x) for the test function (.
Similarly, let v be a classical supersolution of (5.1.1), i.e., v satisfy (5.1.1) with = replaced by
>. Then for any ¢ € C12([0,T] x R?) such that min g ) eo.r)xre (V=) (s, 4) = (v—9)(t,2) =0,

F(t,z,o(t,z),0u0(t, ), Do(t,z), D*p(t, x)) > 0.

Definition 5.1. Let F : [0,7] x R? x R x R? x §% — R satisfy (5.1.3) and (5.1.4), and let
u € C([0,T] x RY).

(i) We say that u is a viscosity subsolution of (5.1.1) if
F(t,z,¢(t,x), 0p(t, ), Dp(t, ), D*p(t,z)) < 0

for all o € CH2([0, T] xR%) and (¢, z) € [0,T) x R% such that Max (s )efo,7)xrd (0 —9)(8,Y) =
(v—¢)(t,z) = 0.

(ii) We say that u is a viscosity supersolution of (5.1.1) if
F(t,z,¢(t,x), 0p(t, ), Dp(t, ), D*¢(t,z)) > 0
for all ¢ € C12([0, T] x R?) and (¢, z) € [0,T) xR? such that Ming e (0,7)xke (V—9) (8, y) =
(U - w)(tvx) = 0.

(iii) We say that v is a wiscosity solution if it is both a viscosity subsolution and a viscosity
supersolution.

5.2 Comparison Principle

The comparison principle is a key property for uniqueness of viscosity solutions, and is an
important ingredient in numerical analysis of fully nonlinear parabolic PDEs.

An equivalent definition of viscosity solutions

We need an alternative definition of viscosity solutions in terms of superjets and subjets.
Observe that for U € C([0,T] x RY), ¢ € CY2([0,T] x RY), and (t,z) € [0,T) x R? with
max s ) cfo, 1) x4 (U — 9)(8,y) = (U — ¢)(t, ), the Taylor expansion up to second order terms
yields

U(s,y) S U(t,x) + ¢(s,y) — p(t, )
= U(t,x) + Opp(t, x)(s — t) + Do(t,z) " (y — )

+-(y—2) D¢t x)(y — x) + o(|s — t| + |y — ).

N
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This leads to the following definition: for U € C([0,T] x R%) and (¢,z) € [0,T) x R%, the set
P2+U(t,z) is defined by

PEIU(t,x) = {(q,p, M)eR xR xs?:

. U+hx+y) —U(t,x)—qh—p'y — 59" My
lim inf 5 >0,.
(h.y)—0 Al + |yl

Similarly, we define the set P>~ U(t,z) by the

PEU(t,x) = {(q,p,M) eRxRYxSe:

lim sup Ult+h,x+y)—U(t,z) —qh—p'y — 3y" My _ 0}_
(hy)—0 Al + |y|? -

e The sets P>TU(t,x) and P>~ U(t,x) are called the superjet and subjet of U at (t,x),
respectively.

e Compare the definitions of the super/sub-jets with that of the subdifferential in convex
analysis, if you are familiar with it.

e By definition, for U € C([0,T] x RY), p € CY2([0,T] x R%), and (t,x) € [0,T) x R? with
maX(s,y)E[O,T)X]Rd(U —)(s,y) = (U —9)(t,z),
(Orp(t, @), Do(t, ), D2p(t, ) € P2HU(t, ).
e The converse implication of the claim just above holds true, i.e., for any (¢,z) € [0,T) x R4

and (q,p, M) € P>TU(t, ), there exists ¢ € C12([0, T]xR?) satisfying max, e (o) e (U
©)(s,y) = (U — ¢)(t,x) such that

(q7p7 M) = (at(p(tv SC), D@(tv LE), D2@(ta 1")) :
See [8, Lemma 4.1] for an explicit construction of such .

e A similar characterization holds for the subjet. Consequently, for given (¢, z) € [0,T) x R%,
a point (¢, p, M) € P>~ U(t, ) if and only if there exists ¢ € CH2([0,T] x R?) satisfying
min(s,y)E[O,T)XRd(U - 90)(8’ y) = (U - 90)(ta $) such that

(¢,p, M) = (dwp(t, @), Dop(t, x), D*p(t, x)) .

e The closures of the subjets and superjets are theoretically useful. We define P>+ U (¢, z)
by the set of the points (¢, p, M) € R x R? x S for which there exists (¢, Zpn, Gn, P, Myn) €
[0,T) x R x P2FU(t,x), n € N, satisfying (tn, Zn, Gn, pn, Mn) — (t,2,q,p, M). The set
P2-U(t, ) is defined similarly.

With the preliminaries above, we have the following:

Proposition 5.2

Let F: [0,7T] x R? x R x R? x S? — R be continuous and satisfy (5.1.3) and (5.1.4). Then
u € C([0,T] x RY) is a viscosity subsolution (resp. supersolution) of (5.1.1) if and only if
for any (t,z) € [0,T) x R and (¢,p, M) € P>*u(t,z) (vesp. (g,p, M) € P> u(t,))

F(t,z,u(t,x),q,p, M) <0 (resp. > 0).
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Comparison principle

The Ishii’s lemma is a key to the proof of the comparison principle. Since the proof of this result
is lengthy and technical for our introductory notes, we refer to Theorem 8.3 in [6] and [27] for
details.

Lemma 5.3: Ishii’s Lemma

Assume that F : [0,7] x R? x R x R? x S — R is continuous and satisfies (5.1.4), and
F(t7x7u7Q7p7M) - F(tax7u707p7M) —q

for any (t,z,u,q,p, M) € [0,T] x R x R x R x R? x §¢. Let U,V € Cy([0,T] x R%)
be a viscosity subsolution and a viscosity supersolution of (5.1.1), respectively. Let ¢ €
CHL22([0, T)x [0, T)xR¥xR?) and (¢, 5, Z,§) € [0,T)x [0, T) xR%xR? be a local maximum
of U(t,z) — V(s,y) — ¢(t,s,2,y). Then, for every n > 0, there exist My, My € S¢ such
that

(29(t,5,7,7), Do, 5,7,5), M1) € PTU(E, 2),
(_65¢(t’ ga'i'ag)a_Dy(b(Ev 5’;2', LT

and
M1 0 2 - _ _ _ 2 - _ _ _\\2
(5 _3p) < P2ottsz.5) + 0 (D2,00.5.2.9)"

e The space CH122([0, T] x [0, T] x R? x RY) is defined similarly as in the case of C12([0, T x
RY).

Hereafter, we assume that the function F': [0,7] x R? x R x R% x S — R is represented as

1
F(ty z,u,q,p, M) =—q + 5“ + sup _b(ta z, a)Tp - §tr(a(t, z, CL)O'(t, z, a)TM) - f(t7 z, a):|
a€A
(5.2.1)
for (t,x,u,q,p, M) € [0,T] x R x R x R x R% x §%, where § € [0, 00), the set A is a subset of
R and each ¢ = b, o, f satisfies that there exists a constant Cy > 0 such that
‘d)(tvwa a) - (b(say: CL)| < Co\t - S‘ + 00’.213 - y’

for (t,s,z,y,a) € [0,T] x [0,T] x R x R? x A.
Now we are ready to prove the comparison principle.

Theorem 5.4: Comparison principle

Suppose that (5.2.1) holds. Let U,V € Cy([0,T] x R%) be a viscosity subsolution and a
viscosity supersolution of (5.1.1), respectively. If U(T,-) < V(T,-) on R then U <V on
[0,T] x R4

Proof*. Step (i). Notice that for any x > 0, the function U(t, z) := e"U(t, z), (¢, z) € [0, T] xR,
is a viscosity subsolution of (5.1.1) with F' replaced by
- 1
F(ta T, u,q,p, M) = 7q+(ﬁ+’{’)u+sup 7b(t7 €z, a)Tp - 5‘51“(0(75, €L, (L)O'(t, Z, a)TM) - eﬁtf(t €z, a‘)

a€A

Indeed, let (? € CY2([0,T] x RY) and (t,x) € [0,T) x R? be such that max (s )ejo,7)xrd (U —
5)(5,9) = (U — §)(t,2) = 0, and put ¢(s,y) = e3(5,1), (5,y) € [0,T] x R. Then,

(U = ¢)(s,y) = (U = @)(s,9) < (U = @)(t,x) = 0= (U — p)(t, 2).
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Thus, (t,x) is also a global minimum point of U — ¢, whence by the subsolution property,
F(t,z,p(t,x), Dp(t,z), D*¢(t, x)) < 0.

This together with dyp(t,z) = e " (0:p(t, x) — kp(t, z)) yields
F(t,x, ¢(t, x), D@(t,z), D*3(t, z)) < 0.

Hence U is a viscosity subsolution of F = 0. A similar relation holds for V, and so we may
assume that § > 0 without loss of generality.

Step (ii). Set ¢(t,r) = e (1 + |z]?), (t,x) € [0,T] x R%, where A > 0. Then, it is
straightforward to see that for (¢,2) € [0,T) x R?,

Op(t, @) = Bi(t, @) + sup |b(t, @, a) DY (t, ) + %tr(o(t, z,0)0(t, )T D*)(t, 2))

acA
<e M+ [2) (A = B+ ), (5.2.2)
for some positive constant ¢;. Further, for § > 0 the function V5 := V + §¢ is a viscos-

ity supersolution of (5.1.1). Indeed, let ¢ € C%2([0,T] x R?) and (t,z) € [0,T) x R? be
such that ming ), re(Vs — )(s,y) = (Vs — ¢)(t,z) = 0. Then ming 7y, pa(V — 05)(s,y) =
(V — ps)(t,z) = 0, where ¢s = ¢ — d1p. The viscosity supersolution property means that

t,x, o(t,x), Dp(t, z), D*p(t,x) + e M1 + [2[*) (=X = B+ c1)

(

0 < F(t,x,ps(t,x), Dps(t, ), D2g05(t, x))
(
(t, 2, p(t, ), Dp(t, ), D*p(t, x)),

whence the claim.

Step (iii). We will show that U(t,x) < Vj(t,z) for all (t,z) € [0,7] x R? and § > 0, which
leads to the claim of the theorem. To this end, assume that ¢ := sup z)co,r)xre(U—V5) (¢, 2) > 0
for some ¢ > 0. Since

lim sup (U - V5)(t, ) = —o0,
lz|=00 tej0,T)

there exists a bounded open subset O of R¢ such that

- = Vo)t z). 2.
€= polax U Va)t2) (5.2.3)

Take a sequence (tn, $n, Tn, Yn) € [0, T] % [0,T7] x O x O, n € N, that maximizes the function ®,,
on [0,7] x [0,T] x O x O by

@n(t,s,x,y) = U(t,l‘) - V;S(&y) - (bn(t,s,x,y)

with n
¢n(ta s,a:,y) = 5 (‘t - S|2 + |:C - y|2)
for any n € N, where O denotes the closure of O. Further, we write ¢, for the maximum of ®,,.

Then we have
(Cny On(tn, Sn, Tnyyn)) — (¢,0), n — oo. (5.2.4

~—

m

To prove this, note that the bounded sequence {(tn, sy, Zn, Yn) fnen converges to some (t,5,
[0,7] x [0,T] x O x O possibly along a subsequence. Since U (tn,zn) — Vs(Sn,yn), n >
bounded, it follows from

9)
1, is

c<cy < U(tn,xn) - V&(Snayn) - an(tnysnyxmyn) < U(tnaxn) - %(Snvyn)
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that ¢ (tn, Sn, Tn, Yn), n > 1, is also bounded. This means that ¢ = 5 and T = ¢, whence

¢ < lm (U(tn, zn) — Vs(sn,yn)) = U(t, T) — Vs(t,T) < c.

n—oo

From this and (5.2.3) it follows that ¢ = U(¢,z) — V(¢,Z) and (¢,z) € [0,T) x O, which leads to
(5.2.4).

Step (iv). Since (tn, Sn, Tn, Yn) converges to (¢, ¢, z,z) € [0,T) x [0,T) x O x O possibly along
a subsequence, we may assume that (t,, sp, Zn,yn) € [0,T) x [0,T) x O x O for all n. We apply
Lemma 5.3 with these points, ¢,,’s, and n = 1/n. Direct computation gives 0i¢dp (tn, Sn, Tn, Yn) =

_65¢n(tn7 Smxmyn) = n(tn_sn) and Dx¢n(tn> Sny T,y yn) = _Dy¢n(tna Sn, xnayn) = n($n_yn)
Thus there exist M, My € S¢ such that (n(t, — sn),n(zn — yn), M1) € P>TU(xp,yn) and

(n(tn — 8n),n(Tn — Yn), M) € P>~ Vs(xpn,yn). Proposition 5.2 now implies that

_n(tn - Sn) + BU(tmxn) + F(tn,xna 0,0, n(xn - yn)7 Ml)
_n(tn - Sn) + Bvé(snayn) + F(Sna Yn, 0, O,R(l‘n - yn)a MZ)

so that

BU (tn; xn) = Vs(sn,Yn))
S F(5n>yn>0707n($n - yn)v MQ) - F(tn,l‘n, 07 O,H(.Tn - yn), Ml)

1
< C¢n(tn’ Sn,y Ln, yn) + 5 Sug tI‘(O’(Sn, Yn, (I)O'(Sn, Yn, a)TMQ) - tI‘(O'(tn, Tn, CL)O'(tn, Tn, a)TMl)
ac

for some constant C' > 0. Here we have used (5.2.1) to derive the last inequality. By the Ishii’s
lemma and

_ Iy -1
2 N d d
D:E,ygbn(tasvxvy) _n(—ld Id > I
My 0 I; -1y
<
< 0 —M2> = <—Id Ia > ‘

tI‘(O’(Sn, Yn, a)cr(sn, Yn, a)TMQ) - tr(a(tna Tn, (L)O'(tn, Tn, a)TMl)

— tr <2 (J\gl _%)) < 3ntr (2 (_de }f))
= 3ntx ((0(5n Y @) = 7t 20, @) (7 (50, Y @) — 0 (b, 70, 0))7)

= BH‘U(Snvynva) - U(tn)xnaa”z < C¢n(tn75n7$myn)

we obtain

This and (5.2.1) yield

for some constant C’ > 0 uniformly on A, where

Z = <J(5naynva)a(5n>ynaa)—r U(sn,yn,a)a(tn,xn,a)T)
U(tn7xn7a)o'(8nayn7a)-r U(tnvxn7a)a(tna$naa)-r

Therefore,
B(U<tn; xn) - Vé(sna yn)) < C//¢n(tn7 Sny Ty yn)

for some C” > 0, whence by (5.2.4) we have ¢ < 0, a contradiction. O
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5.3 HJB Equations in the Viscosity Sense
Recall that the value function v of the stochastic control problem in Section 4.2 is given by
T
v(t,z) = iniIE [g(X:tF’w’a) +/ f(s, X% a)ds|, (t,z)€[0,T] x RY
(1S t
The corresponding HJB equation is
1
-0V (t,x) + sup [—b(t,x, a)T DV (t,z) — Qtr((aaT)(t,x)D2V(t,x)) — f(t,z,a)| =0, (5.3.1)
acA

on [0,T) x R? with terminal condition v(T,z) = g(z), = € R%

Theorem 5.5

Suppose that Assumptions 4.5 and 4.6 hold. Let v be defined by (4.2.1). Then v is a
unique viscosity solution of (5.3.1) satisfying v(7’,-) = g on R%.

Proof. First note that v € Cy([0,7] x R%) by Assumption 4.5 and Lemma 4.8. Let ¢ €
C12([0,T) x RY) and (t,z) € [0,T) x R that is a global maximum of v — ¢ with v(t, z) = ¢(t, z).
For this ¢ we define the function ¢ on [0, 7] x R? by

d(s,y) = @(s,4)¢(s,y) + 2 sup (s, y)|(1—C(s,9),  (s,y) € [0,T] x RY,
(s',y")€[0,T]xR4

where ¢ € C§°([0,T] x R%) is such that 0 < ¢ < 1on [0,7] x RY, ¢ =1 on By(t,z), and ¢ = 0
on R?\ By(t,z). Then, ¢ € Cp*([0,T] x RY) and

(v =0)(s,y) = (v = )(s,9)C(s,) + (v —2 sup M) (5,9)(1 = C(s,9)) <0 = (v =) (t, ).

[0,T]xR4

Applying Theorem 4.7 and It6 formula for ¢, we see

t+h
¢><t,x>=v<t,x>SE[¢<t+h,X:f,;“>+ t f<s,X;vw’“,a>ds]

t+h
=K [¢(t, x) + / [8t¢(s, X554 {Ho(s, X5 D (s, X0, D2¢(s, Xﬁxa))] ds
t

t+h
+ De(s, X5™) o (s, Xﬁ’r’a)dWs]
t

for any a € A. Since o is bounded and ¢ € 02’2([0, T] x R?), the expectation of the Ito integral
term in the inequality just above vanishes. Then, dividing the both side by h and letting h — 0,

we obtain
Or(t, x) + H(t,x, D(t, x), D*¢(t,2) <0, a€ A,

whence
—Op(t,x) — in£ H(t,z, Dp(t,z), D*p(t,z)) < 0.
ac

Thus v is a viscosity subsolution.

Let ¢ € CY2([0,T] x R?) and (¢,z) € [0,7) x R? that is a global minimum of v — ¢ with
v(t,x) = ¢(t,x). As in above, we can modify ¢ to be in 05’2([0,T] x R%). By Theorem 4.7, for
any € > 0 there exists a® € A such that

t+h

u(t,x) + he > E [o(t + h, X2507) + s, X505 a5)ds| -
t
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The condition on ¢ and the 1t6 formula yield

€= %]E /tt+h [@50(37)(?@&6) n Has(S’X;g,x,ae’DSO(&X;@,O;)’DQSO(S’X;’LQE))] ds
ST Giplo XE7) it H (5, XE5 Dip(s, X254, D5, X0 s
t
Since D?¢ is uniformly continuous by the modification as in above, the function
s B inf H(s, X[, Dip(s, X007), Dp(s, X))

is continuous on [¢,t + h]. Indeed, by Assumption 4.5, ¢ € C; ’2([0,T ] x R%) and the uniform
continuity of D2, for €1 > 0 there exits § > 0 such that

ingH“(s,y,Dw(s,y),DQ@(s,y)) — ingHa(S’,y’,Dw(S’,y’),DQw(S’,y’))‘ <ep
ac ac

whenever |s — s'| + |y — 3/| < 6. From this and the arguments as in the proof of Lemma 4.8 we
find

’E inf H°(s, X;™, Dg(s, X;™), D%p(s, Xo™))
ac

_ E;g‘g Ha(8/7Xz;zﬂ,DQO(S/,Xz;z’a),DZSO(S,,X;;m7a))

1

§€1+C(52

C/

t’ b

sup E| XL — X7 P <e + ﬁls — &)< (1+C"ey
acA

whenever |s —s'| < 0 := 62 AJ, where C and C’ are some positive constants. Thus the required
continuity follows.
Then using the mean-value theorem and letting h — 0, we have

e > Orp(t, @) + inf H(t,w, Dp(t, ), D*p(t, ),
ac
whence letting € — 0,

_at@(tax) - ingHa(t,a;,Dgo(t,x),D2¢(t,x)) > 0.
ac

Thus v is a viscosity supersolution.
The uniqueness immediately follows from the comparison principle and the boundary con-
dition. O

Theorem 5.5 and the definition of viscosity solutions lead to the following corollary:

Corollary 5.6

Suppose that Assumptions 4.5 and 4.6 hold. If the function v defined by (4.2.1) is in
C12([0,T] x R?), then v is a unique classical solution of the HJB equation (4.3.1).

5.4 Approximation of Viscosity Solutions

Suppose that we want to prove that a given family {v,} of functions converges to a solution
v of the nonlinear PDE (5.1.1). In that case, of course we cannot execute a routine error
analysis by assuming a smoothness of v. Thus we are led to work in the framework of viscosity
solutions. Then, it is often difficult to know a priori that the limit lim,,_,. v, indeed exists and
is continuous if it exists. The notion of discontinuous viscosity solution is useful in handling
these technical problems.
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Discontinuous Viscosity Solutions

Let u be bounded function on [0, 7] x R?. We define the upper semi-continuous envelope u* of
u by
u*(t,z) = limsup wu(s,y), (t,z)€[0,T] xR,

(s,y) = (t,x)
(s,y)€[0,T]xRd

and the lower semi-continuous envelope u, of u by

u(t,x) = (}1;)13&1{) u(s,y), (t,z)€0,T] x R
(5,)€[0,T] xR

e u* is the smallest upper semi-continuous (u.s.c.) function that is greater than or equal to
U.

o u, is the largest lower semi-continuous (l.s.c.) function that is smaller than or equal to u.

Definition 5.7. Let F : [0,7] x R? x R x R? x % — R satisfy (5.1.3) and (5.1.4), and let
u: [0,T] x R = R be bounded.

(i) We say that u is a discontinuous viscosity subsolution of (5.1.1) if
F(t,z,0(t, ), 0p(t, ), Do(t, ), D*p(t, ) < 0

for all o € C12([0, T]xR%) and (¢, x) € [0,T)xR? such that Max (s )ef0,7) x4 (V" —9)(8,y) =
(v* —)(t,z) = 0.
(ii) We say that u is a discontinuous viscosity supersolution of (5.1.1) if
F(t,z,¢(t,x), 0p(t, ), Dp(t, ), D*¢(t,z)) = 0
for all p € CY2([0, T]xR?) and (¢, z) € [0, T)xR? such that Min(, ,\ef0,7) xR (Vs —9)(8,Y) =
(U* - 90)(75, ZZ?) =0.

(iii) We say that v is a discontinuous viscosity solution if it is both a discontinuous viscosity
subsolution and a discontinuous viscosity supersolution.

Under the framework of the discontinuous viscosity solutions, we still have the comparison
principle.

Theorem 5.8: Comparison principle

Suppose that (5.2.1) holds. Let U,V : [0,7] x R* — R be a bounded discontinuous
viscosity subsolution and a bounded discontinuous viscosity supersolution of (5.1.1), re-
spectively. If U(T,-) < V(T,-) on R then U <V on [0, 7] x R

Suppose that (5.2.1) holds. Suppose moreover that for a given bounded function u the upper
semi-continuous envelope u* is discontinuous viscosity subsolutions of (5.2.1) satisfying u* (7}, -) <
g on R? and the lower semi-continuous envelope u, is discontinuous viscosity supersolutions of
(5.2.1) satisfying u.(T,-) > g on R% Then by the comparison theorem, u* < u, on [0,7] x
RY. However, by definition, u, < u*, and so u* = u,. This means that u := u* = wu, is
a continuous viscosity solution of (5.1.1). Further by the comparison theorem for continuous
viscosity solutions (Theorem 5.4), the uniqueness follows. Consequently, u is a unique continuous
viscosity solution.
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Barles—Souganidis Method

The abstract method given in Barles and Souganidis [2] is a powerful tool for checking the
convergence of a given family of functions to a unique viscosity solution. Let F : [0,T] x R? x
R x R% x S — R. Further, let C be a class of bounded functions such that C? (R%) c C, and
{q)h}he(m} a family of operators such that ®* :C — C, h € (0,1].

Assume that F satisfies (5.1.3) and (5.1.4), and that the comparison principle holds.

Assumption 5.9

Let U,V : [0, T]xR% — R be a bounded discontinuous viscosity subsolution and a bounded
discontinuous viscosity supersolution of (5.1.1), respectively. If U(T,-) < V(T,-) on R%,
then U <V on [0,7] x R%.

Now consider the terminal value problem (5.1.1) with v(T,-) = g on R? where g € C.
Suppose that we construct the family {v"(t, )}he,1) €C, k=0,...,n, such that

’Uh(tk,flj‘) = (Ph[vh(tk—i-h )]($), k=0,...,n—-1, z € Rda
V" (tn,z) = g(z), =z €R™

Here, tj, = kT'/n for k = 0,...,n. We assume that {¢;}}_, is described by the parameter h and

that At :=T/n — 0, as h — 0.
Then we make the following conditions on our scheme:

Assumption 5.10

(i) Monotonicity:

(5.4.1)

o[g](2) < ®"[Y)(x), ze€R?
for any ¢, € C with ¢ < v on R%
(i1) Stability:

sup sup [v"(tg, )| < oo, k=0,...,n.
he(0,1] zeR?

(iii) Consistency I for any (t,z) € [0,T) x R? and ¢ € 02’2([0, T] x RY), we have

1
im = (6(s,y) +c— @[p(s + At ) +dl(y))

h—0, c—=0

= F(t,l‘, 8t¢(tax)7 ¢(t,$), D¢(t,x),D2¢(t,x)) =0.

(iv) Consistency II: for x € R?,

lim ol (¢ =g(x).
ey ) = 9

Here is our main result in this section.
Theorem 5.11

Suppose that Assumptions 5.10 and 5.9 hold. Let v*, h € (0,1], be as in (5.4.1). Then,
there exists a unique continuous viscosity solution v of (5.1.1), and for any ¢ € [0, T,

li ht = ot
h—>01,12€—>tv ( k7w) v( 756)7

uniformly on any compact subset of R,
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Proof. We consider

o(t,z) = limsup v"(t,y), (t,z)€[0,T] x R?

(tgy)—(t,x)
h\0

and show that ¥ is a discontinuous viscosity subsolution of (5.1.1). Let ¢ € C12([0,7] x R%)
such that ¥ — ¢ has a global maximum at (¢,z) € [0,7) x R™ with v(t,z) = ¢(t,x). As in the
proof of Theorem 5.5, we may assume that ¢ € 02’2([0, T] x R%). Then, take r > 0 such that

@ 9)(s,y) < @—9)(t2), (5,9) € By(t,x) € [0,T) x R™.
where B, (t,z) denote the closed ball at (¢,2) with radius r. For (s,y) € B,(t,z) set

B(s,y) = (s,y) + s — t|* + |y — z|*.

It follows that (¢,z) is a strict maximum of ¥ — ¢ on B,.(t,x). Also, for (s,y) outside the ball,
we choose ¢ so that @(s,y) > 2suppe(g 1 |v"(s,)| and that @ is still in C’;’z([O,T] x RY). Thus
(t,z) is a global strict maximum of 7 — ¢. By abuse of notation, we write ¢ for @.
By definition of T, there exist hm, km, Gm, m > 1, such that (t,;m,gm) € B,(t,x) and as
m — 0o,
hm =0, (t;, . Gm) = (t,2), " (t; ,Gm) — O(t,2).

Take k,,, and y,, so that

(" = @)t ym) > max  sup (V"7 = 9)(thy) — (At (5-4.2)
=0,1,.m e

where (At),, = At for h = hy,,. The sequence (tx, ,ym), m > 1, can be taken from the bounded
set B,(t,x), so there exists a limit point (£,%) € B,(t,z) possibly along a subsequence. Thus,
denoting ¢, = (v — ©)(ty,., ym), We have

0=®—¢)(t,z)= lim (V"™ —@)(t; ,jm) < lim inf ¢, < limsup e < (0 — @)(F, 7).

m—oo m—00

Since (t,x) is a strict maximum, we deduce that (f,#) = (¢,z). Therefore, it follows that
(tk,,, Ym) — (t,x) and ¢, — 0.
By (5.4.2), for any y € R?,

C(thpt1,Y) + em + (A1), > 0" (t, 11, Y).

Thus, using the monotonicity property in Assumption 5.10,

1
A8 Pt AL e+ (A7)t )
1 1
> v (tops Ym) = (P(thps Ym) + cm + (At)?n) = 2(At)m.

= At At
Combining this with the consistency property in Assumption 5.10, we find that
F(t,x,0ip(t, @), o(t, ), Dp(t, x), D*(t, x)) > 0.

Thus v is a discontinuous viscosity subsolution of (5.1.1).
By a similar argument, we can show that

o(t,z) = liminf o"(tg,y), (t,z) € [0,T] x RY

(tgy)—(t,z)
h\0

is a discontinuous viscosity supersolution of (5.1.1). Since (T,-) = v(7T,:) = g, Assump-
tion 5.9 now implies that v < v. However, by definition, ¥ > v. Hence we obtain v = wv.
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This means that v := 7 = v is a discontinuous viscosity solution of (5.1.1). From v(t,z) =
lmg, ) (¢,2) iMa—0 v"(ty,y), the continuity of v follows. Hence v is a continuous viscosity
solution of (5.1.1).

Now take an arbitrary compact set KX C R%. Further fix ¢ € [0,7] and € > 0. Then, by the
uniform continuity of v(t,-) on K, there exists 9 > 0 such that |v(t,y) — v(t, 2)| < € whenever
ly — z| < dp. Moreover, for any = € K there exist 6(x) > 0 and h(x) € (0, 1] such that

|vh(tk>y) - ’U(t,.ﬁ[))| <&, yE Bd(x)(x)v h < h(.’IJ),

where t — t as h — 0. We may assume §(z) < do for all z € K. Since { B, () }zex is an open
coverage of K, there exist z1,...,x; € K such that K C UleB(;(xi)(xi). Thus for any z € K we
have [v"(ty, z) — v (t,2;)| < € for some i = 1,..., k whenever h < hg := min{h(z1),...,h(zy)}.
This means that |v" (¢, ) —v(t, 2)| < [v*(tk, ) —v(t, 2;)|+|v(t, z;) —v(t, ¥)| < 2¢. Consequently,

sup [0 (tg, x) — v(t,z)| <2, h < he.
zeK

Thus the required uniform convergence follows. O
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CHAPTER O

Numerical Methods for Nonlinear PDEs

6.1 Introduction

The objective of this chapter is to discuss numerical methods for the terminal value problems
of the parabolic PDEs:

—0p(t,x) + F(t,z,v(t, z), Dv(t,z), D*v(t,x)) =0, (t,z) € [0,T) x RY,

(6.1.1)

o(T,z) = f(z), =€ R,
where F : [0,7] x R x R x R? x S — R. As seen in the previous chapter, under suitable
conditions including the ellipticity condition on F, the terminal value problem (6.1.1) has a
unique viscosity solution v.

Most popular numerical method is the finite difference method. This is powerful and math-
ematically harmless in the case of d = 1. However, its time complexity is growing exponentially
as d becomes large, and strong conditions need to ensure the rigorous convergence for d > 2.
We refer to [8] and Ieda [12] for the analysis of the finite difference method.

As an alternative, we present kernel-based collocation methods. To explain a basic idea, let
O c R? be a set on which functions to be approximated, I' = {m(l), e ,:c(N)} be a finite subset
of O, and ® : O x O — R. Suppose that the matrix A := {@(x(i),x(j))}i7j:17,_.7N is invertible.
Then for any f: O — R, the linear equation

Aa = f’r
has a unique solution a = (ay,...,ay)’ € RY, where flr = (f(a:(l)),...,f(a:(N))T e RV,

Namely, for f : O — R, the function

1f\p (z x(j)), xz e,

Mz

]:1
interpolates f on I', where (§); denotes the j-th component of £ € RY. This suggests

@)~ I(f)(@), €.

Now, by a time-discretization of (6.1.1),

v(th, ) ~ V(tper, ) — AtF(tpyr, 2, v(tgr1, ), Do(tpgr, z), D?v(tgyr, x)), x € O,
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where t, = kT/n, k =0,1,...,n, and At = T/n. Then by replacing the derivatives of v(tx11,-)
with those of I(v(tg+1,)), we obtain
U(tk? :L') = U(tk-i-l? l‘) - AtF(tk—l—la €z, U(tk-l-la :E)v DI(’U(tk+1, )(ZL‘), D2I(U(tk+1a ))(ZL‘)), zeO.

This leads to a recursive equation backward in time that is determined by the collocation points
{to,...,tn} x I'. We analyze this method in details in Section 6.3.

As preliminaries, the next section is devoted to the review of the theory of the function
approximations above. We refer to [29] for a complete account.

6.2 Function Approximations with Reproducing Kernels

Let O = {z € R?: |z — &|p < R}, an open ball centered at some & € R? with a radius R > 0
defined by some Euclidean norm | - |o in R?.

As a kernel ® as in Section 6.1, we restrict ourselves to the class of radial and positive definite
functions.

Definition 6.1. We say that ® : O — R is a positive definite function if for every ¢ € N, for all
pairwise distinct yi,...,y, € O and for all a = (o;) € R®\ {0}, we have

l
Z aiajq)(yi — yj) > 0.
ij=1
Moreover, ® is said to be a radial function if ®(-) = ¢(| - |) for some ¢ : [0,00) — R.

For f € L'(R?) the Fourier transform of f is defined by

fle)=@m 2 | f@e YT e, € R

Theorem 6.2

Suppose that ® € C(R?) N LY(RY). If ®(&) > 0 for any £ € R%, then ® is positive definite.

Proof. Since ® € C(R?) N L'(RY), we can apply the Fourier inversion formula (see, e.g., [35]),
d(z) = (2m)"Y? / D(&)eV 1 eae, x e R
R4

Thus, for every ¢ € N, for all pairwise distinct y1,...,4, € O and for all a = (a;) € RY, we have

Z Z
D i ®(y; —y;) = (2m) "4 /Rd 3 avayeY 1) e () dg

i,j=1 i,j=1

= (2m) %2 /Rd ‘

Now suppose that Zf,j:l a;oj®(y; —y;) = 0. Then, since ® > 0, we have Zle eV i€ =
0, d¢-a.e. Hence, by continuity, Zle aie\/jly;r € = 0 for any ¢ € R% Fix an arbitrary i €
{1,...,¢} and consider f € C§°(R?) satisfying f = 1 on {z : |z — 3| < £/2} and f = 0 on
{x : |z —y;| > €}, where € > 0 is sufficiently small such that f(y;) = 0 for every j # i. Then by
the Fourier inversion,

2

D(€)de.

/A4, T
eV i
1

1=

V4
a; =Y ajf(y;) =0.
j=1
Thus the theorem follows. O
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Ezample 6.3 (Gaussian kernel). Consider the case where ®(z) = el 2 e R o > 0. It is
straig/l\ltforwa{d to see that G(z) := e*‘x|2/2, z € RY, satisfies G = G on R?. From this it follows
that ®(¢) = G(1/v2a)(2a)~%? > 0. Hence ® positive definite on R?.

Ezample 6.4 (Inverse multiquadric kernel). Consider the case where ®(z) = (c?+|z|?) 7, z € RY,
¢ >0, 8> d/2. Then we confirm by an elementary analysis that

~ €[\ g
50 =1 (&) Kupoalele) >0, acR,
where

o
1/y = 25—1/ Pt tdt,
0

and K,(z), z > 0, is the modified Bessel function of 3rd (2nd) kind given by

K,(z) —/0 e=#o50(®) cosh(vt)dt.

Hence ® positive definite on R,
Ezample 6.5 (Wendland kernel). Consider the case where ®(x) = ¢4 (|z|). Here,

1
/ s(1—s)(s> =72 tds, 0<r<1,
¢d,T(T) = T
07 r> 1,

where ¢ = max{k € Z : k < d/2} + 7 + 1. It is known that ® is positive definite on R? and in
C? (R?). See [29]. For example,

¢1,2(r) = max{l — 7,0} (8r% + 51 + 1),

p2,5(r) = max{1 — r,0}12(2048r° + 2697r* 4 1644r> + 5661 + 108r +9),
where = denotes equality up to a positive constant factor.

e One of advantages in using Wendland kernel, which is complicatedly constructed and has
a limited smoothness, is that the corresponding interpolation matrix A is sparse.

e An another advantage is that a function space where the approximation works is relatively
easy to handle.

In what follows, let ® : O — R be a fixed positive definite function, and we provide a
theoretical validation of the approximation I(f) ~ f.

Theorem 6.6

There exists a unique Hilbert space Ngp(O) C C(O) with inner product (-, -)nr (o) such
that

(i) ®(-—y) € No(O) for all y € O.

(i) f(y) = (f, 2 —y))ny(o) for all f € Np(O) and y € O.
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e We call N3(O) the native space.
e ® is said to be a reproducing kernel for Ng(O).

Ezample 6.7 (Gaussian kernel). In the case where ® is given by the Gaussian kernel,
Na(RY) = {f Rl R ’ /Rd Pl 2elé /o) ge < oo}
and there exist c1,c2 > 0 such that for f € Ngp(R9),
e /R NF@PT g < 1113, ey < 2 /R F@Per e,

Here, for f € L'(R?), the function ]?is the Fourier transform of f, defined as usual by
F&) = @m | fla)e V" e, € R
Rd

Ezample 6.8 (Inverse multiquadric kernel). In the case where ® is given by the inverse multi-
quadric kernel,

No®Y) = {789 s | [ IFOPIE /Kopa-s(elePic < oo
and there exist c¢1, co > 0 such that for f € N@(Rd),

i /R NFOPIEN/ Kajap(cléP)de < 1113, ray < c2 /R FEPIEN /Ky pelel)d

Here, K, is the modified Bessel function of the third kind of the order v.
Ezample 6.9 (Wendland kernel). In the case where ® is given by the Wendland kernel,

No®Y) = {7589 s | [ IFOR -+ 6Py e <
and there exist c1,ca > 0 such that for f € Np(R?),
Cl/ ’f 1 + |§’ )T+(d+1 /2d§ < ||f||j\/ &%) < 62/ |f (1 + ’€|2)T+(d+1)/2d€.

That is, the native space is given by the L?-Sobolev space of the order 7 with equivalent norm.
Moreover, if 7+ (d + 1)/2 is a positive integer, then

NoRH =< f:RESR > /|Do‘f VPdx < oo

lo|<T+(d+1)/

We will show that the approximation I(f) ~ f works on the native space and the error can
be described in terms of || f[| a0y == (f, f) /2 ) and

Az :=sup min |z —zV)|.
zc0J=1..N

That is, Az is the Hausdorff distance between I' and O.

Theorem 6.10

Suppose that ® € C?(0). Then there exists a positive constant Cs,0, only depending on
® and O, such that for any f € Ng(O),

|f(z) = I(f)(z)| < Co,0Az|f|Np(), = €O.
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Figure 6.2.2: Approximation errors of e~ #7172l (4 = 2). Wendland kernel ¢g4 for N =

1000, 2000, ..., 10000. T is generated by the quasi random number of Halton type on [—2,2]%.
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Outline of the proof.
Step (i). Observe '
sup | f(z)] € max |f(x(3))|+KfA:c

for any Lipschitz continuous function f on O where

Ky = sup @ WL
z;ﬂff |z — y

Step (ii). We will see that for any f € Np(RY) we have ||f — I(f)lInvg o) < I fllnp (o) and there
exists a constant C' > 0 such that

Ky <Clflnso)-
O

If @ is of Gaussian or inverse multiquadric types, then we can obtain an arbitrary order of
convergence.

Suppose that ® is one of the Gaussians or the inverse multiquadrics. Let £ € N. Then
there exist a positive constants dy and C such that for any f € Ng(O), z € O, and
Ax < 6y,

|f(x) = I(f)(@)] < C(A)"|| flln (0)-

In the case of Wendland kernels, we have the following:

Theorem 6.12

Suppose that ® = ¢4 -(| - |) is the Wendland kernel. Then there exist positive constant &g
and C such that for any f € Ng(O), x € O, and Az < §y,

£ (@) = I(f)(@)] < C(AZ)™ 2| f iy 0)-

6.3 Kernel-Based Collocation Methods

Construction

In this section, the function ® is assumed to be the Wendland kernel ®,, divided by some
positive constant with fixed 7 > 2. Let h > 0 be a parameter that describes approximate

solutions, I' = {z(, ..., 2™} ¢ (=R, R)¢ with R > 1, and {tg,...,t,} the set of time grid
points such that t; = kT /n, k = 0,...,n. Then think of the interpolant

N
V't ) =Y (ATp)0( — 21)), zeRY, (6.3.1)
j=1
of v,}g” = (v,};l, e ,v,};N)T € RY to be specified below. Substituting this into the time discretized

equation
U(tk+1, {L') - U(tka l‘)
le+1 — Uk

~ F(tk-‘rla Z; v(tk-i-lv ))7
we derive the following equation for {v}}:
Upry — R = (bt — te) Fegg(iy), k=0,...,n—1, j=1,...,N.
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Here, for any C?-function ¢ on R%,
F(t,x;0) = F(t,2,0(x), Dp(x), D*p(z)), = €RY,
and Fy, ;(v) = F(tg,z9);0"(ty,-)). The terminal condition leads to v274 = f(zU),j=1,...,N.

J
Thus, denoting Fj(v}) = (Fx1(v}), ..., Frn(vi)T, we get

(6.3.2)

flr

{U,Z:U]}QL_;_l_(tk-l-l_tk)Fk—i-l(vZ—l—l)? k=0,....,n—1,
h
Un,

Consequently, we define the function v" (¢, x), a candidate of an approximate solution of (6.1.1),
by (6.3.1) with {v!'} determined by the equation (6.3.2).

Remark 6.13. The linearity of the interpolant yields, for z € R?,
V' (tky ) = V" (trg1, @) = (tepr — ) L(Fra (Vi) (@),

where by abuse of notation we denote I(£)(z) = Z;V:l(A_lg)jtl)(x — z0)) for £ € RV,

Let us describe our collocation methods in a matrix form. To this end, we assume here that
the nonlinearity F' can be written as

F(t,z;0) = sup H(t,z, (x),b(x,m)" Dp(), tr(a(z, 1) D*p(x))),
TeK
where K isaset, b: RIx K - R% a:R*x K - S% and H:[0,T] xRIx RxRxR = R. It
should be noted that the nonlinearities corresponding to Hamilton-Jacobi-Bellman equations are
represented in this form. Then, consider the function ¢Ell£ (r) == ¢}, (r)/r, r > 0. By definition
of ¢4 -, the function qbgl is continuous on [0, c0) and supported in [0, 1]. With this function, we

have
Oy, () = oW (|22, = (21,...,14) € RL

Thus,
By(r) := (bg(x@),w)aw@(x(i) - xU))) = Qu(m)(GpA1 — A1Gy),

1<i,j<N
where Qg(m) = diag(bg(x(l),ﬂ),...,bg(:c(N),Tr)), Al = {d)gl(\a:(i) — x(j)|)}1§i7j§N and Gy =

diag(azgl), .. ,CCEN)). Hence,

R 3 (by(',7)(8/0:,)1(€) (2 )h1<isy = Be(m) A€

Similarly,
2 a(a) = | S llal + 62 lal)at, (€=m),
ot 6 (|12 zme, 0 #m),
where O
2 1d¢d,’r
()= ——2T(r), >0

Notice that gbffl is also continuous on [0, 00) and supported in [0, 1]. Thus,

Bp(m) == {amg(m(“,w)aimmfb(ﬂf(i) N x(j))}l<ij<N

is given by
B () = Quum(7) (A1 + G2, Ay — 2G, AsGyy + G2))
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and for m # ¢,
Bmﬁ = me(ﬂ-)(GmGZAZ - GmA2GZ - GKAZGm + AZGmGﬁ)

with Ay = {qﬁgjﬂx(i) — :L‘(j)|)}1§7;’j§]v and Qe(m) = diag(amg(x(l),w), .. .,amg(l‘(N),w)). Con-
sequently, we obtain

d d
Fy(0f) = sup H | ti,a, <Z Bm(W)A_lv’£> A S Buum Ao

T m=1 j m,l=1 .
J

Convergence

We study a convergence of the approximation method described above under the conditions
where (6.1.1) admits a unique viscosity solution.

Assumption 6.14

There exists a positive constant Cy such that the following are satisfied:
(i) Fort €[0,T], € R, 2z € R, p € R, and ,7' € S¢ with v > v/,

F(t,z,z,p,7) < F(t,z,2,p,7).

(ii) There exists a continuous function Fy on [0, 7] such that
|F(t, 2, 2,p,7)=F (2", 2, p',7)| < [Fo(t)=Fo(t')|+Co(|la—a'|+]z—2'|+[p—p'|+]7='])
for t,t' € [0,T], z,z’ €RY, 2,2/ €R, p,p’' € RY, and v, € S

(iii) For t € [0,T], z € RY, 2 € R, p € R%, and v € S¢,

|E'(t; 2, 2,p,7)| < Co(1 + |2] + |pl + [7])

(iv) The function f is Lipschitz continuous and bounded on RY,

We assume that the following comparison principle holds:

Assumption 6.15

Let U,V : [0, T]xR? — R be a bounded discontinuous viscosity subsolution and a bounded
discontinuous viscosity supersolution of (6.1.1), respectively. If U(T,-) < V(T,-) on R,
then U <V on [0,T] x R%.

To discuss the convergence, set At = T'/n and consider the Hausdorff distance Az between
I' and (—R, R)?, and the separation distance Aoz defined respectively by

, 1 . :
Aiz= sup min |z —2z|, Ayz=Zminl|z® — 20
2e(—R,R)d i=LN 2 i#j

Then suppose that At, R, N, Az and Asz are functions of h. In what follows, #/K denotes
the cardinality of a finite set /.
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Assumption 6.16

(i) The parameters At, R, N, and Az satisfy At — 0, R — oo, N — oo, and Ajz — 0
as h 0.

(ii) There exist c1,ca,c3,c4 and A, positive constants independent of h, such that for
any ¢ =1,..., N,

d
# {] S {1, .. .,N} : |(A_1)Z'j’ > C1 (A]g\;l?) } < 02(A2$)_)‘d,

and that
c3(Agz)~HVE < RYZ < ¢4(Ay2)~(=3/2)/4,

e It can be seen that Agz < Ajx holds (see Chapter 14 in [29]). Thus the condition Ajz — 0
implies Agx — 0 as h N\, 0.

e It seems to be nontrivial to find a simple sufficient condition for which Assumption 6.16
(ii) holds. However, as suggested by the numerical experiments in the next section, we
conjecture that Assumption 6.16 (ii) does hold under some additional conditions.

Now we are ready to state a convergence result of our collocation methods.

Theorem 6.17

Suppose that Assumptions 6.14—6.16 hold. Suppose moreover that 7 > 3. Then there
exists a unique continuous viscosity solution v of (6.1.1), and we have

o (b, ) = v(t, z),

as t;, — t and h \, 0 uniformly on any compact subset of R<.

e If I' is quasi-uniform in the sense that
esRN™Y4 < Az < egRN™YY RNV < Apa < ¢,RN~Y/4

hold for some positive constants cs, cg, ¢5, ¢5, then a sufficient condition for which the latter
part of Assumption 6.16 (ii) holds is

C7N(1—1/(1+2d(1+x))5 <R< CSN(l—d/(d+27—3))§

with 7 > 3/2 + (1 + \)d? for some constants c7,cg > 0.

The rest of this section is devoted to the proof of Theorem 6.17. In what follows, by C we
denote positive constants that may vary from line to line and that are independent of h and
(t,xz) € [0,T] x R%.

The following result is a stronger version of the sampling inequality (see, e.g., Wendland and
Rieger [30]). For a proof we refer to [22].

Suppose that Assumption 6.16 and 7 > 3 hold. Then, there exists hg > 0

sup  sup  |DI(g)(@)| < C max_|g(z?)], |afs < 3.
0<h<ho xe(—R,R)? 3= g000p N
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The previous lemma leads to the stability of v".

Lemma 6.19

Suppose that Assumption 6.16 and 7 > 3 hold. Then there exist a constant C; € (0, 00)
such that for h < hg we have the following;:

(i) max|y),<3|D*"(ty,z)] < Cifor k=0,...,n—1and z € (—R, R)%.

(i) max|q),<3 [D*v"(tp1, %) — D*0"(tg,2)] < C1At for k = 0,...,n — 2 and = €
(—R,R)%.

Proof. For |a|; <3 and z € (—R, R)%, it follows from Assumption 6.14 and Lemma 6.18 that

| D" (ty, )| < [D0" (tgi1, )| + CAL max > D (g, ).
=1L
[Bl1<2

This leads to, for k=0,1,...,n—1,

max  sup | D%"(tg,x)] < (14 CAt) max  sup  |D%"(tpyy,z)),
a1 <3 ze(— R, R) |0 <3 ze(—R,R)

whence

max  sup |D%"(tg, )] <C max sup |D"(tn,z)| < C sup |f(z)|.
lal1 <3 ge(—R,R)4 lal1<3 ze(~R,R)d zER?

Here we have used Lemma 6.18 again to derive the last inequality. Thus the claim (i) follows.
Lemma 6.18 and the linearly growth condition on F' imply

|n‘1ax | D" (ty 41, x) — D" (tg, x)] < CAt max Z | DAV (g1, 25)).
« 1<3 J=
B 1Bl1<2

=1,...

Applying the claim (i) to the inequality just above, we obtain the claim (ii). O

Next, we show that for bounded and Lipschitz continuous functions, the kernel-based in-
terpolation still effective. We will use the Lipschitz space C%'(R) that collects all function
u : R — R such that

u(z) — u(y)]

|lul| co1(ray := sup |u(z)| + sup ————— < 0.
® reR fc,yile ‘JJ - y‘
zHy

Then we obtain a bound of the interpolation error for functions in C%!(R?), described in terms
of Ayz, R, 7, and k :=min{m € Z:m > 7+ (d+1)/2}.

Suppose that Assumption 6.16 and 7 > 3 hold. Then, for u € C%1(R%),

b fu(@) — Iw)(@)] < Cllullgns oy (Ar) &V EHR RHECE) - <
z€(—R,R)?

Proof. As shown in [22], under Assumption 6.16 and the condition 7 > 3, for any multi-index «
with |a|; < 2 and v € H™H4+D/2(R9)| we have, for almost every z € (—R, R)?,

|D*u(x) — D*I(u)(@)] < C(A12)™ 2710 ]| yrsainy oy, B < ho, (6.3.3)
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for some hg € (0,1).
Let p be a C*-function on R? with compact support and unit integral. For ¢ > 0, set
pe(z) = e %p(x/¢), x € R%. Then, the function

u(r) = /Rd u(z —y)p=(y)dy = /Rd w(x —ey)p(y)dy, x€RY,

satisfies
1D ()] < Cllullgoa@ae ™1, u(@) — uf(@)| < Cllullcoa gaye-

This and Lemma 6.18 yield, for « € R?,

u(z) = I(u)(2)] < |u(z) — v (2)] + [u(z) = I(u®) ()] + [1(u)(z) — I(u)(2)]
< |u(a) — uf(z)| + |[uf(z) — I(u®)(z)] + Cj:ml?%N s (29)) — u(z)]

< Cllullgoamaye + |u*(x) = I(u®)(@)]-

Now consider the function @ given by @°(z) = u®(x)¢(x/R), where ¢ is a C*°-function on RY
with compact support such that 0 < ¢ <1onR% ¢ =1on {|z| <1},and { = 0on {|z| > 1+¢}
for some ¢ > 0. Then, by (6.3.3), for 2 € (=R, R)¢,

[u (2) = I(u®) ()] = @ (2) — 1(a°) ()] < C(A12) V2| | grrevcanr 2 ay
< (A1) V|| ey < C(A12) 2l o raye ™" RY2.

This leads to
u(x) — I(u)(@)] < Cllullgo(ga)(e + (Arz) H/2RY27F),

Minimizing the right-hand side in the inequality just above over € > 0, we obtain the claim of
the lemma. O

Let C; as in Lemma 6.19 and fix 6 € (0,1/6). For § > 0 define
D= {(pﬁ) e R x 8% [pl, |y| < Cl}, Xs0 = {w eR?: fw| < 5_9}.

Then we have the following key lemma. For a proof we refer to [21].

Lemma 6.21

Suppose that Assumption 6.14 holds. Let @ C R? be open and bounded. Then there
exist 07 € (0,00) and 3 € (0,00) such that for (t,z,2) € [0,T] x O x R, C3-function ¢ on
O with ., <35upyeco [D%(y)| < C1, and § € (0, 61],

\m) _ §F(t,z, % De(a), D%o(x)

— sup inf |p(z+ \/gw) —Vow p— éwayw —0F(t,x, z,p, ’y)] ) < O 8,
(p7)eD wEXs0 .

Proof of Theorem 6.17. Basically, we use the Barles-Souganidis method. In our case, however,
the approximation operator is not monotone. So we modify the method using the previous
lemma. We will show that

v(t,x) = tlinrisup oty y),  (t,x) €[0,T] x RY,
Lot Yoz

AN}

is a viscosity subsolution of (6.1.1). Notice that v is finite on [0, 7] x R? by Lemma 6.19.
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Fix (t,z) € [0,T) x R? and let ¢ be a C3-function on [0, 7] x R? such that ¥ — ¢ has a global
strict maximum at (¢, z) with (7 — ¢)(t,z) = 0. By definition of v, there exist hp,, km, Ym such
that as m — oo,

Bn = 0, (tr ym) = (t,2), 0" (tg,  Gm) = O(t, ).

and that

em = (0" = Q) (tip,ym) > sup (0" —@)(s,y) — (A1) (6.3.4)
(s,y)G[O,T)de

Here, (At),, = At defined by hy,. In particular, we have ¢, — 0. It follows from (6.3.4) that
for any y in a neighborhood of z we have

P(tht1,Y) + Cm + (ADF > 0" (b, 11,)- (6.3.5)

Now rewrite v"(t1,,, ym) as

Uhm (tkm7 ym) = Uhm (tkm+17 ym) - 6mF(tkm+17 Ym; ,Uhm (tk‘m+17 )) + 6771‘]7717 <636)

where 6, =t +1 — tk,, and

T = F (b1, Y3 0"ty 15 7)) = T (b 50" (b)) (Um) -

By Lemma 6.19, we have

lim [0 (tg, 1, Ym) — "™ (tg, , Ym)| = 0. (6.3.7)

m— 00

Further, Assumption 6.14 and Lemma 6.19 imply that F(t,-;v"(¢,-)) is bounded and Lipschitz
continuous. This together with Lemma 6.20 guarantees J,,, — 0 as m — co. With the represen-
tation (6.3.6), we apply Lemma 6.21 for the family {v" (¢, 11,-),@(tx, +1,)}m>1 and use the
inequality (6.3.5) to get, for any sufficiently large m,

phm (tkm , ym)

)
< sup inf [vhm (tk, 415 Ym + V Omw) — Vomp w — ZwTyw
(py) €D WEXsm 0 2

- 5mF(tkm+17 Ym Uhm (tkm+17 ym))p7 7)] + 5m<]m + C(srln+6

. 1)
< sup inf [‘P(tkm—&—la Ym + VOmw) — \/SmpTw — gmwva
Dy

- 5mF(tk‘m+17 Ym, Uhm (tk’m-‘rlv ym),p7 ’7)] +cm + 57?;1/2 + 5me + 057%:_/3

< So(tkm—i-la ym) - 5mF(tkm+17 Ym, Uhm (tkm+17 ym)v Dw(tkm—‘rla ym)7 DQQD(tkm+1, ym))
+ em + 022 + 0o + COLP.

This together with (6.3.7) and v" (tg,ym) = cm + @(tk,,, Ym) leads to

1
- (57 (So(tkm-i-l? ym) - Qp(tk‘mvym))
m
+ F(ts Y 0" (s Yim)s DO (ks Ym)s D> @ty yim)) < 0(1)
for any sufficiently large m. Sending m — oo, we have

—Oyp(t,x) + F(t,2,0(t,2), Dp(t,z), D*p(t, z)) <0,

whence the subsolution property at (¢, z).
In the case (¢,z) € {T} x R?, from Assumption 6.14 and Lemma 6.20 we have o(t, ) = f(z).
Therefore v is a viscosity subsolution of (6.1.1).
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A similar argument shows that

w(t,) = Jiminf v"(tg,y), (t,2) € [0,T] x R?

N0
is a viscosity supersolution of (6.1.1). By Assumption 6.15, we obtain ¥ < v. This and 7 > v
means U = v. From this the conclusion of theorem follows. O
Numerical examples

Here we consider the following equation for our numerical experiments:

1
— 0w — = sup tr(6?D*) + G(v,Dv) =0, (t,x)€[0,1)x R,
0<a<1/5

d
v(l,x) = sin <1+in> , X = (a:l,...,a:d)T e R%,

i=1

where G(z,p) = (1/d) 2?21 pi — (d/2)infocy<1/5(0%2) for z € R, p = (p1,...,pq)" € RL Tt is
straightforward to see that the unique solution is given by v(¢,z) = sin(t + Zle x;).

We apply our collocation method to this equation in the cases of d = 1 and d = 2. Here, for
each d = 1,2, we choose the parameter 7 = 74 of the Wendland kernel as 71 = 4 and 5 = 15. We
construct the set I' = 'y of collocation points as the equi-spaced points on [— Ry, Rd]d, where

Ry = ygNV/a-1/(@+27a=3)
Here, 1 = 1/4 and v = 1/5. To validate Assumption 6.16 (ii) numerically, for each d, we plot
H(N) = a7 (N) = max#{j : [(A71)y] > 5(Agz)?/N}

and 2(Agx) M4 for N € Ng. Here Ny = {30,40,...,500}, Ny = {102,202,...,100%}, \; = 3/2
and A2 = 9/4. Figures 6.3.1 and 6.3.2 show that «(N) < 5/Agx for all N € N; and N € Ny,

100 150 200 250 300 350 400 450 500
Mumber of collocation points

Figure 6.3.1: Graphs of ¢ and 2(Asx) ¢ as functions of N in the case of d = 1.

99



000
14000 T T T T T T T

2000 L e —
12000 e —

0000 - —
10000 o

8000 g
6000 |- g
4000 -

2000 - o -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of collocation points

Figure 6.3.2: Graphs of + and 2(Asz)~*? as functions of N in the case of d = 2.

respectively. Thus, for each d = 1,2, we can see that Assumption 6.16 (ii) seems to be satisfied
with ¢ =5, cg = 2, and A = A4 for the sequence of the tuning parameters defined by N € Nj.

To implement the collocation method, we use the matrix representation, by noting infy<,<1 /5 (c%y) =
—(1/5)? max(—y,0), with the uniform time grid. We examine the cases of n = 2% and n = 2!2.
Figures 6.3.3 and 6.3.4 show the resulting root mean square errors and the maximum errors,
defined by

ax error gel‘or,%i)é,...,n v ( uf) v( uf) s
1 n
2
RMS error = m E E ’Uh(tiag) - U(thg)’ )

€€l i=0

respectively, where I'y is the set of 10%evaluation points constructed by a Sobol’ sequence on
[—1,1]¢ for each d = 1,2.
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Figure 6.3.3: Max and RSM errors for d = 1 with n = 28,212,
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Figure 6.3.4: Max and RSM errors for d = 2 with n = 28,212
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APPENDIX A

Review on Probability Theory

This chapter reviews basic facts about measure theoretic probability. We refer to, e.g., [31], [40],
[36], and [38] for details.

Probability spaces

Definition A.1. Let ) be an arbitrary set. A family F of subsets of €2 is said to be o-algebra
or o-field if the following are satisfied:

(i) 0 e F.
(ii) If A € F then A° € F. Here, A°=Q\ A.
(iii) If Ay, Ag,--- € F then |J,2, 4, € F.

e We say that a set A € F is F-measurable or simply measurable. Further, we call A € F
an event.

e The pair (Q,F) is called a measurable space.

Ezample A.2. For any set €, the set F of all subsets of §, i.e., F = 29 := {A:ACQ}, isa
o-field.

Proposition A.3

Let (€2, F) be a measurable space, and let 4; € F, i = 1,2,.... Then, the following sets
are all F-measurable:

n n oo

UlAi, ﬂlAi, QAi, AU4. UNA-
= = =

n=1i=n n=1i=n

Remark A.4. Basically, in probability theory, a subset of 2 is interpreted as randomly occurred
phenomenon and is a mathematical object for measuring how probable is its occurrence. Then
the o-algebra F is a class of “well-defined” random phenomenons. For example, suppose that
for well-defined phenomenons A and B we are in a position to study the phenomenon that
both occurs and the one that A occurs but B does not. Then it is natural to require these
phenomenons are also well-defined. Namely, it is convenient for us to have AN B, AN B¢ € F
whenever A, B € F. For this purpose, we require a collection of random phenomenons to
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be a o-algebra. In other words, since o-algebras are closed under various set manipulations,
complicated events can be well-defined objects to be studied. On the other hand, recall from
Example A.2 that the totality of all subsets of {2 is always a o-algebra. Thus one may naturally
ask: is it sufficient to always adopt 2 as the underlying o-algebra? Are there needs to consider
possibly different o-algebras? We refer to, e.g.,[31] for a complete answer to this question. Here
we only mention that there exists a subset of [0, 1] such that the Lebesgue measure (see below)
of the set cannot be defined. In general, we need to choose appropriate o-algebras depending on
problems. However, the choices of actually used o-algebras are limited, so application-oriented
reader may not be discouraged with such technicality in measure theory.

For a family G of subsets of (2, we set
= ﬂ{?—l : o-algebra on Q s.t. G C H}.

This is the minimum o-filed containing G.

Ezample A.5. Let A € F. In the case of G = {A}, we have o(G) = {0, A, A°,Q}. We usually
write o(A) for o({A}).

Let € be a topological space, and let G be the set of all open sets in Q. Then, we call o(G)
a Borel o-algebras on €, and write B(Q) = o(G). We may take Q = R", [a, b] for examples. The
notation B([a, b]) is often abbreviated as Ba, b].

Definition A.6. A set function P : F — [0, 1] is said to be a probability measure on (€2, F) if
the following conditions are satisfied:

(i) B(0) = 0, P(Q2) = 1.
(i) For Ay, Ag,--- € F with A;NA; =0 (i # j), we have

P (00) S
i=1 =1

e We call the triple (Q, F,P) a probability space.
e P(A) = “the probability that the event A occurs”.

e When P(A) = 1, we say that “the event A occurs with probability one” or “the event A
occurs with almost surely (a.s.)”.

e We say that a probability space (2, F,P) is complete if all subsets of an arbitrary set in
F with probability zero belong to F, i.e., if

BeF, ACB,P(B)=0 = AcF.

Theorem A.7

Let (Q2, F,P) be a probability space. Put

_ A, CAC A", P(A™\ Ay)
F=<ACQ: \
for some A,, A* € F

and set P(4) = P(A,), A € F, where A, is as above. Then (Q,F,P) is a complete
probability space.

e The probability space (2, F,P) is said to be a completion of (Q, F,P).
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Ezample A.8. Let (€2, F) be a measurable space. For a fixed wg € F, we define P : F — [0, 1] by

{1, if wo € A,

P(4) =
0, if wo ¢ A.

Then P is a probability measure on (€2, F). This P is called the Dirac measure at wp.

Ezample A.9. Let  be a finite set (i.e., #£ < 00), and let F be the set of all subsets of (2.
Then we define P : F — [0,1] by P(A) = > c4Pw, A € F, where {p,},cq satisfies p,, € [0, 1]

for each w € Q and ) p, = 1. By this procedure, we can construct any probability measure
on (2, F).

Ezample A.10 (Lebesgue measure). There exists a probability measure p on ((0,1], B((0,1]))
such that
p((a,b))=b—a, 0<a<b<l1.

See, e.g., [36], [35], and [31]. That is, ;1 measures the length of intervals in [0, 1]. This is called
the Lebesgue measure on ((0,1],8(0,1]). By Definition A.6, we can show that p({0}) = 0. So it
can be seen as a probability measure on ([0, 1], B0, 1]).

Further, there exists a nonnegative measure v on (R, B(R)) (i.e., a nonnegative set function
v satisfying Definition A.6 (ii)) such that

v((a,b)) =b—a, —oo<a<b<+o0.

This is called the Lebesgue measure on (R, B(R)).
Moreover, since v defines a measure on [, 3] C R, the restricted measure is called the
Lebesgue measure on ([a, 5], Bla, (]).

Proposition A.11

Let (92, F,P) be a probability space. Then we have the following:
(i) Ae F = P(A°) =1-P(A).
(i) A, Be F, AC B= P(A) <P(B).

(iv) A, e F,n=1,2,..., A1 C Ay C -+ = lim, 0o P(4n) = P(U,, 4n)-

)
)
(i) An € F,n=1,2,... = P(U, 4n) < 3, P(4n).
)
)

(V A, e F,n=12,..., A, DA D — limnﬁooP(An) :P(ﬂnAn).

The following fact is frequently used:

Lemma A.12: Borel-Cantelli lemma

Suppose that a sequence {A,} C F satisfies > > P(A4,) < co. Then

P ﬂUAk =0.

n>1k>n

Proof. 1t follows from Proposition A.11 that

P ﬂUAk = lim P UAk < lim Y P(A4;) =0.

n—00 n—00
n>1k>n k>n k>n
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Random variables

Let (€2, F,P) be a probability space. A random variable describes realized values for all source
w € Q of randomness.

Definition A.13. We say that X : Q — R U {xo0} is an F-measurable random variable if
{we: X(w)>alteF, ack
For R%valued random function, we usually adopt the following definition:

Definition A.14. We say that X : Q — R” is an F-measurable random variable if
X YB)={weQ: X(w)eB}ecF, BeBR").

e Definition A.14 requires that for an arbitrary B € B(R™), the event that X (w) € B belongs
to the “well-defined” class F of random phenomenons.

e When F is referred to as an underlying o-algebra, i.e., the o-algebra F is the largest among
those appeared in a specified problem, we simply say that X is a random variable.

e The event {w € Q: X(w) € B} is often written as {X € B}.

Sometimes it is convenient to consider a stochastic process as a random variable taking values
in a function space. To this end, we describe a generalized version of Definition A.14.

Definition A.15. Let (S,S) and (U,U) be measurable spaces. A mapping f : S — U is said
to be a measurable mapping from (S,S) into (U,U) if

fUB)={feB}eS, VBelU.

In particular, when we work in a probability space (S,S,Q), the mapping f is said to be a
U-valued random variable on (5,S,Q).

e In the case that U is a topological space, we say that a B(U)-measurable mapping is Borel
measurable.

Functions and limits of random variables are again random variables.

Proposition A.16

Let (S,S) and (U,U) be measurable spaces. Then we have the following:
(i) X :Q2— Sand f:S5— U are measurable, so is f(X).

(ii) Let {X,} be a sequence of random variables X,, : @ — S, then inf,, X,,, sup,, X,
liminf, X, and lim sup,, X,, are all random variables.

(iii) Suppose that Q is a topological space and F = B(2). Then any continuous map
h: Q2 — R™ is measurable.

e Let (S,S) be a measurable space. For X : Q — S, the family
o(X):={X"YB):BecS}

of subsets of  is the minimum o-field such that X is measurable.
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e One may adopt (X, A\ € A) as an underlying o-filed when mappings X, on 2, A € A,
are the only random objects to be studied. That is, in that case, it is sufficient for us to
set F =o(X\, A € A).

That a random variable Y is measurable w.r.t. a o-field G means that Y can be constructed
by the information of G. Precisely speaking, we have the following;:

Theorem A.17

Let (E, £) be a measurable space, and X : 2 — R, and Y : Q@ — E. Then a necessary and
sufficient condition for which X is (Y )-measurable is that there exists an £-measurable

function f: E — R such that X = f(Y).

The well-known concept of the distributions is rigorously formulated in the measure theoretic
probability.

Definition A.18. Let (S,S) be a measurable space. Then for S-valued random variable X,
ux(B) = P(X™U(B)), Bes
is a probability measure on (S,S). We call this px as the distribution of X.
e When X is real-valued, the nondecreasing and right-continuous function
Fx(z):=P(X € (—o0,z]) =P(X <z), zeR,
is said to be the distribution function of X.

e We say that a nonnegative Borel function f on R? is a probability density function if

/Rd f(z)dz = 1.

For an R%valued random variable X, when there exists a probability density function f
such that

P(X € B) = / f(z)dz, B € B(RY),
B
we say that the distribution of X has a density f.

Ezample A.19. Let p € [0,1]. Assume that the distribution p of a {0,1,...,n}- valued random
variable S, is given by

u({k}) = (;’) (1 )k,

Then we say that S, follows the binomial distribution with parameter (n,p), and write S, ~
B(n,p).

Ezample A.20. Let X be an R%-valued random variable, m € R?%, and V' € R%*4 positive definite.
We say that X follows a d-dimensional Gaussian distribution if the distribution p of X satisfies

z/2)dz, B e B(RY),

-1 exp(—az* (V1
W) = o [ e

where det (V) is the determinant of V. Then we write X ~ N(m, V).
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Expectation

Let (92, F,P) be a probability space. In this section, we assume that all random variables are
R U {£o0}-valued unless otherwise stated.
We define the indicator function 14 of a set A C Q2 by

1, weA
1y(w) =
0, wé¢ A

e 1, is measurable <— A € F.

X : Q — R is said to be a simple function if there exist Ay,..., A4, € F and x1,...,2, € R
with

AiNAj=0(i#5), i,j=1,...,n, Q=[] A4

such that .
X(w)=> wilaw), we (A.1)
1=1

e If X is a simple function of the form (A.1), then X () = {z1,...,2,} and {X = z;}N{X =
zj} =0 (i # j).
Suppose that X :  — R is a simple function having representation (A.1). Then we define
the expectation E[X] of X by

e It should be emphasized that this definition is well-defined, i.e., E[X] is determined inde-
pendently of the representations of X as a simple function.

e Notice that for simple functions X,Y with X (w) < Y(w), w € © (in many cases, this is
simply written as X <Y'), we have E[X] < E[Y].

We define the expectations of general random variables by some approximations with those of
simple functions. To this end, we need the following lemma:

Lemma A.21

Let X : @ — RU{+£oo}. Then X is a random variable (i.e., F-measurable) if and only if
there exists a sequence {X,,}>°, of nonnegative simple functions such that for all w € Q

0< Xi(w) < Xp(w) <--- < X(w),

lim X, (w) = X(w). )

For any random variable X we define
XT(w) := max{X(w),0}, X (w):=-—min{X(w),0}, we .

The random variables X and X~ are both nonnegative. It follows from Lemma A.21 that
there exists a sequence {X,"} (resp. {X,,}) of simple functions satisfying (A.2) for X (resp.
X7). As remarked above, it follows that E[X,[] < E[X,',,], whence {E[X,[]} is nonnega-
tive and nondecreasing. Hence the limit lim,, . E[X,I] € [0,00] exists. Similarly, the limit
lim,, o0 E[X,,] € [0, 00] exists. We define the expectation E[X] of X by

E[X] = lim E[X;] - lim E[X, ]

n—oo n—00

provided that at least one or both of the two limits are finite.
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e This definition is also well-defined.
e Since | X| = X' + X, that E[X] is finite is equivalent to E[|X|] < occ.

e The expectation is nothing but the Lebesgue integral with respect to the measure P and
S0 it can be written as

E[X] = / X (w)P(dw) = / XdP.

Also, we often write Ep[X] for the expectation of X to emphasize that it is defined under
the probability measure P.

Let X,Y be (real-valued) random variables and denote by i = /—1 the imaginary unit.
Then Z := X +4Y is a complex-valued random variable, and we define its expectation by

E[Z] = E[X] +E[Y].
In particular, for a real-valued random variable X and ¢t € R,
E[e"*] = E[cos(tX)] + iE[sin(tX)].
We list several basic properties of E[-].

Proposition A.22

Let X and Y be random variables. Assume that the both E[X] and E[Y] are defined.
Then for a,b € R we have the following:

(i) X =Y as. = E[X] =E[Y].
(i) X <Y as. = E[X] <E[Y].

(iii) E[aX + bY] = aE[X] + bE[Y] (unless the right-hand side is co — c0).

(v) E[|X]] < 0o = |X| < o0 a.s.

)
)
)
(iv) [E[X]] < E[X]].
)
(vi) X >0as,EX]=0= X =0 as.
)

(viil) X >Y as, EX]=E[Y] = X =Y as.

The expectation of a random variable can be given by the Lebesgue integral on the set which
the variable takes values in.

Proposition A.23

Let (S,S) be a measurable space, X an S-valued random variable, px its distribution,
and f a Borel measurable function on S. Then,

E[f(X)] = /S F(@)dpix ().

Here, the equality means that if the right-hand side is finite then the other one is also
finite and has the same value, and vice versa.

In general, for R%valued random variable X = (X1,..., X), we say that

ox(t) =E [eiZ?«l:Ithk} , t=(t1,...,tq) €R?
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is the characteristic function of X. The distribution of any random variable is completely
determined by its characteristic function.

Proposition A.24

Let X and Y be R%valued random variables. If ¢ x (t) = oy (t) holds for any ¢t € R%, then
ux = py.

Let p € [1,00]. For real-valued random variable X, we set
1
X, = (E[[x[P)» (p € [1,00)),
P inf{fa >0:|X|<aas} (p=o0).
Denote by LP(§, F,P) by the totality of random variables such that || X[, < cc.

e Since X =0 a.s. <= || X||, =0, if we identify X with Y in the case of X =Y a.s., then
| - ||, defines a norm. By this identification, LP = LP(£2, F,P) becomes a Banach space
(i.e., a complete normed space).

e Notice that for 1 < p < ¢g and X € L? we have || X||, < || X||;. Thus X € LP.

e L?is a real Hilbert space with the inner product

(X,Y) =E[XY].

e A random variable X is said to be integrable if X € L, i.e., E[|X]] < co.

The following several inequalities are frequently used.

Proposition A.25: Chebyshev’s inequality

Let X be a nonnegative random variable. Then, for any nondecreasing function f :
[0,00) — [0,00) and = > 0,

P(X > z) < =2

Applying Proposition A.25 for |X| and f(x) = z, we obtain the following:

Corollary A.26: Markov’s inequality

For any R-valued random variable X and any = > 0,

P(|X| > z) < E[L—X”.

Markov’s inequality implies that if X is integrable then the tail probability P(|X| > x)
decreases to zero faster than O(1/x). If X has higher moments, then Chebyshev’s inequality
means that the tail more rapidly decreases to zero.

Proposition A.27: Jensen’s inequality

Let X be an integrable random variable, and let g : R — R be convex. Then,

g(E[X]) < E[g(X)].
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Proposition A.28

Let p,q € (1,00) be such that (1/p) + (1/q) = 1. For X, Z € LP and Y € L? we have

(i) (Holder’s inequality)
[EXY]] < [ X1pl1Y]lgs

(ii) (Minkowski’s inequality)

X+ Zllp < [1XIlp + 112]lp-

e Holder’s inequality with p = 2 is generally called the Cauchy-Schwartz inequality.

Convergence of random variables

Definition A.29. Let X, X, X,... be random variables.

(i) {X,}92, converges to X almost surely (we write X,, — X a.s.) & P{w : X,(w) —

X(w)}) =1
(i) {Xn}52, converges to X in probability &L P(| X, —X|>¢) =0 (n — o0) for any € > 0.

(i) {X,}>2, converges to X in LP N | X, — X, =0.

(iv) Assume that X, X1, Xo, ... are all R%valued. Then {X,,}52, converges to X in law (or in
distribution) A% Yimy, o E[f(X,)] = E[f(X)] for any bounded continuous function f.

For R-valued random variables, we have the following relations for the definitions of the
convergences:

e X, —» X as. = X,, = X in probability.
e X, —» X in L’ — X,, — X in probability.
e X,, — X in probability = X,, = X in law.

e X,, — X in probability = limj;_,o Xp, = X a.s. for some subsequence {n;}32, with
limkéoo nE = Q.

The following three claims state the interchangeablity between the expectation and the limit
of random variables.

Theorem A.30: Monotone convergence theorem

Let {X,,} be a sequence of random variables such that 0 < X; < X3 <--- a.s. Then

E[X,] 7ME[X] (n— ).

.

Lemma A.31: Fatou lemma

Let {X,,} be a sequence of almost surely nonnegative random variables. Then,

E [hm inf Xn} < lim inf E[X,].

n—o0 n—00
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Theorem A.32: Dominated convergence theorem

Suppose that random variables X, X,,, n € N, satisfy the following:
(i) Xp — X as.
(ii) There exists a random variable Y € L! such that |X,| <Y a.s. for all n € N.
Then,
lim E[X,] = E[X].

n—oo

Independence and product spaces
Definition A.33. Let (2, F,P) be a probability space.

(i) A, B € F are said to be independent of each other if

P(AN B) = P(A)P(B).

(i) A family {B;}, i € I, of subsets of F is said to be independent if for distinct i1, ...,9; C I
we have
]P)(B“ MN---N sz) = P(B“) . P(Blk), Bij € Bij; ji=1,... k.

(iii) Let {X;}ier be a family of random variables. We say that X;, ¢ € I, is independent if
o(X;), i € I, is independent.

For given measurable spaces (Q, Fi), k = 1,...,n, we call the o-field
[[7=0 ({HAk:Ak € Fi, k:ln}>
k=1 k=1

as the product o-field on [[p_; Qk, and ([1i_; @, [1r—1 Fr) as the product measurable space.

Proposition A.34

We have B(R?) = [¢_, B(R).

It is known that for probability spaces (Q, Fi,Pr), & = 1,...,n, there exists a unique
probability measure [[;_; Py on the product measurable space ([];_; Q& [[r—; Fk) such that

(HZ:I Pk)(Hz:l Ak) = HZ:I Pk(Ak)v Ay € Fiy, k=1,...,n.

We call [],_, Py as the product probability measure, and ([1p_; U, [Trey Fr, [ -1 Px) as the
product probability space.

Now, let (21, F1,P1) and (22, F2,P2) be given probability spaces. Here we will justfy the
interchange of the order of integrations for functions on €2 x 25. To this end, we need to confirm
the measurability of the functions appeared in the iterated integrals. As for this point, it is
straightforward to see that for any nonnegative and F; x Fo-measurable function X : 23 x{2s — R
the following four claims hold true:

e For w; € O the function X (wy,-) : Q2 — R is Fj-measurable.
e For wy € Oy the function X (-,wq) : Q1 — R is Fe-measurable.

e The function fQ2 X (+,w2)Py(dwz) on ) is a random variable on the probability space
(1, F1,Py).
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e The function le X (w1, )Pi(dwy) on Qg is a random variable on the probability space
(Q22, F2,P2).

Moreover, if X is not necessarily nonnegative but integrable on 2; x {29 then we have the
following two propositions:

e For Pj-almost every (a.e.) wy € Q, the function X (wy,-) : Q9 — R is Fj-measurable, and
the function sz X (+,w2)Py(dws) is a random variable on (1, F1,Py).

e For Py-a.e. wy € Qg, the function X (-, wsy) : Q1 — R is Fo-measurable, and the function
Jo, X(wi1,)P1(dwr) is a random variable on (Q2, F2, P2).

Basically, the expectation of a random variable on a product probability space is given by
the iterated expectation.

Theorem A.35

Let X (w1,w2) be a random variable on (21 x Qo, F1 X Fa,P; x Py).

(i) (Tonelli’s theorem) If X is nonnegative, then

Ep, xp, [X] =/

[ X (w1, ws)Py (dwl)} P(dws)
Qo 1951

— /91 [ QZX(wbwz)Pz(dW)} P(dwr).

(ii) (Fubini’s theorem) If X is integrable on €1 x 2y, then the equalities above also hold.

e To check the integrability of X, one may apply Tonelli’s theorem for |X| to try one of
three integrals above that is easy to compute.

It is also known that Fubini-Tonelli theorem holds for product spaces involving the Lebesgue
measure on ([0, 00), B[0, 00)). For example, if X. : [0, 00) X2 — R is nonnegative and B[0, co) x F-
measurable, then fooo X¢(w)dt is an F-measurable random variable and we have

E [/Ooo Xtdt} = /OOO E[X/]dt.

Next we summarize the relation between the independence and the product probability space.

Theorem A.36

Let X1,..., X, be random variables, u; the distribution of X; for ¢ = 1,...,n, and yu the
distribution of n-dimensional random variable (X1,...,X,). Then {X;}? ; is independent
if and only if p =1 X -+ X pp.

This theorem leads to the following properties:
e Suppose that X1,..., X, are independent and f1,..., f,, are Borel functions on R. Then
f1(X1),..., fn(X,) are also independent.
e Suppose that Xi,..., X, are independent and integrable. Then
E[X; - X, =E[Xy]---E[X,].

e A necessary and sufficient condition for which random variables X7, ..., X,, are indepen-

dent is
n

E [61'273:1%?%} _ HE[ez’thk]’ theR, k=1,...,n,
k=1

where 7 = v/—1.
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Change of probability measures

Let (92, F) be a measurable space.

Definition A.37. Let Q,[P be probability measures on (€2, F). We say that Q is absolutely
continuous with respect to P and write Q < P if we have

P(A) =0, Ac F = Q(A)=0.
e Suppose that Q < P. Then we have
P(A)=1 = Q(A) =1.
This means that an event almost surely occurs w.r.t. P also does w.r.t. Q.

o I[f Q < Pand P« Q, then we say that Q and P are equivalent and write Q ~ P.

Theorem A.38: Radon-Nikodym theorem

Let Q, P be probability measures on (€2, F) such that Q < P. Then there exists an almost
surely unique nonnegative random variable Y such that E[Y] =1 and

Q(A) =E[Y1y], AeF.

e We say that the random variable Y as in Theorem A.38 is Radon-Nikodym derivative of
Q with respect to P, and write ?i% for Y.

Limit theorems

Let (2, F,P) be a probability space.

Theorem A.39: Strong law of large number

Let {X,} be a sequence of independent random variables such that E[|X;|] < co. Then

X1t + X,
lim —

n—00 n

=E[X;] as.

Theorem A.40: Central limit theorem

Let {X,} be an IID sequence with X; € L? and N ~ N(0,1). Then

2 iz (Xi — E[X4])

— N in law, n — oo.
nV(X)

Since any interval is a continuous set w.r.t. Gaussian measure, we have

b —x2/2
' nox. Y _
nh_)n;oIP’(a<ZZ-:I(XZ w)/oyn <b)= = dx, o0 <a<b< oo,

provided that the central limit theorem holds.
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Convergence of probability measures

Let (S,d) be a metric space. A sequence {1, }52, of probability measures on (.5, B(S)) is said
to weakly converge to a probability measure p on (S, B(S)) if

fim [ fe)n (o) = [ Fotdn)

n—oo

for any bounded continuous function f on S. B
Denote by A and A the closure and interior of A € B(S) respectively. We say that 04 := A\ A
is the boundary set of A. Moreover, we say that A € B(S) is a p-continuous set if u(0A) = 0.

Theorem A.41

Let {u,} be a sequence of probability measures on (S, B(S)), u a probability measure on
(S,B(S)). Then the following two claims are equivalent:

(i) {un} weakly converges to p.

(ii) For any p-continuous set A € B(S),

lim jia(A) = p(A).

n—00

We often encounter the case of S = ([0, 00), the space of continuous functions on [0, 00).
With the metric

e}

1
o max (fea (1) — wa(®) A 1),
n=

the space C[0,00) is complete and separable, and the set B(C[0,00)) of all Borel subsets of
C[0,00) is defined. To discuss the weak convergence in this space, we introduce the modulus of

continuity of

d(wi,ws) :=

m? (w,6) := max{|w(t) —w(s)|:|s —t]| <6, 0< st < T}

of w € C[0,00) on [0,7] for each 6 > 0 and T > 0.

Theorem A .42

Suppose that a sequence {u,}72; of probability measures on (C0, c0), B(C|[0,00))) sat-
isfies the following two conditions:

(i) For each i > 0 there exist a > 0 and ng € N such that

(@ £ [0(0)] = @) <, n = ng

(ii) For each e > 0, T > 0, and 1 > 0 there exist § € (0,1) and np € N such that

pn(w :mT (w,0) >e) <n, n>ng.

There exists a subsequence {i, }7° that weakly converges to some probability measure
on (C[0,00), B(C[0,0))).

Lemma on 7-systems

Lemma A.44 is a tool for proving some propositions related to o-algebras. For example, it will
be useful when we aim to show that for two probability measures P and QQ coincides with each
other if P = Q on a sub o-algebras.
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Definition A.43. Let € be a set. A family C of subsets of €2 is said to be 7w-system if ANB € C
for A,B €C.

Lemma A .44

Let (©,F) be a measurable space, C a m-system with o(C) = F. If two probability
measures P and Q on (Q,F) coincide with each other on C, i.e., P(A) = Q(A) for any
AeC,then P=Q on F.
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