CAP.C534

Advanced Supercritical Fluid Process (超臨界流体プロセス特論) 3. Particle formation using SCF (II)

Department of Chemical Science and Engineering Yusuke Shimoyama

2018.10.11 Room 421 of South Buld. 4

Class Schedule

- 1. 9/27 Fundamental property of SCF
- 2. 10/4 Particle formation using SCF (I)
- 3. 10/11 Particle formation using SCF (II)
- 4. 10/18 Porous material formation using SCF (I)
- 5. 10/25 Porous material formation using SCF (II)
- 6. 11/1 Composite formation using SCF
- 7. 11/8 Film formation using SCF
 - 11/22 Final report submission

Class document will be upload in OCW

SAS method : Supercritical Anti-Solvent

Solute dissolved in solvent

Installing SCCO₂ into the solution

Precipitation by solubility reduction

SEDS method : Solution-Enhanced Dispersion of solids

Solute dissolved in solvent Spraying solution and SCCO₂ via nozzle

Precipitation by solubility reduction

5

Micronization of Atorvastain Calcium (AC)

solvent : methanol

AC concentration:

25, 50, 100, 150 mg mL⁻¹

SCCO₂ condition: Temperature: 40, 50, 60 °C Pressure : 10 to 18 MPa

Feed rate ratio (CO₂ / drug solution): 45, 60, 90, 120 mg mL⁻¹

6

> Micronization of Atorvastain Calcium (AC) $T = 40^{\circ}C$

12 MPa

7

before

<i>p</i> /MPa	Particle size /nm
10	242
12	123
15	115
18	109

15 MPa

Q. 3.1

Give a reason why high pressure in spraying unit leads to the results of the smaller particle formation.

9

A. 3.1 (Discussion)

Effect of pressure on particle size

Eur. J. Pharm. Biopham., 69 (2008) 454-465.

11

Effect of AC concentration on particle size

12

A, 3.2

Discuss the relation between AC concentration in solution and particle size formed in SEDS method.

A. 3.2 (Discussion)

- Extraction of carotenoide from natural product
 - \rightarrow solvent extraction using organic solvent
 - \rightarrow further purification by crystallization or salting-out

- > SAS using $SCCO_2$
 - \rightarrow Effect of CO₂ flow rate and temperature
 - \rightarrow Effect of solvent species
 - \rightarrow Investigation on particle size and morphology

J. Supercrit. Fluids, 22 (2002) 237 – 245.

J. Supercrit. Fluids, 22 (2002) 237 – 245.

Experimental condition in SAS process

Solute (particle) : β -carotene

Solvent : dichloromethane, ethyl acetate

SCCO₂ condition : Temperature: 298, 333 K Pressure : 5.8, 7.8 MPa

Initial concentration of b-carotene: 1.0, 1.5, 2.0, 2.4 g L⁻¹

J. Supercrit. Fluids, 22 (2002) 237 – 245.

Solubility of β -carotene in CO₂ + ethyl acetate

➢ SASの条件

Solute (particle) : β -carotene

Solvent : dichloromethane (DCM), ethyl acetate (EA)

No effect on particle size

J. Supercrit. Fluids, 22 (2002) 237 – 245.

J. Supercrit. Fluids, 22 (2002) 237 – 245.

Q. 3.3

How is the effect of stirring rate in precipitation vessel on particle size formed in SAS process?

20

 β -carotene in solvent

A. 3.3 (Discussion)

A. 3.3 (Discussion)

Nanosuspension production

- >> Drug delivery system (DDS) application
- >> Controlling drug release profile and drug amount

23

>> Polymer particle size and size distribution control

24

Extraction of emulsion

25

Supercritical Fluid Extraction of Emulsion

Supercritical CO₂

Campardell, R. et al., J. Supercrit. Fluids (2012)

- Enhanced extraction of oil phase
- Controlling polymer particle aggregation
- Batch operation

(Emulsion)

Slug flow in microchannel

High contact probability
between SCCO₂ and emulsion
Continuous process

Supercritical Fluid Extraction of Emulsion

- Carbon dioxide : purity over than 99.95 %
- Oil phase : Ethyl acetate (EA), purity over than 99.5 %
- Polymer and surfactant : Poly(vinyl alcohol) (PVA)
- (1) Mw : 31000 50000, 98-99 % hydrolyzed (Sigma-Aldrich)

26

(2) Mw: 66000 - 79000, 78-82 % hydrolyzed (Wako)

27

Supercritical Fluid Extraction of Emulsion

PVA aqueous solution : 0.2 wt% and EA were mixed in 77 : 23 (mass)

Murakami, Y. et al., J. Supercrit. Fluids (2016)

Murakami, Y. et al., J. Supercrit. Fluids (2016)

Microchannel : ϕ 0.5 mm × 1m

Supercritical Fluid Extraction of Emulsion

Condition

➤ Temperature and pressure : 37, 40 °C and 8 -12 MPa

29

- Residential time : 0.6 to 6.6 min
- \succ CO₂ flow rate (at 1 atm) : 63 183 ml min⁻¹
- \succ CO₂ and emulsion ration (mass) : 0.3 to 3.1

Characterization

- Gas chromatograph : Amount of extracted EA
- Dynamic Light Scattering (DLS) : particle size
- Fourier transform infrared spectroscopy (FT-IR): Residual EA in PVA dispersed solution

30

Supercritical Fluid Extraction of Emulsion

Effect of residential time on extraction efficiency

Supercritical Fluid Extraction of Emulsion

Effect of contact area of CO₂/emulsion on extraction efficiency

Q. 3.4

Discuss about (very) small effect of contact area of CO_2 /emulsion on particle size formed in SFEE.

Mass transfer of EA

33

A. 3.4 (Discussion)

34

A. 3.4 (Discussion)

Effect of surfactant hydrophobicity on SFEE

35

High hydrophobicity results in high extraction rate because of high affinity with CO_2 . \longrightarrow CO_2 swelling effect on emulsion extraction

36

Results of particle formation via SFEE

