Tokyo Tech. Intro. to Comp. & Data Lecture week6

Intro. to some advanced machine learning algorithms and methods.

- 1. SVM: support vector machine (slides borrowed from some lectures)
- 2. Boosting
- 3. NCD, normalized compression distance: an eccentric (but sometimes useful) method for measuring "distance" among strings
- 4. On homework #6

- 1. Support Vector Machine
- 1.1. Basic concept

Support Vector Machine (in short, SVM) is a method for achieving a classification task. [Vapnik etal. 1963, 1992, 1995] It has the following features:

- (1) "maximum margin" separator,
- (2) defined by "support vectors" (= boundary instances),
- (3) can be extended to "nonlinear separators".

Let us first see features (1) and (2) by considering the linear SVM.

A part of the following slides are from the slides of Christopher Manning and Pandu Nayak (in which they ack. to Rey Mooney for borrowing his slides): https://web.stanford.edu/class/cs276/handouts/lecture14-SVMs.ppt

1. SVM

1.1. Basic concept

1. SVM

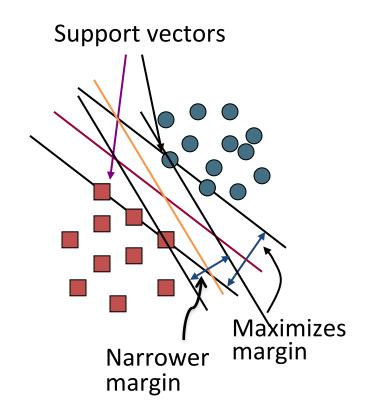
Linear SVM: For the binary classification, consider the case where two classes (+1, -1) are linearly separable. (Attributes are all numerical.)

SVMs maximize the margin around

"distance" the hyperplane $\times 2$

the separating hyperplane.

- A.k.a. large margin classifiers
- The decision function is fully specified by a subset of training samples, the support vectors.



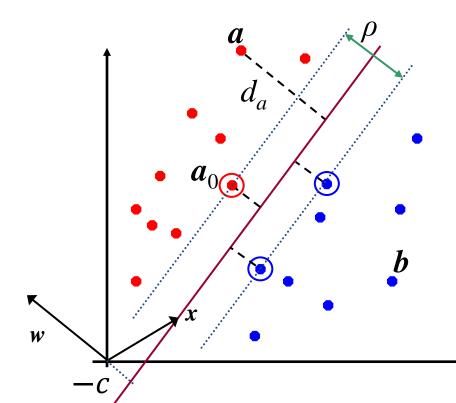
a machinery that defines the classifier

Support vectors = instances (of the training set)

w

basics of linear algebra

- inner product $w \cdot x$ is
- a hyperplane is defined by its normal vector w as a set of points x such that $w \cdot x - (-c) = 0$ (assume that ||w|| = 1)



for red instances *a*, we have $\mathbf{w} \cdot \mathbf{a} - (-c) = \mathbf{w} \cdot \mathbf{a} + c = d_a$

for blue instances \boldsymbol{b} , we have $\boldsymbol{w} \cdot \boldsymbol{b} - (-c) = \boldsymbol{w} \cdot \boldsymbol{b} + c = -d_b$

margin ρ is $\rho = 2(\boldsymbol{w} \cdot \boldsymbol{a}_0 + c)$

How to compute support vectors?

Hyperplane

w • **x** + c = 0

so that

 $\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b} > 0$ for positive instances, and < 0 for negative instances.

Find w so that min_{i=1,...,n} |w •x_i + b|

> becomes the smallest. (Here $x_1, ..., x_n$ are instances of the test set.)

 \Rightarrow an equivalent but a simpler goal

Find w and c such that $\Phi(w) = \frac{1}{2} w \cdot w$ is minimized; and for all $\{(x_i, y_i)\}$: $y_i (w \cdot x_i + c) \ge 1$ (where y_i is the class value of x_i)

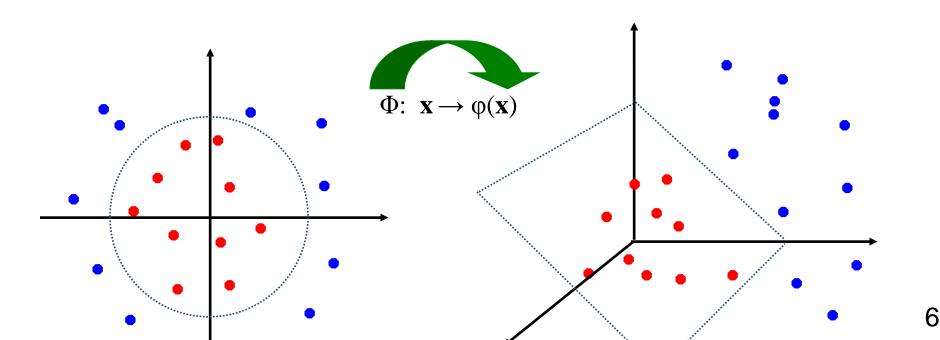
 $w \cdot b + c = -1$

1. SVM

1.1. Basic concept

w • **a** + c = 1

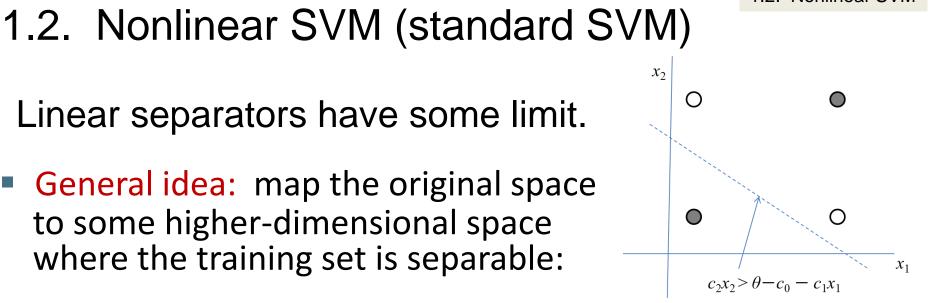
 $w \cdot x + c = 0$



General idea: map the original space to some higher-dimensional space where the training set is separable:

1. Support Vector Machine

- Linear separators have some limit.



1. SVM

1.2. Nonlinear SVM

2. Boosting

Boosting is one type of ensemble learning II combining predictions for classification

- Basic idea: build different "experts", let them vote
- Advantage:
 - often improves predictive performance
- Disadvantage:
 - usually produces output that is very hard to analyze
 - but: there are approaches that aim to produce a single comprehensible structure

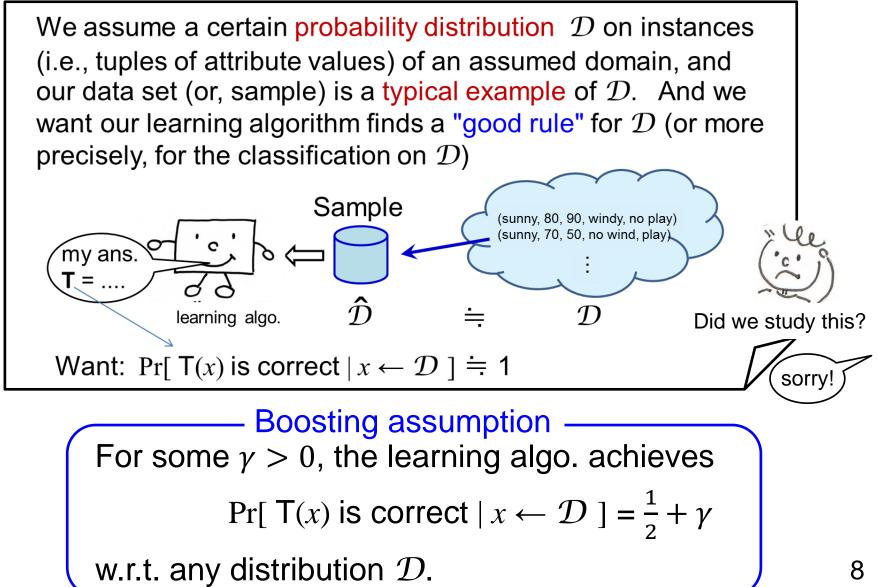
This is guaranteed to work for the boosting under a certain assumption

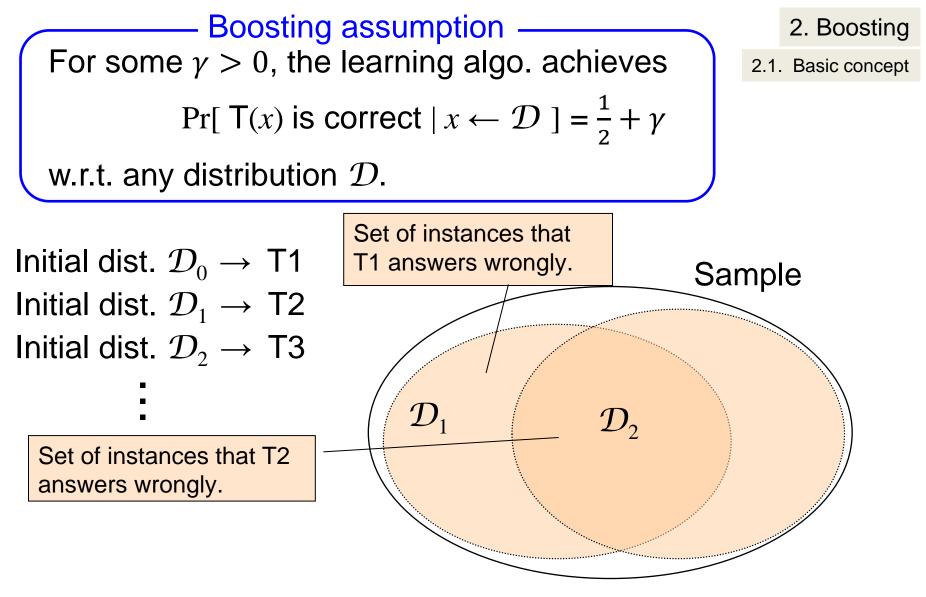
2. Boosting 2.1. Basic concept

2. Boosting

2.1. Basic concept

Recall ...

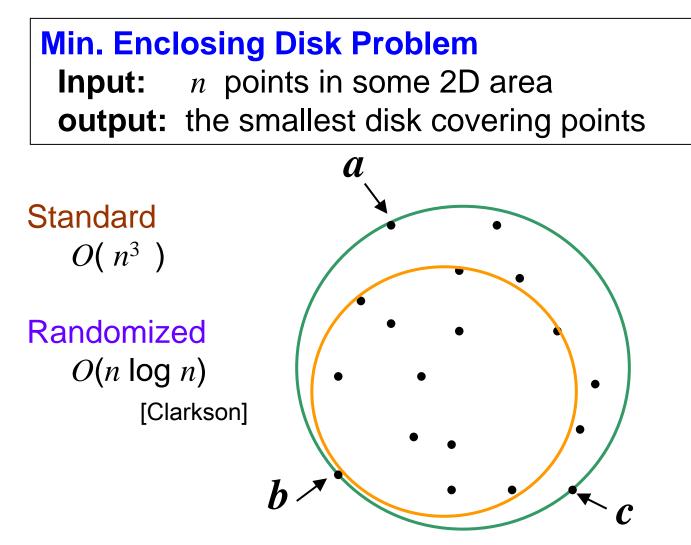




Final model = *weighted majority vote* of T1, T2, T3, ...

2. Boosting

2.1. Basic concept



Reference: Emo Welzl, Smallest enclosing disks (balls and ellipsoids). In: Maurer H. (eds) New Results and New Trends in Computer Science. Lecture Notes in Computer Science, vol 555. Springer, 1991.

also proposed MadaBoost (a similar to LogitBoost invented later).

[.] 11

Boosting AdaBoost

Depending on a way to define new distributions, there are various boosting methods.

Boosting has been invented for answering an open problem asked by L. Valiant, a founder of the PAC learning framework. [Valiant1989]

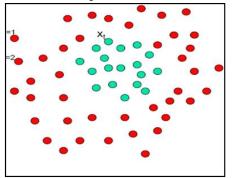
The first boosting method [Shapire 1990] was not so practical. Boosting became a popular data mining method when *AdaBoost* has been invented.

[Freund and Shapire 1995]

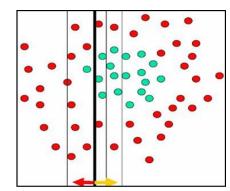
2. Boosting

2.2. AdaBoost

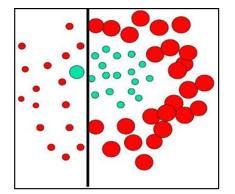
Example



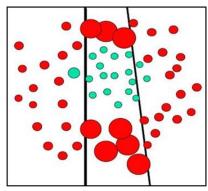
original (1st distribution)



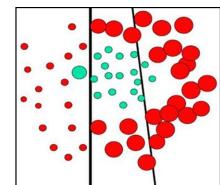
1st "weak rule"



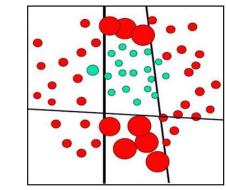
2nd distribution



3rd distribution



2nd "weak rule"



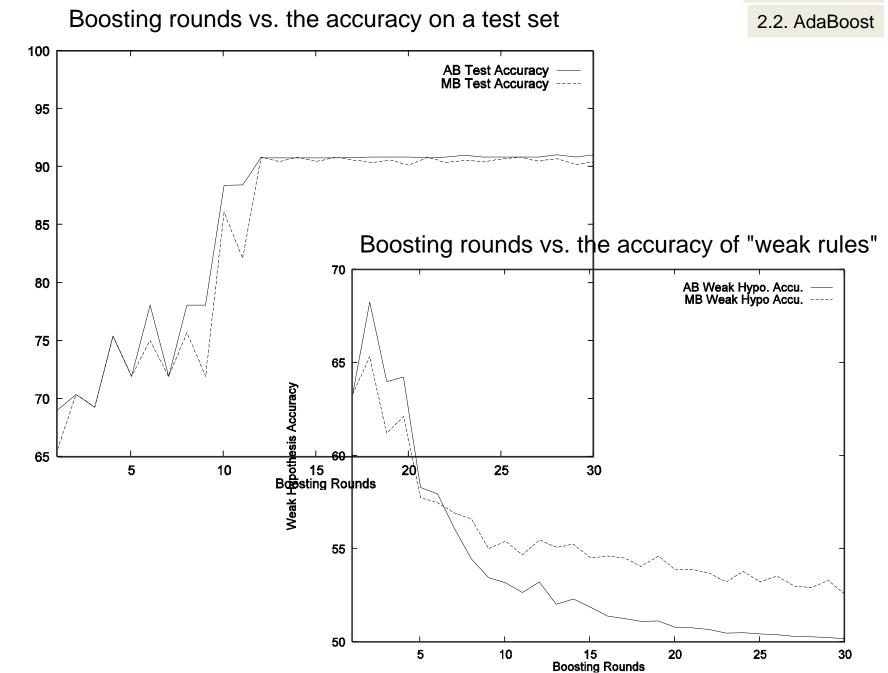
3rd "weak rule"

From slides of B. Erika and K. Zsolt

http://www.cs.ubbcluj.ro/ ~csatol/mach_learn/bemutato/ BenkKelemen_Boosting.pdf

2. Boosting

2.2. AdaBoost



2. Boosting

Accuracy

3. Normalized compression distance

3. NCD

3.1. Background

A universal method for measuring similarity (mainly) between strings.

3.1. Background: Kolmogorov complexity

E.g., Which is random?

No answer from the Probability Theory. A. Kolmogorov suggested an answer.

> Andrei N. Kolmogorov 1903 - 1987

14

http://www-history.mcs.st-ndrews.ac.uk

3. NCD 2000 bits strings 3.1. Background A. 1010010110100101..... ← 2000 bits B. 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 \leftarrow 2000 bits A. Kolmogorov \Rightarrow R. Solmonov, J. Chaitin random sequence = seq. with no short description shortest a sequence description target sequence 1010110 generator 111111 • • • 000000 • • • ultimate compression program K(x) =length of the shortest description of x Kolmogorov complexity

3.1. Background

relative randomness

K(x | y) = length of the shortest description of x when y is given

randomness of *x* relative to *y*

unsimilarity of *x* to *y*

Cf.

K(x) = length of the shortest description of x

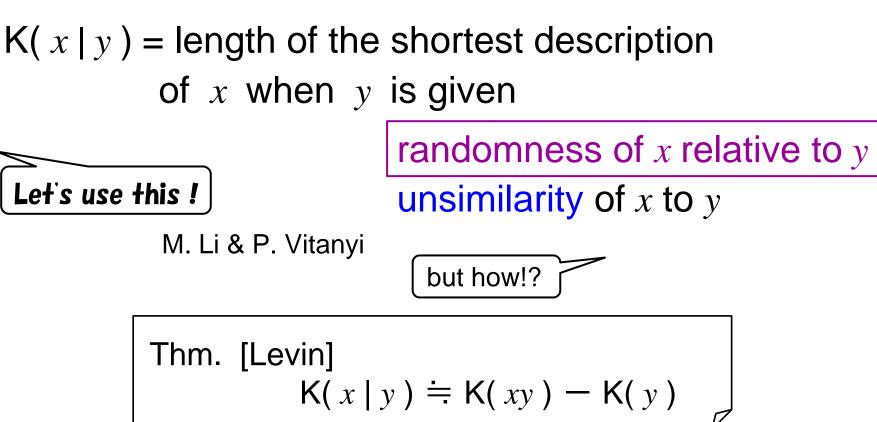
randomness of x

Example:

K(x00 | x) = constant, i.e., const. bitsK(0011000011 | 01001) = const. bits

3.1. Background

relative randomness



Use available one! gzip, bzip, ...

K(x) = length of ultimately compressed code for x

 \Rightarrow length of reasonably compressed code for *x*

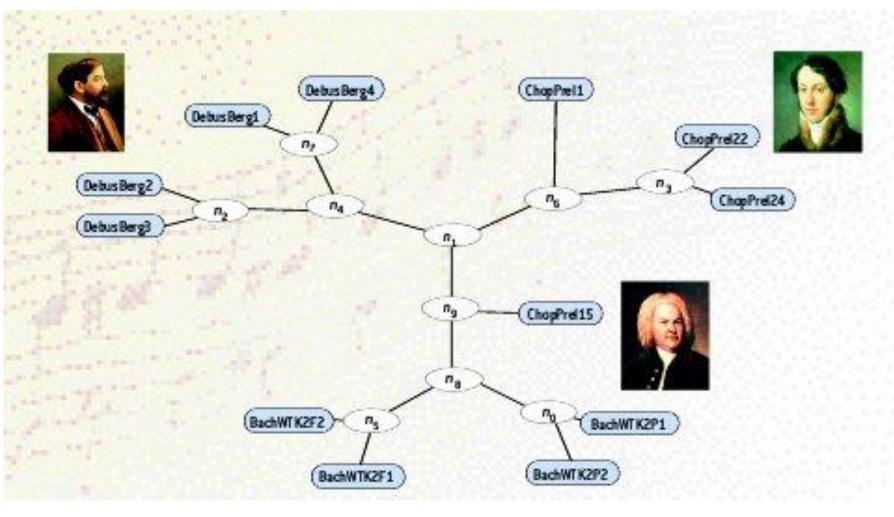
17

3. NCD 3. Normalized compression distance 3.2. Def. and ex.s. 3.2. Definition and application examples min(K(x | y), K(y | x)) Ideal metric = max(K(x), K(y)) $\stackrel{\cdot}{=} \frac{\mathsf{K}(xy) - \mathsf{max}(\mathsf{K}(x), \mathsf{K}(y))}{}$ max(K(x), K(y))(Recall $K(x | y) \doteq K(xy) - K(y)$) Z(xy) - max(Z(x), Z(y)) $NCD_7(x, y) =$ $\max(Z(x), Z(y))$

where Z(x) = the length of the compressed string x computed by compression algo. Z.

3.2. Def. and ex.s

Ex1: Music piece (MIDI) similarity



R.Cilibrasi, P.Vitanyi, and R.deWolf, Algorithmic Clustering of Music, 2003

3.2. Def. and ex.s

Ex2: Russian novel similarity

5. Distances des textes d'auteurs russes par la méthode de compression: un seul texte de Toisto est mal classé.

3.2. Def. and ex.s

- Ex0: Chain letter analysis [Ming Li, et al.]
- Ex4: Analysis of SARS virus varieties
- Ex5: Language similarity !?
 - NCD(English, French) > NCD(English, Spanish)
- Q. What did they compare?

Advantage of NCD:

universal

Warning:

 No reasoning for using a particular compression algo. (In fact, it is said that bzip is better than gzip, but why??)

 \Rightarrow Could be used if there is no other way.

4. Homework of this week

Choose one of the following learning algorithms (or, precisely speaking, heuristics) and explain its outline and its key technical point.

Please try to write it within 5 pages by A4 size paper. Using examples/figures is recommended. (You may write a report in Japanese.)

- 1. C4.5 (a basis of J4.8)
- 2. Perceptron
- 3. Apriori algorithm (an improved version)
- 4. EM algorithm for clustering
- 5. AdaBoost