
Tokyo Tech. 

Intro. to Comp. & Data 

Lecture week6 

Lect6: Advanced methods 

Intro. to some advanced machine learning 

algorithms and methods. 

1. SVM: support vector machine 

 (slides borrowed from some lectures) 

2. Boosting 

3. NCD, normalized compression distance: 

    an eccentric (but sometimes useful) method 

    for measuring "distance" among strings 

4. On homework #6 

1 



1. Support Vector Machine 

1.1.  Basic concept 

1. SVM 
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Support Vector Machine (in short, SVM) is a method 

for achieving a classification task.   

It has the following features: 

(1) "maximum margin" separator, 

(2) defined by "support vectors" (= boundary instances),  

(3) can be extended to "nonlinear separators". 

[Vapnik etal. 1963, 1992, 1995] 

Let us first see features (1) and (2) by considering 

the linear SVM. 

A part of the following slides are from the slides of Christopher Manning and Pandu 

Nayak (in which they ack. to Rey Mooney for borrowing his slides): 

https://web.stanford.edu/class/cs276/handouts/lecture14-SVMs.ppt 

1.1.  Basic concept 



1. SVM 
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Linear SVM:  For the binary classification, 

consider the case where two classes (+1, -1) are 

linearly separable.   (Attributes are all numerical.) 

Support vectors 

Maximizes 
margin Narrower 

margin 

 SVMs maximize the margin around 

  

     the separating hyperplane. 
 A.k.a. large margin classifiers 

 The decision function is fully 
specified by a subset of training 
samples, the support vectors. 

"distance"  the hyperplane × 2  

=
 

a machinery that defines the classifier 

1.1.  Basic concept 



1. SVM 
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support vectors = instances (of the training set) 

                             closest to the separating hyperplane. 

da 

ρ a 

b 

w 

−𝑐 

basics of linear algebra 

 

・ inner product 𝒘 ∙ 𝒙 is  

・ a hyperplane is defined by its normal vector w as a set 

  of points x such that 𝒘 ∙ 𝒙 − (−𝑐) = 0   (assume that 𝒘 = 1) 

x 

w x 

for red instances a, we have 

𝒘 ∙ 𝒂 − −𝑐 = 𝒘 ∙ 𝒂 + 𝑐 = 𝑑𝑎 

for blue instances b, we have 

𝒘 ∙ 𝒃 − −𝑐 = 𝒘 ∙ 𝒃 + 𝑐 = −𝑑𝑏 

margin ρ is 𝜌 = 2(𝒘 ∙ 𝒂0 + 𝑐) 

a0 



1. SVM 
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1.1.  Basic concept 
How to compute support vectors? 

w ・x + c = 0 

w ・a + c = 1 

w ・b + c = -1 

 

 

 Hyperplane  

        w ・x + c = 0 

       so that  

        w ・xi + b > 0 for positive instances, 

        and < 0 for negative instances. 

 

 Find  w  so that 

        mini=1,…,n |w ・xi + b| 

       becomes the smallest.   
       (Here x1,..., xn are instances of the test set.) 

Find w and c such that 

Φ(w) =½ w ・w  is minimized;  

and for all {(xi ,yi)}:  yi (w ・xi + c) ≥ 1  (where yi is the class value of xi) 

⇒ an equivalent but a simpler goal 



1. Support Vector Machine 

1.2.  Nonlinear SVM (standard SVM) 

1. SVM 
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1.2.  Nonlinear SVM 

Linear separators have some limit. 

 General idea:  map the original space 
    to some higher-dimensional space 
    where the training set is separable: 

Φ:  x → φ(x) 



2. Boosting 
2. Boosting 
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Boosting is one type of ensemble learning 

                      combining predictions for classification  

=
 

This is guaranteed to work for the boosting 

under a certain assumption 
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2. Boosting 

2.1.  Basic concept 

2. Boosting 

2.1.  Basic concept 

Recall ... 

Did we study this? 

sorry! 

Pr[ T(x) is correct | x ← D ] = 
1

2
+ 𝛾 

For some 𝛾 > 0, the learning algo. achieves 

 

 
w.r.t. any distribution D. 

Boosting assumption 
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2. Boosting 

2.1.  Basic concept 

Pr[ T(x) is correct | x ← D ] = 
1

2
+ 𝛾 

For some 𝛾 > 0, the learning algo. achieves 

 

 
w.r.t. any distribution D. 

Boosting assumption 

Set of instances that 

T1 answers wrongly. 

Set of instances that T2 

answers wrongly. 

Initial dist. D0 →  T1 Sample 
Initial dist. D1 →  T2 

Initial dist. D2 →  T3 

D1 D2 

・・・
 

Final model = weighted majority vote of 

                       T1, T2, T3, ... 
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2. Boosting 

2.1.  Basic concept 
An example for intuition 

Min. Enclosing Disk Problem 

  Input:     n  points in some 2D area 

  output:  the smallest disk covering points 

Standard 

     O( n3  ) 

 

Randomized 

     O(n log n) 

[Clarkson] 

a 

b c 

Reference: Emo Welzl, Smallest enclosing disks (balls and ellipsoids). 

In: Maurer H. (eds) New Results and New Trends in Computer Science. 

Lecture Notes in Computer Science, vol 555. Springer, 1991.  
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2. Boosting 

2.2.  AdaBoost 

2. Boosting 

2.2. AdaBoost 

Depending on a way to define new distributions, 

there are various boosting methods. 

 

Boosting has been invented for 

answering an open problem asked by L. Valiant, 

a founder of the PAC learning framework. 
[Valiant1989] 

The first boosting method  

was not so practical.   Boosting became a popular 

data mining method when AdaBoost has been invented. 

[Shapire 1990] 

[Freund and Shapire 1995] 

I also proposed MadaBoost (a similar to LogitBoost invented later). 



2. Boosting 

2.2. AdaBoost 

Example 

From slides of 

B. Erika and K. Zsolt 

http://www.cs.ubbcluj.ro/ 

~csatol/mach_learn/bemutato/ 

BenkKelemen_Boosting.pdf 



2. Boosting 

2.2. AdaBoost Boosting rounds vs. the accuracy on a test set 

Boosting rounds vs. the accuracy of "weak rules" 



3. Normalized compression distance 
3. NCD 
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A universal method for measuring similarity 

(mainly) between strings.  

3.1.  Background 

3.1.  Background: Kolmogorov complexity 

What is Randomness? 

E.g. , Which is random? 

１０１００１０１１０１００１０１１０１００１ 

１１１１１１１１１１００００００００００００ 

No answer from the Probability Theory. 

A. Kolmogorov suggested an answer. 

http://www-history.mcs.st-ndrews.ac.uk  

Andrei N. Kolmogorov 

1903 - 1987 
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2000 bits strings 

A. １０１００１０１１０１００１０１..........      ← 2000 bits 

B. １１１１１１......１１００００００.....００     ← 2000 bits 

3.1.  Background 

random sequence = seq. with no short description 

A. Kolmogorov ⇒ R. Solmonov, J. Chaitin 

a sequence 
    generator 

description 

 1010110 
target sequence 

111111・・・000000・・・ 

compression program 
ultimate 

shortest 

K( x ) = length of the shortest description of  x 

Kolmogorov complexity 

3. NCD 
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relative randomness 

K( x ) = length of the shortest description of  x 

Example: 

  K(x００ | x) = constant, i.e., const. bits 

  K(００１１００００１１ | ０１００１) = const. bits 

K( x | y ) = length of the shortest description 

               of  x  when  y  is given 

randomness of x 

randomness of x relative to y 

unsimilarity of x to y 

Cf. 

3.1.  Background 

3. NCD 
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3.1.  Background relative randomness 

K( x | y ) = length of the shortest description 

               of  x  when  y  is given 

randomness of x relative to y 

unsimilarity of x to y 
M. Li & P. Vitanyi 

Let's use this ! 

but how!? 

Thm.  [Levin] 

                 K( x | y ) ≒ K( xy ) － K( y ) 

Use available one! 
gzip, bzip, ... 

oh! 

Kolmogorov 

K( x ) = length of ultimately compressed code for  x 

        ≒ length of reasonably compressed code for x  

3. NCD 
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3. Normalized compression distance 

3.2.  Definition and application examples 
3.2.  Def. and ex.s 

3. NCD 

(Recall   K( x | y ) ≒ K( xy ) － K( y ) ) 

Ideal metric  = 

 

 

                     ≒  

min( K( x | y ), K( y | x ) ) 

max( K( x ), K( y ) ) 

K( xy ) －max( K( x ), K( y ) ) 

max( K( x ), K( y ) ) 

NCDZ( x , y ) =   
Z( xy ) －max( Z( x ), Z( y ) ) 

max( Z( x ), Z( y ) ) 

where  Z( x ) = the length of the compressed string  x  

computed by compression algo. Z.  
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3.2.  Def. and ex.s 

3. NCD 

Ex1: Music piece (MIDI) similarity 

R.Cilibrasi, P.Vitanyi, and R.deWolf, 

Algorithmic Clustering of Music, 2003 
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Ex2: Russian novel similarity  
3.2.  Def. and ex.s 

3. NCD 
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Ex0: Chain letter analysis  [Ming Li, et al.]  

Ex4: Analysis of SARS virus varieties  

Ex5: Language similarity !? 

  NCD( English, French )  >  NCD( English, Spanish) 

Q.  What did they compare? 

3.2.  Def. and ex.s 

3. NCD 

Advantage of NCD: 

・ universal 

Warning: 

・ No reasoning for using a particular compression algo. 

   (In fact, it is said that bzip is better than gzip, but why??) 

⇒ Could be used if there is no other way. 



4. Homework of this week 
4. Homework 
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Choose one of the following learning algorithms 

(or, precisely speaking, heuristics) and explain 

its outline and its key technical point.  

Please try to write it within 5 pages by A4 size paper. 

Using examples/figures is recommended. 

(You may write a report in Japanese.) 

1.  C4.5  (a basis of J4.8) 

2.  Perceptron 

3.  Apriori algorithm (an improved version) 

4.  EM algorithm for clustering 

5.  AdaBoost 


