
Tokyo Tech. 

Intro. to Comp. & Data 

Lecture week3 

Lect3: Classification #2 

Using obtained classifiers 

Discuss ways for making use of 

obtained classifiers. 

1. Some basic knowledge from Prob. Theory. 

2. How to test the performance of a classifier. 

3. How to deal with tradeoff relations. 

4. On Exercise #3. 

1 

* Some of the slide materials (in particular, green ones) are from the slides of 

  the authors of the textbook and their group at the University of Waikato. 



1. Basic knowledge on probability 

1.1.  Expectation and Variance 

1. Basics on prob. 
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1.1  Exp. and Var. 

Recall that we assume  
a distribution D on a 

"domain" of instances 

 E[ X ] = Σx∈Range(X) x ×Pr[ X = x ] 

 E[ X ] = ∫x∈Range(X) x ×p(x) 

discrete case 

continuous case (omitted below) 

where  p  is a density function for X on D. 

Expectation (often denoted by μ）： 

Variance:  

Remark:  In this course, by "mean" we mean 

                the average on a given data set. 

 V[ X ] = E[ (X－μ) 2]  = Σx∈Range(X) (x－μ) 2×Pr[ X = x ] 

                                     = Σx∈Range(X) (x－E[X]) 2×Pr[ X = x ] 

Standard deviation (denoted by σ）：   σ = √V[ X ] 

why squared? 



1. Basics on prob. 
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1.1  Exp. and Var. 

 E[ Σi Xi ] = Σi E[Xi]   

Consider n random variables X1, ..., Xn .  

Important Rules (sometimes called Laws) 

in general  

← can be derived from the def.  

independent case  

 E[ X1 × X2 ×・・・ ] = E[X1] × E[X2]× ・・・  

pair-wise independence   

 E[ Xi × Xj  ] = E[Xi ] × E[Xj]  

⇒  V[ Xi + Xj  ] = V[Xi] + V[Xj]  ⇒  V[ Σi Xi ] = Σi V[Xi]   

all with the same exp. μ and standard deviation σ   

 E[ Σi Xi ] = nμ     

⇒  V[ Σi Xi ] = Σi E[Xi
 2] － Σi E[Xi] 

2  

(note that V[Xi] = σ2) 

V[ Σi Xi ] = nσ2 √V[ Σi Xi ] = σ√n 

in the class 

in the class 



1. Basics on prob. 

1.2  Law of large num.s 1.2.  Law of large numbers, and ... 

Law of large numbers  

empirical mean :=                            → μ = E[ X ] 

Let  x1,  x2, ..., xm  be the outcomes of independent 

experiments following the same distribution, i.e., 

values of some random variable X.  Then we have 

x1+ x2+・・・ +xm  

            m  
No good !  

Confusing ! 
Let  X1,  X2, ..., Xm  be ind. rnd. var.s 

with the same expectation μ.  Then if 

m is sufficiently large, then we have 

 

   Pr[                                  ≒ μ] = high 

 

X1+ X2+・・・ +Xm  

            m  

Law of large numbers  

How close?  

How high? 



1. Basics on prob. 

Central Limit Theorem 

Consider a random variable X defined by X =  𝑋𝑖  
𝑛
𝑖=1 / n 

where  X1,  X2, ..., Xn  are independent &  identical random 

variables with expectation μ and variance σ.   Then X 

converges to the Normal distribution N(μ, σn). 

Recall that 

     E[X] = nμ / n = μ,    σn := √V[X] = σ / √n  

N(0, 1) 

Normal distribution  

For example, 

1.2  Law of large num.s 

(Basic version) 



Pr[ X > μ + 2.33 σ /        ] < 0.01  

1. Basics on prob. 

1.1  Exp. and Var. Application of the Central Limit Thm 

Suppose that  X =  𝑋𝑖  
𝑛
𝑖=1 / n is close to N(μ, σn),  

where  E[X] = μ  and  σn := σ /       (since  n  is large enough). 

Then we may assume that  (X － μ) / σn follows N(0, 1). 

Thus, e.g.,  

√n 

√n 

Pr[(X － μ) / σn  > 2.33 ] < 0.01  

Pr[ X > μ + 2.33 σn ] < 0.01  

⇔
 
⇔

 

Gets smaller when 

n increases. 

Qualitative version 

of the law of large numbers 

↓ general rules 

E[cX] = cμ 

√V[cX] = cσn  



Pr[ X > μ + 2.33 σ /        ] < 0.01  

1. Basics on prob. 

Application of the Central Limit Thm 

Suppose that  X =  𝑋𝑖  
𝑛
𝑖=1 / n is close to N(μ, σn),  

where  E[X] = μ  and  σn := σ /       (since  n  is large enough). 

Then we may assume that  (X － μ) / σn follows N(0, 1). 

Thus, e.g.,  

√n 

√n 

Pr[(X － μ) / σn  > 2.33 ] < 0.01  

Pr[ X > μ + 2.33 σn ] < 0.01  

⇔
 
⇔

 

Gets smaller when 

n increases. 

How large?  

Well, > 100 

Qualitative version 

of the law of large numbers 

Not rigorous!! 

Chernoff bound 

in general  

1.2  Law of large num.s 



2. Testing classifiers 
2. Testing classifiers 
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A standard flow 

of classification tasks training set 

test set 

data set ML algo. 

Learning phase 

Test phase 

a classification model 
e.g., a decision tree 

70% 

30% 

Suppose that we estimated the error prob. of the obtained 

decision tree T is p.  What does it mean? ＾ 

Let  p be the error probability of T, and let  Xi  denote a random 

variable that takes 1 (resp., 0) if  T makes an error on the i th 

instance of the test set.  (Let n denote the test set size.)  

Then  p  is nothing but a value of the random variable 

X =  𝑋𝑖  
𝑛
𝑖=1 / n. 

＾ 



2. Testing classifiers 
2. Testing classifiers 
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Suppose that we estimated the error prob. of the obtained 

decision tree T is p.  What does it mean? ＾ 

Let  p be the error probability of T, and let  Xi  denote a random 

variable that takes 1 (resp., 0) if  T makes an error on the i th 

instance of the test set.  (Let n denote the test set size.)  

Then  p  is nothing but a value of the random var. X =  𝑋𝑖  
𝑛
𝑖=1 / n. ＾ 

Note that  

    E[Xi] = p              E[X] = E[  𝑋𝑖  
𝑛
𝑖=1 / n ] = p 

    V[Xi] = p(1－p)  

    V[X] = V[  𝑋𝑖  
𝑛
𝑖=1 / n ] = np(1－p) / n2  = p(1－p) / n 

    ⇒ σn (for X) = √p(1－p) / n  

Thus, we have 

    Pr[ | (X － p) / σn | > 2.33 ] < 0.02 

    ⇔ Pr[ | p － p | > 2.33 σn ] < 0.02 ＾ 

For example, let us 

examine the case  p = 0.2. 

← We may conclude this. 

in the class 
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2. Testing classifiers 

Testing the quality of the decision at each leaf 

Similarly we can estimate the error probability on the 

decision made at each leaf node of the tree. 

25 instances reach this node, 

among which 11 instances are misclassified 

success rate (on c238left.txt) 

the stat. results of the obtained 

decision tree on the whole 

(i.e., 700) instances 

The result of executing  "Percentage and split" with default 66%. 
Weka 



It would be nice if we have enough number of instances for training and 

testing.   In practice,  we are given only limited number of instances.   We 

show two techniques for dealing with such situations. 

2. Testing classifiers 

2.1.  Two well-known techniques 

2. Testing classifiers 
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2.1  Two techniques 

Cross validation 

10-fold cross validation 

often used 



2. Testing classifiers 
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2.1  Two techniques 
Bootstrap 

Warning: There are many Bootstrap methods.  The 

following method (from the textbook) is the simplest one.  



3. Tradeoff relations 
3. Tradeoff  relations 
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Two issues: 

・ unbalanced ratio 

 

・ unbalanced cost 

 ↑ by F-value 

 ↑ by tradeoff 
           analysis 
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3. Tradeoff relations 

3.1.  F-value 

When the positive instance ratio is small, the precision may not 

be a good measure for the performance of the obtained model. 

precision (i.e., correct prob.) =                          =   
TP 

Actual Yes 

TP 

TP + FN 

recall =                             =   
TP 

Predicted Yes 

TP 

TP + FP 

F-value =                                      =   

3. Tradeoff  relations 

3.1  F-value 
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cor. prob-1 + recall-1 

2TP 

2TP + FN + FP 

we want both large 



3. Tradeoff relations 

3.2.  Lift chart 

3. Tradeoff  relations 
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3.2  Lift chart 

Consider the Naive Bayes method. 

of test set 



3. Tradeoff  relations 
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Lift chart 
ideal one 

positive 
  instances 

# or % 

# or % 

Similar ones: ROC curve, Recall-precision 

3.2  Lift chart 



3. Tradeoff  relations 

17 

Yes !    By evaluating leaves. 

Can we draw a lift chart for decision trees? 

A typical meaningless case: 

almost all leaves are for one instance. 

100% positive prediction instances 

100% negative prediction instances 

3.2  Lift chart 

positive instance ratio 



4. On Exercise #3 
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4. On Exercise #3 

Classification rule discovery project: 

- How to evaluate and use obtained models. 

Task #1: Understand statistical values 

(a) Use credit-g.arff (given as a sample data in Weka) 

     to study the meaning of stat. data on a obtained decision 

     tree for credit-g.arff. 

Task #2:  Create better and/or useful rules 

 

(b) Try to make a rule with relatively small false-positive rate 

     by giving more weight to negative instances. 

(c) Derive "rules" with the true negative rate > 70%. 

data set breast-cancer.arff  

no-recurrence-event 


