L ect3: Classification #2 Tokyo Tech.
Intro. to Comp. & Data

Using obtained classifiers R e

Discuss ways for making use of
obtained classifiers.

1. Some basic knowledge from Prob. Theory.
2. How to test the performance of a classifier.
3. How to deal with tradeoff relations.

4. On Exercise #3.

* Some of the slide materials (in particular, green ones) are from the slides of
the authors of the textbook and their group at the University of Waikato.



1. Basics on prob.

1. Basic knowledge on probability
1.1. Expectation and Variance

1.1 Exp. and Var.

_ Recall that we assume
Expectation (often denoted by ) : a distribution D on a

discrete case "domain" of instances

E[X] = erRange(X)X XPF[X :X] @
continuous case (omitted below) -
E[ X ] = IXERange(X) X X p(X)
where p Is a density function for X on D.

Remark: In this course, by "mean" we mean
Variance: the average on a given data set.

VIX1=E[ (X=1) ] = 2y Rangecn) (X—10) 2XPI[ X =x]

__whysquared? > =2, o (x—E[X]) 2xPr[ X =x]

Standard deviation (denoted by 0): o =VV[ X] 2




1. Basics on prob.

Important Rules (sometimes called Laws) 11 Exp. and Var.

Consider n random variables X, ..., X, .

in general

in the class

E[ X Xi] =2, E[X]] « can be derived from the def.

Independent case

E[ X; X X, X === ] =E[X;] X E[X;] X =--

pair-wise independence
E[X; X X; 1=E[X;] X E[X]

= V[ X+ X; | =VI[X]+V[X] = V[ X;]=%; V[X]
= VLI X 1= % E[X;°] — % E[X] nieciass

all with the same exp.  and standard deviation ¢ | (note that V[X.] = ¢?)
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1. Basics on prob.

1.2. Law of large numbers, and ... 1.2 Law ofarge nums

Law of large numbers

Let X;, X,, ..., X, be the outcomes of independent
experiments following the same distribution, i.e.,
values of some random variable X. Then we have

Xp+ Xp+r e +X
m

empirical mean =

Law of large numbers

" — u=E[X]
Let X;, X,, ..., X beind. rnd. var.s

with the same expectation x. Then if

m is sufficiently large, then we have

No good !
Confusing '\
X+ Xo+=== +X :
L= = u] = high

m \
¥How close?

How high?

m

Pr[




1. Basics on prob.

1.2 Law of large num.s

Central Limit Theorem (Basic version)

Consider a random variable X defined by X =)/, X; /' n
where X;, X,, ..., X, are independent & identical random
variables with expectation 4 and variance ¢. Then X
converges to the Normal distribution N(x, &,).

Recall that
EX]=nul/n=pu, o,:=W[X]=0/Vn 7
Normal distribution PIIX > 7] E
0.1% 3.09
0.5% 2.58
| 1% 2.33
\ 5% 1.65
. | | 10% 1.28
For example, 1 0 1 165 20% 0.84
Pri=1.65= A <1.65]=90%  N(O, 1) 40% 0.25




1. Basics on prob.

Application of the Central Limit Thm 11 Exp. and Var.

Suppose that X =Y, X;/nis close to N(, ),
where E[X]=u and o,:=0Aln (since n is large enough).
Then we may assume that (X — u) / g, follows N(O, 1).

Thus, e.qg., | general rules
Pri(X — u) /6, >2.33]1<0.01 |E[CX]=cu
0} VV[cX] = co,
Pr[X>u+2.330,]<0.01
Pr[X > Z] V4 ﬂ
01% | 3001 PrIX>u+2336/Yn 1<0.01
0% | 28 Gets smaller when
1% 2.33 n increases.
5% |  1.65
10% | 1.28 /
20% |  0.84 Qualitative version
40% |  0.25 of the law of large numbers




1. Basics on prob.

Application of the Central Limit Thm 12 Low of large num.s

Suppose that X =Y, X;/nis close to N(, ),
where E[X]=u and o,:=0Aln (since n is large enough).
Then we may assume that (X — u) / g, follows N(O, 1).

Thus, e.g.,
How large?

PriX —w) /o, >2.33]<0.01

3 (e, > 100 )
N
Pr[X>u+233¢4,]<0.01 N

Pr[X > Z] V4 ﬂ ‘\'7/ )
0.1% 3.09 Pr[ X > U + 233 O'/\/ﬁ ] < 001 SSJ

Y

0.5% 2.58

Gets smaller when _
5% 1.65 /
10% 1.28 in general
20% |  0.84 Qualitative version

Chernoff bound J

40% |  0.25 of the law of large numbers




2. Testing classifiers

2. Testing classifiers

A standard flow

of classification tasks training set Learning phase
data set 700 [— ML algo.

| = @ a classification model

e.g., a decision tree
] :> ”

30% T

test set

Test phase

Suppose that we estimated the error prob. of the obtained
decision tree T is p. What does it mean?

Let p be the error probability of T, and let X; denote a random
variable that takes 1 (resp., 0) if T makes an error on the i th
Instance of the test set. (Let n denote the test set size.)

Then p is nothing but a value of the random variable

X = Z?=1 X; / n.



2 TeSting CIaSSiﬁerS 2. Testing classifiers
Suppose that we estimated the error prob. of the obtained
decision tree T is p. What does it mean?

Let p be the error probability of T, and let X; denote a random
variable that takes 1 (resp., 0) if T makes an error on the i1 th
Instance of the test set. (Let n denote the test set size.)

Then p is nothing but a value of the random var. X = ),i*, X; / n.

Note that

E[X] =p E[X] = E[ XL, X; /n]=p
VIXi] =p(1—p)
VIX] =V[ZiZ1 Xi/n]=np(l—p)/n>=p(l—-p)/n
= ¢ (for X) =\p(I—p)/n in the class
For example, let us
Thus, we have examine the case p=0.2.

Pr[| (X —p) /o, |>233]<0.02
& Prl|p—p|>2330,]<0.02 «— We may conclude this. .



2. Testing classifiers
Testing the quality of the decision at each leaf

Similarly we can estimate the error probability on the
decision made at each leaf node of the tree.

| o Weka
The result of executing "Percentage and split" with default 66%.

Shssier oumt the stat. results of the obtained
durazion > 22 decision tree on the whole <.

| personal_status = male div/sep: bad (4.0/1.0) o\

. . po
personal_status = female div/dep/mar: bad (28.0/12.0) (I'e'l 700) InStanceS N

duration <= 20: good (95.0/24.0)

d

|
| personal status = male 3ingle

| | credit amount <= 4110: good (26.0/8.0)
|

|

| credit amount > 4110: bad (25.0/11.0) H H
personal status = male mar/wid: bad (5.0} \ 25 InStanceS reaCh thls nOdei
| personal status = female single: bad (0.0}

-J Checking seatae = o200 gecd (18.0/11.0) among which 11 instances are misclassified

checking status = no checking: good (293.0/35.0)

HNumber of Leaves : 12

Size of the tree : 18

Time taken to build model: 0.06 seconds success ra‘te (On 0238|eft.txt)

=== Evaluation on test split ===

Time taken to test model on test split: 0.02 seconds

=== Summary ===
Correctly Classified Instances 180 79.8319 %
Incorrectly Classified Instances 45 20.1681 %

Kappa statistic 0.3912

= 10



2. Testing classifiers

2. Testing classifiers
2.1. Two well-known techniques

It would be nice if we have enough number of instances for training and
testing. In practice, we are given only limited number of instances. We
show two techniques for dealing with such situations.

2.1 Two techniques

Cross validation

s (Cross-validation avoids overlapping test sets
A First step: split data into & subsets of equal size

[ Second step: use each subset in turn for testing,
the remainder for training

» Called k-fold cross-validation

s Often the subsets are stratified before the
cross-validation is performed

“+ The error estimates are averaged to yield an
overall error estimate often used

10-fold cross validation 11




2. Testing classifiers
Bootstrap

2.1 Two techniques

Warning: There are many Bootstrap methods. The
following method (from the textbook) is the simplest one.

“»The bootstrap uses sampling with replacement
to form the training set

dSample a dataset of 7 instances ntimes with
replacementto form a new dataset of n7instances

Use this data as the training set

dUse the instances from the original dataset that
don’t occur in the new training set for testing

* Also called the 0.632 bootstrap

O A particular instance has a probability of 1-1/7 of not
being picked
A Thus its probability of ending up in the test data is:
(1 — 1} ~e " =0.368
n

[ This means the training data will contain
approximately 63.2% of the instances 12



3. Tradeoff relations

3. Tradeoff relations

% In practice, different types of classification
errors often incur different costs

% Examples: Two issues:
Q Terrorist profiling - unbalanced ratio
= “Not a terrorist” correct 99.99% of the time T by F-value

1 Loan decisions
- unbalanced cost

d O|I—sI|cI$ dete(?tlon 1 by tradeoff
Q Fault diagnosis analysis

O Promotional mailing

< The confusion matrix.

Predicted class
Yes No
Actual Yes True positive | False negative
class No False positive | True negative

13




- : deoff relati
3. Tradeoff relations > Hfadecl rewfons
3.1. F-value “The confusion matrix.

Predicted class
Yes No

Actual Yes True positive | False negative
class No

False positive | True negative

When the positive instance ratio is small, the precision may not
be a good measure for the performance of the obtained model.

o TP TP
precision (i.e., correct prob.) = Actual Yes — TP + EN

TP TP
recall = Predicted Yes ~ TP+FP ™ we want both large
2 2TP
F-value = =
cor. prob + recall 2TP + FN + FP

14



3. Tradeoff relations
3.2. Lift chart

Consider the Naive Bayes method.

of test set

% Sort instances'according to predicted probability of
being positive:

Predicted probability Actual class

1 0.95 Yes
2 0.93 Yes
3 0.93 No
4 0.88 Yes

“* X axis is sample size
y axis is number of true positives

3. Tradeoff relations

3.2 Lift chart

15



Lift chart
1000
#or%
800
Number of
respondents
positive o
Instances
400
200
0

3. Tradeoff relations

3.2 Lift chart
Ideal one
0 20% 80% 100%
Sample size
#or%

Similar ones: ROC curve, Recall-precision 16



3. Tradeoff relations

Can we draw a lift chart for decision trees? 3.2 Lift chart
Yes ! By evaluating leaves.

Plot: ThresholdCurve

' | Atypical meaningless case:

almost all leaves are for one inst e.

100% negative prediction instances

i 100% positive prediction instances
positive instance ratio

17



4 On Exercise #3 4. On Exercise #3

Classification rule discovery project:
- How to evaluate and use obtained models.

Task #1: Understand statistical values

(a) Use credit-g.arff (given as a sample data in Weka)
to study the meaning of stat. data on a obtained decision
tree for credit-g.arff.

Task #2: Create better and/or useful rules
data set breast-cancer.arff

no-recurrence-event
(b) Try to make a rule with relatively small false-positive rate
by giving more weight to negative instances.

(c) Derive "rules" with the true negative rate > 70%.
18



