Lect3: Classification \#2
 Using obtained classifiers

Tokyo Tech. Intro. to Comp. \& Data Lecture week3

Discuss ways for making use of obtained classifiers.

1. Some basic knowledge from Prob. Theory.
2. How to test the performance of a classifier.
3. How to deal with tradeoff relations.
4. On Exercise \#3.

* Some of the slide materials (in particular, green ones) are from the slides of the authors of the textbook and their group at the University of Waikato.

1. Basic knowledge on probability
 1.1. Expectation and Variance

1. Basics on prob.

Expectation (often denoted by μ): discrete case

$$
\mathrm{E}[X]=\sum_{x \in \operatorname{Range}(X)} x \times \operatorname{Pr}[X=x]
$$

continuous case (omitted below)
Recall that we assume a distribution \mathcal{D} on a "domain" of instances

$$
\mathrm{E}[X]=\int_{x \in \operatorname{Range}(X)} x \times p(x)
$$

where p is a density function for X on \mathcal{D}.

Variance:
Remark: In this course, by "mean" we mean the average on a given data set.

$$
\mathrm{V}[X]=\mathrm{E}\left[(X-\mu)^{2}\right]=\sum_{x \in \operatorname{Range}(X)}(x-\mu)^{2} \times \operatorname{Pr}[X=x]
$$

$$
\ldots=\sum_{x \in \operatorname{Range}(X)}(x-\mathrm{E}[X])^{2} \times \operatorname{Pr}[X=x]
$$

Standard deviation (denoted by σ) : $\quad \sigma=\sqrt{\mathrm{V}[X}]$

Consider n random variables X_{1}, \ldots, X_{n}.

in general

in the class
$\mathrm{E}\left[\Sigma_{i} X_{i}\right]=\Sigma_{i} \mathrm{E}\left[X_{i}\right] \leftarrow$ can be derived from the def.

independent case

$\mathrm{E}\left[X_{1} \times X_{2} \times \cdots\right]=\mathrm{E}\left[X_{1}\right] \times \mathrm{E}\left[X_{2}\right] \times \cdots$
pair-wise independence

$$
\begin{aligned}
& \mathrm{E}\left[X_{i} \times X_{j}\right]=\mathrm{E}\left[X_{i}\right] \times \mathrm{E}\left[X_{j}\right] \\
& \Rightarrow \mathrm{V}\left[X_{i}+X_{j}\right]=\mathrm{V}\left[X_{i}\right]+\mathrm{V}\left[X_{j}\right] \Rightarrow \mathrm{V}\left[\Sigma_{i} X_{i}\right]=\Sigma_{i} \mathrm{~V}\left[X_{i}\right] \\
& \Rightarrow \mathrm{V}\left[\Sigma_{i} X_{i}\right]=\Sigma_{i} \mathrm{E}\left[X_{i}^{2}\right]-\Sigma_{i} \mathrm{E}\left[X_{i}\right]^{2} \quad \text { in the class }
\end{aligned}
$$

all with the same exp. μ and standard deviation σ (note that $\mathrm{V}\left[X_{i}\right]=\sigma^{2}$) $\mathrm{E}\left[\Sigma_{i} X_{i}\right]=n \mu \quad \mathrm{~V}\left[\Sigma_{i} X_{i}\right]=n \sigma^{2} \quad \sqrt{\mathrm{~V}\left[\Sigma_{i} X_{i}\right]}=\sigma \sqrt{n}$

1.2. Law of large numbers, and ...

Law of large numbers
Let $x_{1}, x_{2}, \ldots, x_{m}$ be the outcomes of independent experiments following the same distribution, i.e., values of some random variable X. Then we have

$$
\begin{aligned}
& \quad \text { empirical mean }:=\frac{x_{1}+x_{2}+\cdots+x_{m}}{m} \rightarrow \mu=\mathrm{E}[X] \\
& \text { Law of large numbers } \\
& \hline \text { Let } X_{1}, X_{2}, \ldots, X_{m} \text { be ind. rnd. var.s } \\
& \text { with the same expectation } \mu \text {. Then if } \\
& m \text { is sufficiently large, then we have }
\end{aligned}
$$

$$
\operatorname{Pr}\left[\frac{X_{1}+X_{2}+\cdots+X_{m}}{m} \fallingdotseq \mu\right]=\text { high }
$$

Central Limit Theorem (Basic version)
Consider a random variable X defined by $X=\sum_{i=1}^{n} X_{i} / n$ where $X_{1}, X_{2}, \ldots, X_{n}$ are independent \& identical random variables with expectation μ and variance σ. Then X converges to the Normal distribution $\mathrm{N}\left(\mu, \sigma_{n}\right)$.
Recall that

$$
\mathrm{E}[X]=n \mu / n=\mu, \quad \sigma_{n}:=\sqrt{\mathrm{V}[X]}=\sigma / \sqrt{n}
$$

Normal distribution

For example,

$$
\operatorname{Pr}[-1.65 \leq X \leq 1.65]=90 \% \quad \mathrm{~N}(0,1)
$$

$\operatorname{Pr}[X \geq z]$	z
0.1%	3.09
0.5%	2.58
1%	2.33
5%	1.65
10%	1.28
20%	0.84
40%	0.25

Application of the Central Limit Thm

Suppose that $X=\sum_{i=1}^{n} X_{i} / n$ is close to $\mathrm{N}\left(\mu, \sigma_{n}\right)$, where $\mathrm{E}[X]=\mu$ and $\sigma_{n}:=\sigma / \sqrt{n} \quad$ (since n is large enough).
Then we may assume that $(X-\mu) / \sigma_{n}$ follows $\mathrm{N}(0,1)$.
\downarrow general rules

Thus, e.g.,

$\operatorname{Pr}[X \geq z]$	z
0.1%	3.09
0.5%	2.58
1%	2.33
5%	1.65
10%	1.28
20%	0.84
40%	0.25

$$
\left.\begin{array}{l|l}
\operatorname{Pr}\left[(X-\mu) / \sigma_{n}>2.33\right]<0.01 \\
\mathbb{N} \\
\operatorname{Pr}\left[X>\mu+2.33 \sigma_{n}\right]<0.01 \\
\hat{\mathbb{N}}
\end{array} \quad \begin{array}{l}
\mathrm{E}[c X]=c \mu \\
\sqrt{\mathrm{~V}[c X]}=c \sigma_{n}
\end{array}\right] \quad \begin{gathered}
\substack{\text { Gets smaller when } \\
n \text { increases. } \\
\operatorname{Pr}[X>\mu+\underbrace{2.33 \sigma / \sqrt{n}}]<0.01} \\
\text { Qualitative version } \\
\text { of the law of large numbers }
\end{gathered}
$$

Application of the Central Limit Thm

Suppose that $X=\sum_{i=1}^{n} X_{i} / n$ is close to $\mathrm{N}\left(\mu, \sigma_{n}\right)$, where $\mathrm{E}[X]=\mu$ and $\sigma_{n}:=\sigma / \sqrt{n}$ (since n is large enough). Then we may assume that $(X-\mu) / \sigma_{n}$ follows $\mathrm{N}(0,1)$. Thus, e.g.,

$\operatorname{Pr}[X \geq z]$	z
0.1%	3.09
0.5%	2.58
1%	2.33
5%	1.65
10%	1.28
20%	0.84
40%	0.25

$$
\begin{aligned}
& \operatorname{Pr}\left[(X-\mu) / \sigma_{n}>2.33\right]<0.01 \\
& \text { 介 } \\
& \operatorname{Pr}\left[X>\mu+2.33 \sigma_{n}\right]<0.01 \\
& \text { (1) } \\
& \operatorname{Pr}[X>\mu+2.33 \sigma / \sqrt{n}]<0.01 \\
& \text { Gets smaller when } \\
& n \text { increases. } \\
& \text { Qualitative version } \\
& \text { of the law of large numbers }
\end{aligned}
$$

2. Testing classifiers

A standard flow
of classification tasks

training set Learning phase

Test phase
Suppose that we estimated the error prob. of the obtained decision tree T is \hat{p}. What does it mean?

Let p be the error probability of T , and let X_{i} denote a random variable that takes 1 (resp., 0) if T makes an error on the i th instance of the test set. (Let n denote the test set size.)
Then \hat{p} is nothing but a value of the random variable
$X=\sum_{i=1}^{n} X_{i} / n$.

2. Testing classifiers

Suppose that we estimated the error prob. of the obtained decision tree T is \hat{p}. What does it mean?
Let p be the error probability of T , and let X_{i} denote a random variable that takes 1 (resp., 0) if T makes an error on the i th instance of the test set. (Let n denote the test set size.)
Then \hat{p} is nothing but a value of the random var. $X=\sum_{i=1}^{n} X_{i} / n$.
Note that

$$
\begin{aligned}
& \mathrm{E}\left[X_{i}\right]=p \quad \mathrm{E}[X]=\mathrm{E}\left[\sum_{i=1}^{n} X_{i} / n\right]=p \\
& \mathrm{~V}\left[X_{i}\right]=p(1-p) \\
& \mathrm{V}[X]=\mathrm{V}\left[\sum_{i=1}^{n} X_{i} / n\right]=n p(1-p) / n^{2}=p(1-p) / n \\
& \Rightarrow \sigma_{n}(\text { for } X)=\sqrt{p(1-p) / n}
\end{aligned}
$$

Thus, we have
in the class
For example, let us
examine the case $p=0.2$.
$\operatorname{Pr}\left[\left|(X-p) / \sigma_{n}\right|>2.33\right]<0.02$
$\Leftrightarrow \operatorname{Pr}\left[|\hat{p}-p|>2.33 \sigma_{n}\right]<0.02 \leftarrow$ We may conclude this.

Testing the quality of the decision at each leaf

Similarly we can estimate the error probability on the decision made at each leaf node of the tree.

The result of executing "Percentage and split" with default 66\%.

Classifier output

duration $<=20$: good $(95.0 / 24.0)$ duration > 20
personal_status $=$ male div/sep: bad (4.0/1.0)
personal_status $=$ female div/dep/mar: bad (28.0/12.0)
personal_status $=$ male single
| credit_amount <= 4110: good (26.0/8.0)
credit_amount >4110 : bad (25.0/11.0)
personal_status $=$ male mar/wid: bad (5.0)
personal_status $=$ female single: bad (0.0)
checking_status $=>=200$: good (49.0/11.0)
checking_status $=$ no checking: good (293.0/35.0)
Number of Leaves : 12
Size of the tree : 18

Time taken to build model: 0.06 seconds
=== Evaluation on test split $==$
Time taken to test model on test split: 0.02 seconds
=== Surmary $===$

2. Testing classifiers 2.1. Two well-known techniques

2. Testing classifiers
2.1 Two techniques

It would be nice if we have enough number of instances for training and testing. In practice, we are given only limited number of instances. We show two techniques for dealing with such situations.

Cross validation

* Cross-validation avoids overlapping test sets
\square First step: split data into k subsets of equal size
- Second step: use each subset in turn for testing, the remainder for training
Called k-fold cross-validation
Often the subsets are stratified before the cross-validation is performed
The error estimates are averaged to yield an overall error estimate
often used
10 -fold cross validation

Warning: There are many Bootstrap methods. The following method (from the textbook) is the simplest one.
*The bootstrap uses sampling with replacement to form the training set
QSample a dataset of n instances n times with replacement to form a new dataset of n instances
-Use this data as the training set
UUse the instances from the original dataset that don't occur in the new training set for testing

* Also called the 0.632 bootstrap
- A particular instance has a probability of $1-1 / n$ of not being picked
- Thus its probability of ending up in the test data is:

$$
\left(1-\frac{1}{n}\right)^{n} \approx e^{-1}=0.368
$$

- This means the training data will contain approximately 63.2% of the instances

3. Tradeoff relations

* In practice, different types of classification errors often incur different costs
* Examples:
- Terrorist profiling
- "Not a terrorist" correct 99.99\% of the time
] Loan decisions
- Oil-slick detection
- Fault diagnosis
- Promotional mailing

Two issues:

- unbalanced ratio
\uparrow by F-value
- unbalanced cost
\uparrow by tradeoff analysis
*The confusion matrix.

		Predicted class	
		Yes	No
 	Yes	True positive	False negative
	No	False positive	True negative

3. Tradeoff relations

3.1. F-value *The confusion matrix.

		Predicted class		
		Yes	No	
	Actual			
class	Yes	True positive	False negative	
	No	False positive	True negative	

When the positive instance ratio is small, the precision may not be a good measure for the performance of the obtained model.

$$
\begin{aligned}
& \text { precision (i.e., correct prob.) }=\frac{T P}{\text { Actual } \mathrm{Yes}}=\frac{T P}{T P+F N} \\
& \text { recall }=\frac{T P}{\text { Predicted Yes }}=\frac{T P}{T P+F P} \\
& \text { F-value }=\frac{2}{\text { cor. prob want both lars }^{-1}+\text { recall }^{-1}}=\frac{2 T P}{2 T P+F N+F P}
\end{aligned}
$$

3. Tradeoff relations

3. Tradeoff relations

Consider the Naive Bayes method.

of test set

* Sort instances according to predicted probability of being positive:

	Predicted probability	Actual class
1	0.95	Yes
2	0.93	Yes
3	0.93	No
4	0.88	Yes
...

* x axis is sample size
y axis is number of true positives

3. Tradeoff relations

Lift chart
3.2 Lift chart
ideal one

Similar ones: ROC curve, Recall-precision

Can we draw a lift chart for decision trees?
Yes! By evaluating leaves.

Plot: ThresholdCurve

100% positive prediction instances
positive instance ratio

Classification rule discovery project:

- How to evaluate and use obtained models.

Task \#1: Understand statistical values
(a) Use credit-g.arff (given as a sample data in Weka) to study the meaning of stat. data on a obtained decision tree for credit-g.arff.

Task \#2: Create better and/or useful rules data set breast-cancer.arff
(b) \quad no-recurrence-event
(b) Try to make a rule with relatively small false-positive rate by giving more weight to negative instances.
(c) Derive "rules" with the true negative rate $>70 \%$.

