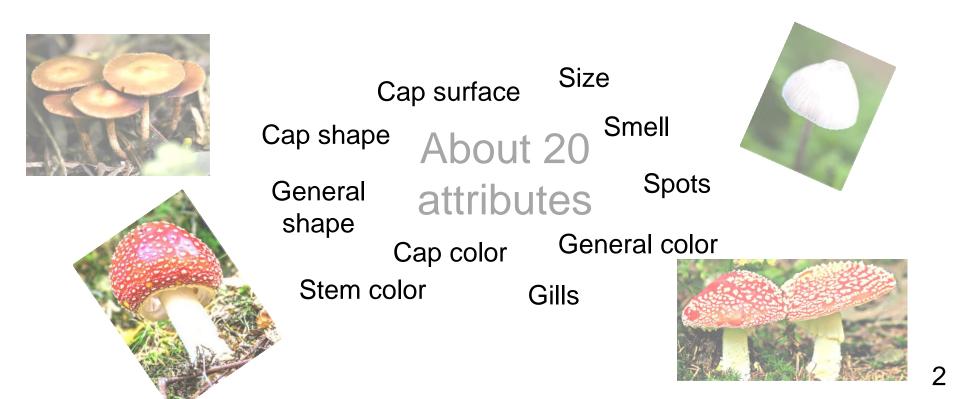
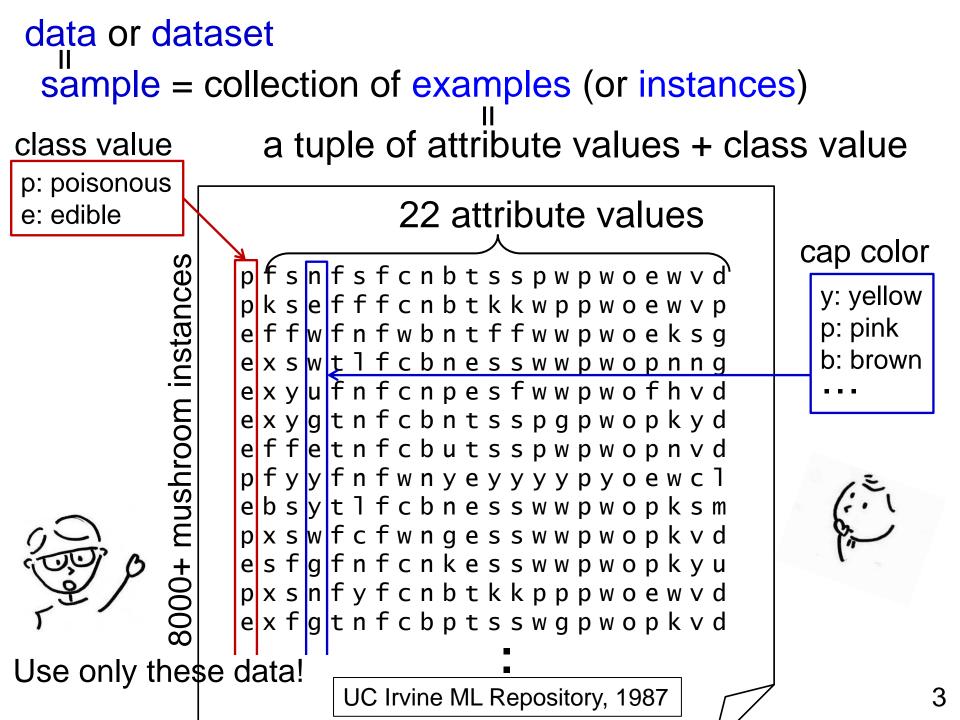
Tokyo Tech. Intro. to Comp. & Data Exercise&hw week1

Try some mini. data mining project: Classification rule discovery of poisonous mushrooms


- 1. Data description and our goal.
- 2. Homework assignment #1.
 - * submit through OCW before week2lect of each campus please send one pdf file via email to Suzukakedai: watanabe.o.aa-cd18s@ml.m.titech.ac.jp Ookayama: watanabe.o.aa-cd18o@ml.m.titech.ac.jp


3. Our tools (i.e., python programs) and dataset. for ex1 materials, see http://tcs.c.titech.ac.jp/DataMining/index.html

1. Data description and our goal

Discover the rule for classifying poisonous mushrooms

From the mushroom characteristics (attributes), discover a rule (binary decision rule) for determining whether the mushroom is poisonous or not.

goal = to find a *good* rule for detecting the class value of a given mushroom instance

> ves → e

rule = a Boolean expression that determines a given mushroom's toxicity

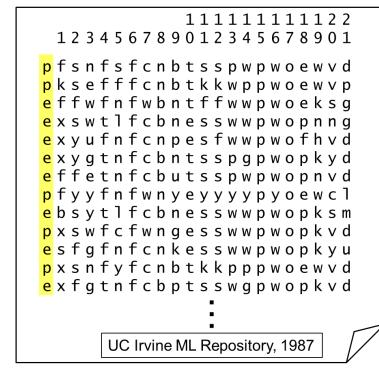
a[3] == 's'

a[19] != 'k'

no

∫no

more specifically


e.g.,

use some

appropriate # of

base predicates

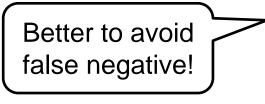
rule = a decision list

each base predicate is to
ask whether a[k] == val
or not

corresponding Boolean expression

a[3] == 's' ∨ (a[3] != 's' ∧ a[19] == 'k') ∠

Good rule = a decision list with low error rate


 $\frac{\text{Accuracy}}{(\text{or, success rate})} = \frac{\text{Number of correctly classified instances}}{\text{Total number of instances}}$

Error rate = Number of *in*correctly classified instances Total number of instances

False positive = Incorrectly classified as positive False negative = Incorrectly classified as negative

in our mushroom data, let us call

- p: poisonous = +1, positive
- e: edible = -1, negative

2. Homework assignment #1: Task

Your task:

training set

- (a) Obtain a decision list using <u>2000 instances</u> of the mushroom data (m8124org.txt) with accuracy > 90% on the whole dataset.
 page 7 demo. in the ex. session
 - * Use only the provided python programs.
 - * You may modify these programs as you like!!
- (b) Understand the mechanism of the provided python programs.

2. Homework assignment #1: Report

submit through OCW *before* week2lect

Required items that you need to explain: Japanese is OK!!

- (1) + a decision list that you obtained, About 1 page for each item, please!
 - + its corresponding Boolean expression (used in test.py), and
 - + its statistical data, that is,

+ accuracy, true positive rate, true negative rate both on the training set and on the whole data set.

Ture positive rate =	Number of correctly classified positive instances
	Total number of positive instances

Ture negative rate =

Number of correctly detected negative instances

Total number of negative instances

2. Homework assignment #1: Report (Cont.)

Required items that you need to explain: (Cont.)

(2) Explain a way to obtain your decision list at.

* The outline of what you did (or what your program did) for obtaining your decision list.

(3) Explain a key program (e.g., count.py) that you used.

- + explanation of the program outline, and
- + the source code of the program with explanation on what is computed at each key statement.

 \uparrow hand written comments are enough!!

3. Our tools and dataset

http://tcs.c.titech.ac.jp/DataMining/index.html

Dataset: from UCI repository

https://archive.ics.uci.edu/ml/datasets/mushroom

- m8124org.txt: 8124 mushroom instances
- mushroom-spec.txt: explanation on this dataset
- **Tools:** simple python programs
- shuffle.py: permute lines (i.e., instances) randomly
- test.py: test accuracy of a Boolean expression
- count.py: count # of instances for a basic predicate
- select.py: select instances not satisfying a basic predicate

Usage of these tools demo. in the ex. session

C:> python xxx.py number of instances < input file > output file

Example: selection of 2000 instances for a training set

C:> python shuffle.py 8124 < m8124org.txt > m8124rnd.txt C:> head -2000 < m8124rnd.txt > m2Krnd.txt

References

Some Terminal commands

Command	Example	Meaning
mkdir	mkdir <mark>ex1</mark>	Create a folder ex1
cd	cd ex1	Move to the ex1 folder
	cd	Move to the parent folder
	cd/	Move to the parent of the parent folder
dir	dir	Display files of the current folder
rm	rm foo.py	Delete foo.py (It is impossible to undo this command!)
python	Python foo.py	Run a program in the machine code