Lect: Introductions)

Tokyo Tech. Intro. to Comp. \& Data Lecture week 1

Brief introduction (s) to computation and data mining

1. Introduction to computation.

From Computer Science 1 (undergrad. 1st year course)
2. Introduction to data mining (also machine learning and AI).

From Computer Science 2 (undergrad. 1st year course)
3. On Exercise \#1.

1. Introduction to computation

- What is computation?
- Why computation?

Let us start why do we need to study computation.
The importance of CompView.
Computational Approach to XXX

1. Introduction to computation

Merit \#1:
We can get clear/better understanding on somewhat vague notions.

Merit \#2:
We can make best use of computational power.

1. Introduction to computation: 1.2. What is computation?

- $(1+4) \times 5=$
- Compute the Largest Common Divisor of 12 and 16
- Factorize $x^{2}+2 x y+y^{2}$
- Analyze genome sequence
- Provide web info.

Activities of a brain
Growth of trees
Various chemical processes

What would be basic components of computation?

1.2. What is computation?

1. Intro. to comp.
data $=$ target of computation $=$ bin. seq (= number)

binary sequence : every data is

 expressed by bin. seq.Let's see..

- number 18, -5, 3.25, 1/3
- character $\quad \mathrm{a} \leftarrow 01100001$ (=97), b $\leftarrow 01100010$ (=98)
- image
- sound
- movie

- taste, smell??

$$
\begin{aligned}
& \text { } 11111111111111 \\
& 11111111111111111 \\
& 11111111111111111 \\
& 111111001111111111 \\
& 111110000111111111 \\
& 111110000111111111 \\
& 111100000001111111
\end{aligned}
$$

1.2. What is computation?

data $=$ target of computation $=$ bin. seq ($=$ number)
computation $=$ actions taking place in a computer

\cdot
\cdot

1.2. What is computation?

data $=$ target of computation $=$ bin. seq (= number)
computation $=$ actions taking place in a computer

± 1
=0 ? branch iteration

A. Turing

1.2. What is computation?

1. Intro. to comp.

100 1000 100000000000000000000000001111111000000000000000000000000 1000000000000000000000001110000000110000000000000000000000 100000001111111111110011000011000111111000000000000000000 1000001110000000000000001100111000110000110000000000000000 1000001100000000000000000111110011000100011000000000000000 1000001100000000000000000000000000000001111000000000000000 1000001100000000000000000000000000000111000000000000000000 1000001100000000000000000000000000011100000000000000000000 1000001100000000000000000000000000011000000000000000000000 1000001100000000000000000000000000111000000000000000000000 1000000011000110001111111000110001110000000000000000000000 1000000000111001110000000111001110000000000000000000000000 1000

1.2. What is computation?

1. Intro. to comp.

$$
\text { data }=\text { target of computation }=\text { bin. seq }
$$

1.2 What is comp.?
program \& algorithm
computation $=$ actions taking place inside a computer, ... but what is their basic components

$$
\begin{array}{l|l}
\text { Ans: } & \pm 1 \\
& =0 \text { ? branch } \\
\text { iteration }
\end{array}
$$

How to specify comp. for achieving a target task?

program

How to design comp. for achieving a target task?

algorithm

- combinatrics
- theory of comp.

fundamental programming techniques

1. Introduction to computation

Merit \#1:
We can get clear/better understanding on somewhat vague notions.

> Typical Examples
> 1. Data Mining
> 2. Simulation

2. Introduction to data mining

2. Intro. to data mining also, machine learning (ML), and Al

Data Mining is to discover something important from a huge amount of data. examples
genome analysis \Rightarrow new health care method
 protein analysis \Rightarrow drug design business data analysis \Rightarrow profit / productivity

example

supermarket costumer analysis

diapers + ?
milk
baby food, ... standard staff, what else?

2. Introduction to data mining 2.1. data mining, ML, and AI

2. Intro. to data mining
2.1 data mining, ML, AI

Three Areas as Research Fields (My Personal View)

2. Introduction to data mining

2. Intro. to data mining

Three Areas as Research Fields (My Personal View)

3. On Exercise \#1

3. On Exercise \#1

As a typical example of data mining
Classification rule discovery of poisonous mushrooms.

In this course, we will mainly focus on methods for obtaining clear rules. In this case, the key technique is counting.

+ algorithmic techniques + statistics (or probability theory)

3. On Exercise \#1

Now from handout w1ex.pdf for Ex\#1.

1. Data description and our goal

Discover the rule for classifying poisonous mushrooms
From the mushroom characteristics (attributes), discover a rule (binary decision rule) for determining whether the mushroom is poisonous or not.

Cap suface Size

Cap shape	About 20
Smell	
General	attrilbuteS Spots
shape	Cap color General color

p: poisonous
e: edible

goal = to find a good rule for detecting

3. On Exercise \#1 the class value of a given mushroom instance

rule $=$ a Boolean expression that determines a given mushroom's toxicity

more specifically

rule $=$ a decision list

e.g.,

each base predicate is to ask whether $\mathrm{a}[k]==$ val or not
corresponding Boolean expression

$$
\left.a[3]==\text { 's' V (a[3] != 's' } \wedge a[19]==\text { 'k' }^{\prime}\right)_{8}
$$

Number of correctly classified instances
Accuracy = (or, success rate) Total number of instances

Number of incorrectly classified instances
Error rate $=\frac{\text { Number of incorrectly classified in }}{\text { Total number of instances }}$
False positive = Incorrectly classified as positive False negative = Incorrectly classified as negative
in our mushroom data, let us call
p : poisonous $=+1$, positive e : edible $=-1$, negative

Better to avoid false negative!
for our mushroom classification task
(a) Obtain a decision list using 2000 instances of the mushroom data (m8124org.txt) with accuracy >90\% on the whole dataset. page 7 demo. in the ex. session

* Use only the provided python programs.
* You may modify these programs as you like!!
(b) Understand the mechanism of the provided python programs.

Required items that you need to explain: Japanese is ok!"
(1) + a decision list that you obtained, About 1 page for each item, please!

+ its corresponding Boolean expression (used in test.py), and
+ its statistical data, that is,
+ accuracy, true positive rate, true negative rate both on the training set and on the whole data set.

Ture positive rate $=\frac{\text { Number of correctly classified positive instances }}{\text { Total number of positive instances }}$

Ture negative rate $=\frac{\text { Number of correctly detected negative instances }}{\text { Total number of negative instances }}$

Homework assignment \#1: Report

Required items that you need to explain: (Cont.)
(2) Explain a way to obtain your decision list at.

* The outline of what you did (or what your program did) for obtaining your decision list.
(3) Explain a key program (e.g., count.py) that you used. + explanation of the program outline, and
+ the source code of the program with
explanation on what is computed at each key statement.
\uparrow hand written comments are enough!!

3. On Exercise \#1

Additional explanation for those who have no experience on reading/writing programs.

Warning

The following explanation materials are partially from CS2 (100 undergrad. course), in which we use Ruby for programming language. So some examples are Ruby programs.

In the following, we explain some very basic points on programming for understanding those used for the Ex\#1, e.g., test.py, count.py, etc.

Summary of Previous Lecture:

3. On Exercise \#1

Extra programming guidance

* Data
- Data = number
- Basic elements: 0 and 1
* Computation
- Basic operations: $\mathbf{\pm 1}$ and loop

Though theoretically correct, it is too much to write a program by using only these basic operations.

Various important programming techniques have been invented.

$$
\begin{aligned}
& \text { while } b>0 \\
& w a=w a+1 \\
& b=b-1 \\
& \text { end }
\end{aligned}
$$

Array A variable that can store multiple data values.

Array can be used for counting!

$$
\begin{array}{ll}
\begin{array}{l|l}
\text { num }=[0,0,0,0,0] & \\
n=35 \\
\text { for } k \text { in rage }(n): \\
d=\text { int }(\text { input }())
\end{array} & \\
p=\operatorname{int}((d-140) / 10) & \\
\begin{array}{ll}
\text { num }[p]=\text { num }[p]+1
\end{array} & \text { determine the } \\
\text { print }(\text { num }) &
\end{array}
$$

