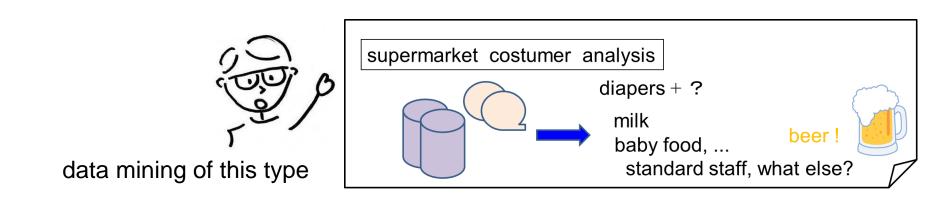
Lect5: Tasks other than classification

Tokyo Tech.
Intro. to Comp. & Data
Lecture week5

- 1. Intro. to the frequent item set mining.
- 2. Intro. to the clustering.
- Frequent item set mining
 (and association rule mining as its application).
- 2. Clustering.
- 3. On Exercise #5.

^{*} Some of the slide materials (in particular, green ones) are from the slides of the authors of the textbook and their group at the University of Waikato.

One of the earliest data mining examples investigated as a basic step for the association rule mining.



R. Agrawal, T. Imielinski, and A. N. Swami.

Mining association rules between sets of items in large databases. in *Proc. <u>SIGMOD Conference</u>* 1993, pp. 207-216 (1993).

Famous database conference started from 1975!!

glossaries

transaction database = a set of transactions.

transaction = a set of (usually, a sequence of) *item*s
recorded as one record in a database.

	customer ID		pu	irchase rec	ord		
_	12C3321	K. beer	K. chips				customer ID purchase record
L	18A2130	K. bread	M. milk	apple	orange		1203321 K. beer K. chips 18A2130 K. bread M. milk apple orange 15A2210 beef pork harm esg · · ·
	15A2210	beef 🧍	pork ham	egg			
	15B1213						
		a tra	ansact	ion	an i	tem	database

item set = a set of items in general. frequency of an item set I = # of transactions that contain I. ↑ also called support

frequent item set = an item set whose frequency is greater than or equal to a specified min. freq. θ .

Yes

Yes

Yes

No

True

True

False

True

1. Frequent item set mining

a task of enumerating *all* frequent item sets from a given database \mathscr{D} and a min. freq. parameter θ .

One-item sets	Two-item sets	Three-item sets	Four-item sets
Outlook = Sunny (5)	Outlook = Sunny	Outlook = Sunny	Outlook = Sunny
	Temperature = Hot (2)	Temperature = Hot	Temperature = Hot
		Humidity = High (2)	Humidity = High
			Play = No (2)
Temperature = Cool (4)	Outlook = Sunny	Outlook = Sunny	Outlook = Rainy
	Humidity = High (3)	Humidity = High	Temperature = Mild
		Windy = False (2)	Windy = False
			Play = Yes (2)
	Dainy	Mild Mormal	False Yes

❖ In total: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets (with minimum support of two)

1.1. Algorithms

There are quite good number of algorithms for enumerating frequent item sets. Here are two well-known approaches.

Apriori methods:

The first apriori algorithm was proposed independently by Agrawal-Srikant and Mannila-Toivonen-Verkamo.

R. Agrawal and R. Srikant

Fast algorithms for mining association rules in large databases. *in Proc. VLDB* 1994, pp. 487-499 (1994)

H. Mannila, H. Toivonen, and A. I. Verkamo.

Efficient algorithms for discovering association rules.

in *Proc. KDD Workshop* 1994: pp. 181-192 (1994).

Backtrack methods:

Algorithms known as *LCM* by Uno et al. are typical examples.

See http://research.nii.ac.jp/~uno/code/lcm.html

Item set mining
 Assoc. rule

1. Frequent item set mining

1.2. Association rule mining: Application

Association rule mining is to derive a relation among items (in general, attribute values) with a certain "significance".

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot		False	Yes
0.10.10.10.		High		
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No


```
If windy = false and play = no
    then outlook = sunny and humidity = high
```

customer ID		pu	rchase rec	ord	
12C3321	K. beer	K. chips			
18A2130	K. bread	M. milk	apple	orange	
15A2210	beef	pork ham	egg		
15B1213					

If (buying) diapers & chips then (buying) beer

1.2. Association rule mining: Application

g	lossa	ries
g	ossa	ries

- Support: number of instances properties
- Confidence: number of correct proportion of all instances the r
- Example: 4 cool days with norm

If temperature = cool then humidit

 \Rightarrow Support = 4, confidence = 100%

Normally: minimum support an pre-specified (e.g. 58 rules with and confidence ≥ 95% for weat

0.411	T	1.1	VA /:l.	DI
Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

1.2. Association rule mining: A

- Once all item sets with minimum supportance been generated, we can turn them into rules
- Example:

```
Humidity = Normal, Windy = False, Play = Yes
```

❖ Seven (2^N-1) potential rules:

If	Humidity = Normal and Windy = False then Play = Yes	4/4
If	Humidity = Normal and Play = Yes then Windy = False	4/6
If	Windy = False and Play = Yes then Humidity = Normal	4/6
If	Humidity = Normal then Windy = False and Play = Yes	4/7
If	Windy = False then Humidity = Normal and Play = Yes	4/8
If	Play = Yes then Humidity = Normal and Windy = False	4/9
If	True then Humidity = Normal and Windy = False	
	and Play = Yes	4/12

	Outlook	Temp	Humidity	Windy	Play
	Sunny	Hot	High	False	No
	Sunny	Hot	High	True	No
١	Overcast	Hot	High	False	Yes
	Rainy	Mild	High	False	Yes
	Rainy	Cool	Normal	False	Yes
	Rainy	Cool	Normal	True	No
	Overcast	Cool	Normal	True	Yes
	Sunny	Mild	High	False	No
	Sunny	Cool	Normal	False	Yes
	Rainy	Mild	Normal	False	Yes
	Sunny	Mild	Normal	True	Yes
	Overcast	Mild	High	True	Yes
(Overcast	Hot	Normal	False	Yes
	Rainy	Mild	High	True	No

2. Clustering

- Clustering techniques apply when there is no class to be predicted
- ❖ Aim: divide instances into "natural" groups

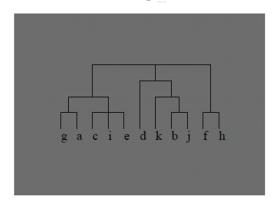
There are several ways to represent clusters, and several ways to measure the "appropriateness" of clusters.

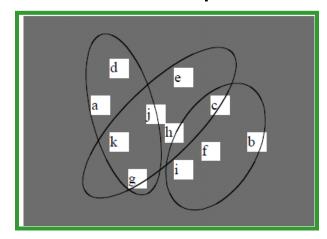
Representing clusters

- 1. Give a cluster label to each instance: disjoint sets.
- 2. By giving sets of instances: may have some overlaps.
- 3. Probabilistic assignment

	1	2	3	
a	0.4	0.1	0.5	
b	0.1	0.8	0.1	
c	0.3	0.3	0.4	
d	0.1	0.1	0.8	
e	0.4	0.2	0.4	
f	0.1	0.4	0.5	
g	0.7	0.2	0.1	
h	0.5	0.4	0.1	

4. Dendrogram





NB: dendron is the Greek word for tree

2. Clustering

2.1. Two major algorithms

We explain two major algorithms for clustering. Both are designed w.r.t. a certain way to measure the "appropriateness" of clusters. Here we mainly discuss these measures.

k-means: An algorithm to separating instances to k disjoint sets (for a given k) so that the total distance from each center becomes small. (\leftarrow usually, hard to get the smallest one)

- Simplest case: one numeric attribute
 - □ Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal

2.1. Two algorithms

2. Clustering

2.1. Two major algorithms

heuristics

k-means: An algorithm to separating instances to k disjoint sets (for a given k) so that the total distance from each center becomes small. (← usually, hard to get the smallest one)

- To cluster data into k groups: (k is predefined)
- 1. Choose k cluster centers
 - ☐ e.g. at random
- 2. Assign instances to clusters
 - based on distance to cluster centers
- 3. Compute *centroids* of clusters
- 4. Go to step 1
 - until convergence

well... simplified very much!

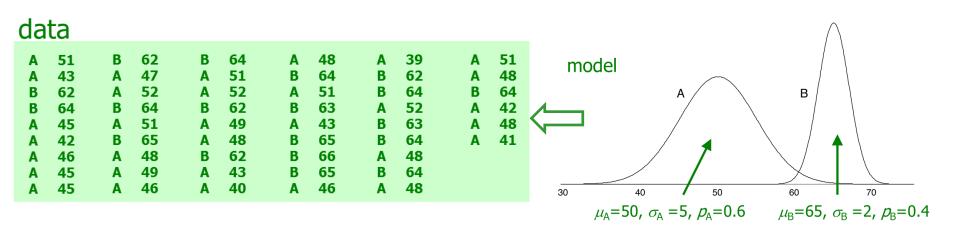
2.1. Two algorithms

2.1. Two major algorithms

EM-algorithm: Probabilistic version of k-means that tries to get "most likely" clusters for a given dataset.

under a certain probabilistic assumption

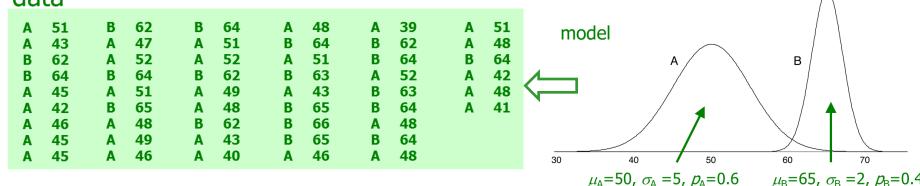
Most typically, we assume that instances are generated randomly under a mixture of (several) normal distributions.



EM-algorithm: Probabilistic version of k-means

2.1. Two algorithms

that tries to get "most likely" clusters for a given dataset.



Probability that instance x belongs to cluster A:

$$\Pr[A \mid x] = \frac{\Pr[x \mid A] \Pr[A]}{\Pr[x]} = \frac{f(x; \mu_A, \sigma_A) p_A}{\Pr[x]} \text{ with } f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Likelihood of an instance given the clusters:

$$Pr[x] = \sum_{j} Pr[x|cluster_{j}] \cdot Pr[cluster_{j}]$$
$$= \sum_{j} Pr[x \& cluster_{j}]$$

❖ Log-likelihood of *n* instances in the training set:

$$\log \prod_{i} \Pr[x_{i}] = \sum_{i} \log \Pr[x_{i}] \quad \leftarrow x_{1}, ..., x_{n}$$

2.2. How to determine # of clusters?

A general question on clustering is to a way to determine the number k of clusters. In fact, this is the topic of our Ex.#5. Please do some literature study and try two or three (or even more) ways.

Note that the important point is a way to evaluate the "appropriateness" of k because if we have a good way for measuring the appropriateness of k, then we would be able to design a binary search type algorithm for determining k.