
Tokyo Tech.
Intro. to Comp. & Data
Lecture week4

Lect4: Numerical Attributes
& Linear Regression, etc.

1. How to treat numerical attributes.
2. Basic methods for numerical data prediction.

1. Normal distributions.
2. How to take care of numerical attributes.
3. Linear methods (for regression and classification).
4 On Exercise #4.
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* Some of the slide materials (in particular, green ones) are from the slides of
the authors of the textbook and their group at the University of Waikato.

* Although the term "numeric attribute" is used in the textbook, I would like to use
"numerical attribute" in this course.



1. Normal distributions 1. Normal dist.s
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• A normal distribution (sometimes called, a Gaussian ) 
is a probability distribution.

• The "probability density function" for the normal 
distribution is defined by two parameters:
by using expectation μ and standard deviation σ,
the density function of N(μ, σ) is defined by
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1. Normal dist.s
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How to use:
Suppose that we obtain
n values x1, ..., xn as the
outcomes of n independent
random evaluations of X.

N(0, 1)
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What can we say about
the probability that X = x for the
next evaluation?

Pr[ X = x ] = 0

x

But, we may approximately claim

Pr[ x － ε < X < x + ε ] ≒ 2ε×f(x)
by using

Should be n－1
instead of nWhy?
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1. Normal dist.s
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Why?

side note

This is because in this way,  we have E[ σ2 ] = σ2 := V[X] .  Let  Xi denote
the i th evaluation of X.  Then we have E[ μ ] = μ := E[X], and 
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1. Normal dist.s
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This is because μ is not a real expectation; it is also calculated from data.^
Why?

Recall

The slide p9 of W3Lec. wasn't correct;  we should have used p(1－p) / (n－1).^ ^
sorry



2. Numerical attributes
2.1.  In the Naive Bayes

2. Numeric attr.s
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Recall that what we wanted to compute in the Naive Bayes is
the following probabilities.

And we compute these probabilities by prob. involving
numerical value

2.1. Naive Bayes
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2. Numeric attr.s
2.1. Naive Bayes

Example
density value:

Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 64, 68, 65, 71, 65, 70, 70, 85, False 6 2 9 5
Overcast 4 0 69, 70, 72, 80, 70, 75, 90, 91, True 3 3
Rainy 3 2 72,  … 85,  … 80,  … 95,  …
Sunny 2/9 3/5 µ =73 µ =75 µ =79 µ =86 False 6/9 2/5 9/14 5/14
Overcast 4/9 0/5 σ =6.2 σ =7.9 σ =10.2 σ =9.7 True 3/9 3/5
Rainy 3/9 2/5
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2. Numerical attributes
2.2.  Discretization

2. Numeric attr.s
2.2. Discretization

Divide the range of attribute values into a finite number
of bins b1,..., bk and transform an attribute value v to
the index  i such that  v ∈ bi.  

Discretization

supervised
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2. Numeric attr.sMore elaborated way:
(in the supervised discretization)

Question:  How to choose bin number k?
small          k large

less errorsimpler

attr val There is a way to choose
an appropriate  k  and bins
based on entropy analysis.

Isn't it a decision stump?

Yes!   And it is a key of decision tree learning
algorithms  ⇒ this feature is included in J4.8

No need to worry! Yes and No careful discretization
is sometimes better

2.2. Discretization
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3. Regression 3. Regression

What if the class value itself is numerical?

regression 回帰分析
= a process for obtaining a numerical estimator.

Our goal is to create:  classifier  ⇒ "numerical estimator"

a model (i.e., rule) for
computing a class value 

=

In Weka, both are
called a classifier

Two issues:
1.  How to express an estimator?  

⇒ linear function,  log likelifhood, SVM,
perceptron (≦ neural network), decision tree

⇒ least squares method, perceptron learning algo.s
2.  How to compute an estimator?  

this may be a recent
generalization
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3. Regression
3.1.  Linear estimator

3. Regression
3.1. Linear estimator

By Sewaqu - Own work, Public Domain, 
https://commons.wikimedia.org/w/index.ph
p?curid=11967659

Linear function (multi-linear)

𝑦𝑦 = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥1 + ⋯+ 𝑐𝑐𝑚𝑚𝑥𝑥𝑚𝑚

one dim. case, 
i.e.,𝑦𝑦 = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥1In our situation,  y is the class attr.

and x1,..., xm are the other attr.s. 

which can be regarded as
a def. of a hyperplane.

Why linear func.?

Simpler better  &  it indeed works in various situations.

Of course, it should not work always!
For more complicated models:  perceptron,  SVM, etc.
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3. Regression
3.2.  Linear regression

3. Regression
3.2. Linear regression

𝑥𝑥 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + ⋯+ 𝑤𝑤𝑘𝑘𝑥𝑥𝑘𝑘

Let me use the material from the textbook,
and for this, change the usage of symbols.

Our goal is to determine the following estimator
from the following training data set:

use linear estimator & obtain it by the least squares method 

=

𝑥𝑥(1) 𝑎𝑎(1) … 𝑎𝑎(1)

⋮
𝑥𝑥(𝑛𝑛) 𝑎𝑎(𝑛𝑛) … 𝑎𝑎(𝑛𝑛)
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k

class
value attribute values

 Weights are calculated from the training data
 Predicted value for first training instance a(1)
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Choose k +1 coefficients to minimize the 
squared error on the training data

Squared error:

Derive coefficients using standard matrix 
operations

Can be done if there are more instances than 
attributes (roughly speaking)

Minimizing the absolute error is more difficult
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Least squares method

𝑥𝑥 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + ⋯+ 𝑤𝑤𝑘𝑘𝑥𝑥𝑘𝑘
𝑥𝑥(1) 𝑎𝑎(1) … 𝑎𝑎(1)

⋮
𝑥𝑥(𝑛𝑛) 𝑎𝑎(𝑛𝑛) … 𝑎𝑎(𝑛𝑛)

1

1

k

k

class
value attribute values

3. Regression
3.2. Linear regression
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Some reasoning:

𝑌𝑌 = 𝑐𝑐0 + 𝑐𝑐1𝑋𝑋
b1 a1

bn an

class
value

attr
value

3. Regression
side note

… …

Consider the simplest 
1-dim. case. 

Suppose our goal is maximizing 
Pr[ Y1, ..., Yn = b1, ..., bn | X1 = a1, ..., Xn = an ]

where  Xi and  Yi respectively is the random variable
corresponding to the i th instance of the data set.

Suppose further each error (i.e., noise) follows the normal dist. 
N(0, σ2) independently.  That is,
and Zi ～ N(0, σ2) .  Then our task is to mimimize

Pr[ Z1= b1 － (c0 + c1 a1), ... ] ∝ exp − 1
2𝜎𝜎2

𝒃𝒃 − (𝑐𝑐0 + 𝑐𝑐1𝒂𝒂) 2 .

𝑌𝑌𝑖𝑖 = 𝑐𝑐0 + 𝑐𝑐1𝑋𝑋𝑖𝑖 + 𝑍𝑍𝑖𝑖



Suppose we get a good linear estimator like this

for the numerical class value y.   Then this can be used for
the classification task, most typically, to determine whether
y > θ, for a given threshold parameter θ.
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3. Regression
3.3.  For classifier

3. Regression
3.3.  For classifier

𝑓𝑓(𝒙𝒙) = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥1 + ⋯+ 𝑐𝑐𝑚𝑚𝑥𝑥𝑚𝑚

That is, the following classier:

𝑐𝑐0 + 𝑐𝑐1𝑥𝑥1 + ⋯+ 𝑐𝑐𝑚𝑚𝑥𝑥𝑚𝑚 > 𝜃𝜃
yes

no

x1 w1

1

x1

xm

… > θ

w0

wm

one layer perceptron
= no hidden layer perceptron

different learning algo.
back propagation, etc.
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Limit of linear estimators as a classifier: 3. Regression
side note

by Marvin Minsky and Seymour Papert

An example case:
The following classification of 2-dim. case.

x1

x2

y = c0 + c1x1+c2x2 > θ

We need to classify by

but this is impossible!
More precisely, the error
cannot be reduced less
than 1/4 = 25%.

c2x2 > θ－c0 － c1x1
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3. Regression
3.4.  How to take care of nominal attr.s

3. Regression
3.4.  Nominal attr.s

What shall we do if the data has some nominal attributes
such as

color  = red, yellow, green, blue, black

humidity = low, medium, high

quality = good, bad

Do not change them to numerical values unless this still
make sense!

⇒ 0, 1, 2, 3, 4  ×

⇒ 0, 1, 2  ＯＫ
⇒ 0, 1  ＯＫ

Since the binary case is always OK, one possibility is
to change all nominal attributes to the binary ones.
E.g.,  color-red = 0 (no)/1 (yes),  color-yellow = 0/1, ...

maybe better ways



4. On Exercise #4
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4. On Exercise #4

- How to take care of numerical attributes, and the mixed case.
- Introduction to linear regression and a NN type model.

Task #1: How to handle numerical attr.s.
(a) By using several example data sets, try various methods*1

to obtain several classification rules and compare these
methods from the results.
*1 For example, Weka Preprocess: "Discritize", "NumericToNominal", etc. 

You might want to use "MultilayerPerceptron" that can be chosen
from the choice "function."  In this case, use it with the no hidden layer.

Task #2:  Use the linear regression, etc.
(b) Use breast-Tumor.arff to experience basic learning algo.s

for computing linear estimators. 
+ Use linear reguression methods, i.e., "LinearRegression"

and "MultilayerPerceptron" (under the single layer option).
+ Try several ways to change nominal attr.s to numerical
ones, and compare the obtained estimators.

your original
ways are
encouraged
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