Lect4: Numerical Attributes BUSSEREYE
Intro. to Comp. & Data

& Linear RegreSSiOn, etc. | ecture week4

1. How to treat numerical attributes.
2. Basic methods for numerical data prediction.

1. Normal distributions.

2. How to take care of numerical attributes.

3. Linear methods (for regression and classification).
4 On Exercise #4.

* Although the term "numeric attribute" is used in the textbook, | would like to use
"numerical attribute" in this course.

* Some of the slide materials (in particular, green ones) are from the slides of
the authors of the textbook and their group at the University of Waikato.



1. Normal dist.s

1. Normal distributions

e A normal distribution (sometimes called, a Gaussian )
is a probability distribution.

* The "probability density function" for the normal
distribution is defined by two parameters:

by using expectation u and standard deviation o,
the density function of N(u, o) is defined by

(=
f(x):\/ﬂae ”




1. Normal dist.s

How to use:

Suppose that we obtain

n values x,, ..., X, as the
outcomes of n independent
random evaluations of X.

N(0, 1)

What can we say about
the probability that X = x for the ST OXE desN\_

next evaluation? 1 -
— 20
Pr[X=x]=0 Tx)=——¢

But, we may approximately claim

Prix —e<X<x+e] = 26 Xf(X)
by using
Nl N 1 & N
H=—) X o= — (Xi_,u)2
ni:]_ =1

Should be n—1
instead of n




1. Normal dist.s

/{l\ = 1 Xi 32: i (Xi —IZ\[)Z side note
N5 ]

This is because in this way, we have E[62] = ¢2:= V[X]. Let X; denote
the i th evaluation of X. Then we have E[ %] = x := E[X], and
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1. Normal dist.s

n n
/{l\ = 1 Xi 32: i (Xi —IZ\[)Z side note
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This is becauseft IS not a real expectation; it is also calculated from data.
The slide p9 of W3Lec. wasn't correct; we should have used 6(1—6) [ (n—1).
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2. Numeric attr.s

2. Numerical attributes
2.1. In the Nailve Bayes

2.1. Naive Bayes

Recall that what we wanted to compute in the Naive Bayes Is
the following probabilities.

Pr[ P = Yes | (Weather, T, H, W) = (sunny, 80, 90, windy) ]
Pr[ P = No | (Weather, T, H, W) = (sunny, 80, 90, windy) ]

) — _ . class
Outlook ~ Temperature ~ Humidity Windy Play < value
Sunny 85 85 False No
Sunny 80 90 True No

Overcast 83 86 False Yes
Rainy 75 80 False Yes r \

And we compute these probabillities by

Pr[ P = no | (Weather 90, windy) |
. Pr[Wth=sny|P=n](Pr[T= 80| P=n]) Pr[H=90 |P=n]-Pr[W=wind|P=n]+Pr[P=n]
- Pr[W=sny & 7= 80 & =90 & W=wind ]

prob. involving
numerical value




2. Numeric attr.s

2.1. Naive Bayes

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes NMNo | Yes MNo
Sunny 2 3 64, 68, 65, 71, 65, 70, 70, 85, | False 6 2 9 5
Overcast 4 0 69, 70, 72, 80, 70, 75, 90, 91, | True 3 3
Rainy 3 2 72, .. 85, .. 80, ... 95, ..
Sunny 2/9 3/5 u=73  u=75 =79 1 =86 | False 6/9 2/5|9/14 5/14
Overcast 4/9 0/5 0=6.2 o=79 0=10.2 o0=9.7 | True 3/9 3/5
Rainy 3/9 2/5
Example (eo-73y

density value:

A new day:

f (temperature = 66| yes) = ﬁe 262" =(.0340
7T 0.

Outlook

Temp.

Humidity Windy Play

Sunny

66

90

true ?

Likelihood of “yes” = 2/9 x 0.0340 x 0.0221 x 3/9 x 9/14 = 0.000036
Likelihood of "no” = 3/5 x 0.0291 x 0.0380 x 3/5 x 5/14 = 0.000136
P(“yes”) = 0.000036 / (0.000036 + 0. 000136) = 20.9%
P(*no”) = 0.000136/ (0.000036 + 0. 000136) = 79.1%




2. Numeric attr.s

2. Numerical attributes
2.2. Discretization

Discretization
Divide the range of attribute values into a finite number
of bins b,,..., b, and transform an attribute value v to
the index 1 suchthat v € b..

2.2. Discretization

¢ Discretize numeric attributes supervised
+** Divide each attribute’s range into intervals

1 Sort instances according to attribute’s val

QOutlook Temperature Humidity Windy Play

 Place breakpoints where the class chafiges Ll 2 = 7L N°
. . Sunny 80 20 True No
(the majority class)

QOvercas t 83 86 False Yes
Rainy 75 80 False Yes

d This minimizes the total error

s+ Example: temperature from weather data

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No




2. Numeric attr.s

More elaborated way:
(in the supervised discretization)

2.2. Discretization

Question: How to choose bin number k?

small K large
< >
simpler less error

based on entropy analysis.

ﬂ it a decision stu@

Yes! And itis a key of decision tree learning
algorithms = this feature is included in J4.8

careful discretization
ﬂ need to worry! Yes and NO | ig'sometimes better |

@ There is a way to choose
/ \ an appropriate k and bins




3 Regression 3. Regression

What if the class value itself is numerical?

Our goal is to create: classifier = "numerical estimator"

I
a model (i.e., rule) for

computing a class value

In Weka, both are
called a classifier

regression [EIIF5 4T
= a process for obtaining a numerical estimator.

this may be a recent

Two Issues: generalization

1. How to express an estimator?

= linear function, log likelifhood, SVM,
perceptron (= neural network), decision tree

2. How to compute an estimator?

= least squares method, perceptron learning algo.s
10



3 Regression 3. Regression
3.1. Linear estimator

Linear function (multi-linear)

15

VY=Cy+CiX1+ +Cnxm

10

/ one dim. case,
In our situation, yis the class attr. " | €.y =Co + 1%

and X,,..., x_ are the other attr.s. ™ BoE e 0w o
11001 A " By Sewaqu - Own work, Public Domain,

_ https://commons.wikimedia.org/w/index.ph
2 Why linear fu@ 0?curid=11967659

Simpler better & it indeed works in various situations.

which can be regarded as
a def. of a hyperplane.

Of course, it should not work always!
For more complicated models: perceptron, SVM, etc.

11



3. Regression

3 . Reg reSS I O n 3.2. Linear regression

3.2. Linear regression

[
use linear estimator & obtain it by the least squares method

P
. =il %,
Let me use the material from the textbook, “ %
and for this, change the usage of symbols. C‘k A
SO(N\'

Our goal is to determine the following estimator
from the following training data set: class  agribute values
x® g M

X =Wy+ WiXq + o+ WrXg
x™ L g
** Weights are calculated from the training data
% Predicted value for first training instance a(!)

k
weas) +wal +w,ay’ +...+wa” => wal
j=0

12



3. Regression

Least squares method

3.2. Linear regression

Class attribute values

value
x@® oM g

X =Wy+ WiXq + -+ WrXg :
x® g™ gk
** Choose k +1 coefficients to minimize the
squared error on the training data

**Squared error: n

2
S0 St

=1

¢ Derive coefficients using standard matrix
operations

** Can be done if there are more instances than
attributes (roughly speaking)

*** Minimizing the absolute error is more difficult -



' 3. R '
Some reasoning: egression

side note

Consider the simplest class attr

1-di value value st
-aim. case. [?1 a:l
Y =¢cy+c1X 10
bn d,

/ - "+ | one dim. case,
¥ l.e.,y =co+ c1xq
20 -10 10 20 30 40 50 60

PriYy ..Y,=Dby,...,b, [ X;=a, .., X =a,]

where X, and Y; respectively is the random variable
corresponding to the i th instance of the data set.

Suppose our goal is maximizing

Suppose further each error (i.e., noise) follows the normal dist.
N(0, ¢?) independently. That is, Y =co+ 1 X; + Z;
and Z, ~ N(0O, ) . Then our task is to mimimize

PrlZ,= b; — (c, +c,a),..] x exp (—% lb — (co + cla)llz).14



3. Regression

3. Regression
3.3. For classifier

3.3. For classifier

Suppose we get a good linear estimator like this
f(x)=co+c1x1 + -+ Cpxm

for the numerical class value y. Then this can be used for
the classification task, most typically, to determine whether

y > @, for a given threshold parameter 6. different learning algo.
back propagation, etc.

That is, the following classier:

CotC1x1 + - +copmxy, >0

one layer perceptron
no = no hidden layer perceptron 15



Imi ' ' £ 3.R i
Limit of linear estimators as a classifier: SOrEssion

side note

by Marvin Minsky and Seymour Papert

An example case:
The following classification of 2-dim. case.

X2
We need to classify by O O
Y = Gy + CX+CXy> 6 \

but this is impossible!
More precisely, the error

cannot be reduced less ®
than 1/4 = 25%.

16



3. Regression

3- Reg reSSIOn 3.4. Nominal attr.s

3.4. How to take care of nominal attr.s

What shall we do if the data has some nominal attributes

such as
color =red, yellow, green, blue, black
=0,1,2,3,4 X

humidity = low, medium, high
=0,1,2 OK

quality = good, bad = 0,1 OK

Do not change them to numerical values unless this still
make sense!

Since the binary case is always OK, one possibility Is
to change all nominal attributes to the binary ones.
E.g., color-red =0 (no)/1 (yes), color-yellow =0/1, ...

maybe better ways

17



4. On Exercise #4

4. On Exercise #4

- How to take care of numerical attributes, and the mixed case.
- Introduction to linear regression and a NN type model.

Task #1: How to handle numerical attr.s.

(a) By using several example data sets, try various methods*1
to obtain several classification rules and compare these
methods from the results.

*1 For example, Weka Preprocess: "Discritize", "NumericToNominal”, etc.
You might want to use "MultilayerPerceptron” that can be chosen
from the choice "function." In this case, use it with the no hidden layer.

Task #2: Use the linear regression, etc.

(b) Use breast-Tumor.arff to experience basic learning algo.s
for computing linear estimators.

+ Use linear reguression methods, i.e., "LinearRegression" your original
" . . . . ways are
and "MultilayerPerceptron" (under the single layer option).
. . encouraged
+ Try several ways to change nominal attr.s to numerical

ones, and compare the obtained estimators. 18
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