## Lect4: Numerical Attributes \& Linear Regression, etc.

## 1. How to treat numerical attributes. <br> 2. Basic methods for numerical data prediction.

## 1. Normal distributions.

2. How to take care of numerical attributes. 3. Linear methods (for regression and classification). 4 On Exercise \#4.

* Although the term "numeric attribute" is used in the textbook, I would like to use "numerical attribute" in this course.
* Some of the slide materials (in particular, green ones) are from the slides of the authors of the textbook and their group at the University of Waikato.


## 1. Normal distributions

- A normal distribution (sometimes called, a Gaussian ) is a probability distribution.

- The "probability density function" for the normal distribution is defined by two parameters: by using expectation $\mu$ and standard deviation $\sigma$, the density function of $\mathrm{N}(\mu, \sigma)$ is defined by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Suppose that we obtain $n$ values $x_{1}, \ldots, x_{n}$ as the outcomes of $n$ independent random evaluations of $X$.

What can we say about the probability that $X=x$ for the next evaluation?

$$
\operatorname{Pr}[X=x]=0
$$

$\mathrm{N}(0,1)$


$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

But, we may approximately claim

$$
\operatorname{Pr}[x-\varepsilon<X<x+\varepsilon] \fallingdotseq 2 \varepsilon \times f(x)
$$

by using

$$
\begin{aligned}
\hat{\mu}= & \frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2} \\
& \begin{array}{l}
\text { Should be } n-1 \\
\text { instead of } n
\end{array}
\end{aligned}
$$



1. Normal dist.s

This is because in this way, we have $\mathrm{E}\left[\hat{\sigma}^{2}\right]=\sigma^{2}:=\mathrm{V}[\mathrm{X}]$. Let $X_{i}$ denote the $i$ th evaluation of $X$. Then we have $\mathrm{E}[\hat{\mu}]=\mu:=\mathrm{E}[X]$, and

$$
\begin{aligned}
& E\left[\hat{\sigma}^{2}\right]=\left[\frac{1}{n-i} \Sigma\left(x_{i}-\hat{\mu}\right)^{2}\right]=\frac{1}{n-1} \Sigma\left[\left(x_{i} \div \frac{\Sigma x_{1}}{h}\right)^{2}\right] \\
& E\left[\left(x_{i}-\frac{\Sigma x_{j}}{n}\right)^{2}\right]=E\left[x_{i}^{2}\right]-\frac{2}{2}\left[x_{i} \Sigma x_{j}\right]+\frac{1}{n^{2}} F\left[\left(\sum_{j}\right)^{2}\right] \\
& \therefore E\left[X_{i}^{2}\right]-\frac{2}{n} E\left[X_{i}^{2}\right]^{-2} E\left[X_{i} \sum_{i \neq j} X_{j}\right] \\
& +\frac{1}{x^{2}}\left(E\left[\Sigma X_{j}^{2}\right]+E\left[\sum \sum_{j<j^{\prime}} X_{j} x_{0}^{\prime}\right]\right) \\
& \left.=E\left[x_{i}^{2}\right]-\frac{2}{n} E x_{x^{2}}{ }^{2}\right]+\frac{1}{n^{2}} E\left[\sum X_{j}^{2}\right] \\
& \therefore \frac{2}{x} E\left[x_{i \neq j} x_{j}+\frac{2}{n^{2}} E \cdot\left(\sum_{j<j} x_{j} x_{j}^{\prime}\right.\right. \\
& E\left[x_{i}^{2}\right]=E\left[x_{j}^{2}\right] \\
& E\left(x_{i}\right)=E\left[x_{j}\right] \\
& =\left(1 \div \frac{1}{x}\right) E\left[x_{i}^{2}\right] \div \frac{2(x-1)}{x} E\left[x_{i}\right]^{2}+\frac{x}{x^{2}} \cdot \frac{x(x-1)}{x} E\left[x_{i}\right]^{2}
\end{aligned}
$$

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}
$$

1. Normal dist.s

$$
\begin{aligned}
& =\left(1-\frac{1}{x}\right) E\left[\left(x_{i}^{2}\right]-\left(1-\frac{1}{2}\right) E\left[x_{1}\right]^{2}\right. \\
& \begin{aligned}
& E\left[x_{i}^{2}\right]-E\left[y_{1}^{2}\right]^{2} \\
& v\left[x_{i}\right]
\end{aligned} \\
& \text { Recall } \\
& D\left(\frac{1}{x-1} \sum \frac{a-1}{n} v x_{i} j=\frac{1}{n} v V E x\right]=\frac{h d^{2}}{r}=d^{2}
\end{aligned}
$$

$$
\left.\left.E\left[x_{0}\right]=\sum\left(x_{1}\right)^{2}\right]=\sum\left(x_{i}-\Sigma x\right)^{2}\right]
$$

This is because $\hat{\mu}$ is not a real expectation; it is also calculated from data.
The slide p9 of W3Lec. wasn't correct; we should have used $\hat{p}(1-\hat{p}) /(n-1)$. sorry 5

## 2. Numerical attributes

2. Numeric attr.s

Recall that what we wanted to compute in the Naive Bayes is the following probabilities.

$$
\begin{aligned}
& \operatorname{Pr}[P=\text { Yes } \mid(\text { Weather }, T, H, W)=(\text { sunny, } 80,90, \text { windy })] \\
& \operatorname{Pr}[P=\text { No } \mid(\text { Weather }, T, H, W)=(\text { sunny, } 80,90, \text { windy })]
\end{aligned}
$$

| Outlook | Temperature | Humidity | Windy | Play |
| :---: | :---: | :---: | :---: | :---: |
| Sunny | 85 | 85 | False | No |
| Sunny | 80 | 90 | True | No |
| Overcast | 83 | 86 | False | Yes |
| Rainy | 75 | 80 | False | Yes |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |

And we compute these probabilities by
prob. involving numerical value

$$
\begin{aligned}
& \operatorname{Pr}[P=\text { no } \mid(\text { Weather, } T, H, W)=\text { (sunny, } 80,90, \text { windy })] \\
& \fallingdotseq \frac{\operatorname{Pr}[W t h=\text { shy } \mid P=\mathrm{n}] \cdot \operatorname{Pr}[T=80 \mid P=\mathrm{n}) \operatorname{Pr}[H=90 \mid P=\mathrm{n}] \cdot \operatorname{Pr}[W=\text { wind } \mid P=\mathrm{n}] \cdot \operatorname{Pr}[P=\mathrm{n}]}{\operatorname{Pr}[W t h=\text { shy \& } T=80 \& H=90 \& W=\text { wind }]}
\end{aligned}
$$

2. Numeric attr.s
2.1. Naive Bayes

| Outlook |  |  | Temperature |  | Humidity |  | Windy |  |  | Play |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Yes |  |  | No | Yes | No | Yes |  | No |  | Yes | No |
| Yes | No |  |  |  |  |  |  |  |  |  |  |
| Sunny | 2 | 3 | 64,68, | 65,71, | 65,70, | 70,85, | False | 6 | 2 | 9 | 5 |
| Overcast | 4 | 0 | 69,70, | 72,80, | 70,75, | 90,91, | True | 3 | 3 |  |  |
| Rainy | 3 | 2 | $72, \ldots$ | $85, \ldots$ | $80, \ldots$ | $95, \ldots$ |  |  |  |  |  |
| Sunny | $2 / 9$ | $3 / 5$ | $\mu=73$ | $\mu=75$ | $\mu=79$ | $\mu=86$ | False | $6 / 9$ | $2 / 5$ | $9 / 14$ | $5 / 14$ |
| Overcast | $4 / 9$ | $0 / 5$ | $\sigma=6.2$ | $\sigma=7.9$ | $\sigma=10.2$ | $\sigma=9.7$ | True | $3 / 9$ | $3 / 5$ |  |  |
| Rainy | $3 / 9$ | $2 / 5$ |  |  |  |  |  |  |  |  |  |

Example density value: $f($ temperature $=66 \mid$ yes $)=\frac{1}{\sqrt{2 \pi} 6.2} e^{-\frac{(66-73)^{2}}{2 * 6.2^{2}}}=0.0340$


## 2. Numerical attributes <br> 2.2. Discretization

2. Numeric attr.s
2.2. Discretization

Discretization
Divide the range of attribute values into a finite number of bins $b_{1}, \ldots, b_{k}$ and transform an attribute value $v$ to the index $i$ such that $v \in b_{i}$.

* Discretize numeric attributes
* Divide each attribute's range into intervals
$\square$ Sort instances according to attribute's valyes
$\square$ Place breakpoints where the class changes (the majority class)
$\square$ This minimizes the total error

| Outlook | Temperature | Humidity | Windy | Play |
| :---: | :---: | :---: | :---: | :---: |
| Sunny | 85 | 85 | False | No |
| Sunny | 80 | 90 | True | No |
| Overcast | 83 | 86 | False | Yes |
| Rainy | 75 | 80 | False | Yes |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |

* Example: temperature from weather data

| 64 | 65 | 68 | 69 | 70 | 71 | 72 | 72 | 75 | 75 | 80 | 81 | 83 | 85 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yes | No | Yes | s | Yes |  |  | Yes |  | Yes | No | Yes | Yes |  |

(in the supervised discretization)
Question: How to choose bin number $k$ ?
$\underset{\text { simpler }}{\stackrel{\text { small }}{\stackrel{y}{2}} \quad \stackrel{k}{\text { less error }}}$

There is a way to choose an appropriate k and bins based on entropy analysis.

Isn't it a decision stump?
Yes! And it is a key of decision tree learning algorithms $\Rightarrow$ this feature is included in J 4.8


3．Regression
What if the class value itself is numerical？
Our goal is to create：classifier $\Rightarrow$＂numerical estimator＂

In Weka，both are
called a classifier
a model（i．e．，rule）for computing a class value
regression 回帰分析
＝a process for obtaining a numerical estimator．
Two issues：
this may be a recent generalization

1．How to express an estimator？
$\Rightarrow$ linear function，log likelifhood，SVM， perceptron（ $\leqq$ neural network），decision tree
2．How to compute an estimator？
$\Rightarrow$ least squares method，perceptron learning algo．s

## 3. Regression

### 3.1. Linear estimator

Linear function (multi-linear)

$$
y=c_{0}+c_{1} x_{1}+\cdots+c_{m} x_{m}
$$

which can be regarded as a def. of a hyperplane.

In our situation, $y$ is the class attr. and $x_{1}, \ldots, x_{m}$ are the other attr.s.

Why linear func.?
By Sewaqu - Own work, Public Domain, https://commons.wikimedia.org/w/index.ph p?curid=11967659

Simpler better \& it indeed works in various situations.
Of course, it should not work always!
For more complicated models: perceptron, SVM, etc.

## 3. Regression

### 3.2. Linear regression

II
use linear estimator \& obtain it by the least squares method
Let me use the material from the textbook, and for this, change the usage of symbols.


Our goal is to determine the following estimator from the following training data set:

$$
x=w_{0}+w_{1} x_{1}+\cdots+w_{k} x_{k}
$$

| class | attribute values |  |
| :---: | :---: | :---: |
| $x^{(1)}$ | $a_{1}^{(1)}$ | $a_{k}^{(1)}$ |
| $x^{(n)}$ | $a 1^{(n)}$ | $a_{k}^{(n)}$ |

Weights are calculated from the training data
Predicted value for first training instance $a^{(1)}$

$$
w_{0} a_{0}^{(1)}+w_{1} a_{1}^{(1)}+w_{2} a_{2}^{(1)}+\ldots+w_{k} a_{k}^{(1)}=\sum_{j=0}^{k} w_{j} a_{j}^{(1)}
$$

Least squares method

$$
x=w_{0}+w_{1} x_{1}+\cdots+w_{k} x_{k}
$$

class $\quad$ attribute values
value

$$
x^{(1)} \quad a_{1}^{(1)} \quad \ldots \quad a_{k}^{(1)}
$$

$$
x^{(n)} \quad a 1^{(n)} \quad \ldots \quad a_{k}^{(n)}
$$

* Choose $k+1$ coefficients to minimize the squared error on the training data
* Squared error:

$$
\sum_{i=1}^{n}\left(x^{(i)}-\sum_{j=0}^{k} w_{j} a_{j}^{(i)}\right)^{2}
$$

* Derive coefficients using standard matrix operations
* Can be done if there are more instances than attributes (roughly speaking)
* Minimizing the absolute error is more difficult


## Some reasoning:

Consider the simplest 1-dim. case.

$$
Y=c_{0}+c_{1} X
$$

class attr value value $b_{1} \quad a_{1}$
$b_{n} a_{n}$

Suppose our goal is maximizing

$$
\operatorname{Pr}\left[Y_{1}, \ldots, Y_{n}=b_{1}, \ldots, b_{n} \mid X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right]
$$

where $X_{i}$ and $Y_{i}$ respectively is the random variable corresponding to the $i$ th instance of the data set.

Suppose further each error (i.e., noise) follows the normal dist. $\mathrm{N}\left(0, \sigma^{2}\right)$ independently. That is, $\quad Y_{i}=c_{0}+c_{1} X_{i}+Z_{i}$ and $Z_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$. Then our task is to mimimize

$$
\operatorname{Pr}\left[Z_{1}=b_{1}-\left(c_{0}+c_{1} a_{1}\right), \ldots\right] \propto \exp \left(-\frac{1}{2 \sigma^{2}}\left\|\boldsymbol{b}-\left(c_{0}+c_{1} \boldsymbol{a}\right)\right\|^{2}\right) ._{14}
$$

## 3. Regression

### 3.3. For classifier

Suppose we get a good linear estimator like this

$$
f(\boldsymbol{x})=c_{0}+c_{1} x_{1}+\cdots+c_{m} x_{m}
$$

for the numerical class value $y$. Then this can be used for the classification task, most typically, to determine whether $y>\theta$, for a given threshold parameter $\theta$.

That is, the following classier:

different learning algo. back propagation, etc.
one layer perceptron
$=$ no hidden layer perceptron 15

## Limit of linear estimators as a classifier:

## by Marvin Minsky and Seymour Papert

An example case:
The following classification of 2-dim. case.

We need to classify by

$$
y=c_{0}+c_{1} x_{1}+c_{2} x_{2}>\theta
$$

but this is impossible! More precisely, the error cannot be reduced less than $1 / 4=25 \%$.


## 3. Regression

### 3.4. How to take care of nominal attr.s

What shall we do if the data has some nominal attributes such as

$$
\begin{aligned}
& \text { color }=\text { red, yellow, green, blue, black } \\
& \qquad \Rightarrow 0,1,2,3,4
\end{aligned}
$$

humidity $=$ low, medium, high

$$
\Rightarrow 0,1,2 \text { OK }
$$

$$
\text { quality = good, bad } \Rightarrow 0,1 \text { OK }
$$

Do not change them to numerical values unless this still make sense!

Since the binary case is always OK, one possibility is to change all nominal attributes to the binary ones.
E.g., color-red = 0 (no)/1 (yes), color-yellow = 0/1, ...

## 4. On Exercise \#4

- How to take care of numerical attributes, and the mixed case.
- Introduction to linear regression and a NN type model.

Task \#1: How to handle numerical attr.s.
(a) By using several example data sets, try various methods*1 to obtain several classification rules and compare these methods from the results.
*1 For example, Weka Preprocess: "Discritize", "NumericToNominal", etc. You might want to use "MultilayerPerceptron" that can be chosen from the choice "function." In this case, use it with the no hidden layer.
Task \#2: Use the linear regression, etc.
(b) Use breast-Tumor.arff to experience basic learning algo.s for computing linear estimators.

+ Use linear reguression methods, i.e., "LinearRegression" and "MultilayerPerceptron" (under the single layer option). + Try several ways to change nominal attr.s to numerical
your original ways are encouraged ones, and compare the obtained estimators.

