High Performance Scientific Computing

High Performance Scientific Computing 2018 Rio Yokota

Course schedule

	Course schedule	Required learning
Class 1	How to use TSUBAME	Login to Tokyo Tech's supercomputer TSUBAME
		and learn how to use libraries and the job scheduler
Class 2	Shared memory parallelization	Use pthreads and OpenMP to achieve shared
		memory parallelization
Class 3	Distributed memory parallelization	Use MPI to achieve distributed memory
		parallelization
Class 4	SIMD parallelization	Use SSE, AVX, and AVX512 to achieve SIMD
		vectorization
Class 5	GPU programming	Use OpenACC, CUDA, and OpenCL to program
		GPUs
Class 6	Multi-GPU programming	Combine CUDA and MPI to use multiple GPUs
		on TSUBAME
Class 7	Cache blocking	Use BLISLAB and CUBLAS as an example to
		practice cache blocking
Class 8	Numerical libraries	Understand how LAPACK, SCALAPACK, and
		FFTW work, and learn to use them appropriately

Course schedule

Class 9	Fast linear solvers	Understand how to choose the appropriate solvers in PETSc and Trilinos
Class 10	I/O libraries	Use NetCDF, HDF5, MPI-IO to read and write
		on large parallel file systems
Class 11	Parallel debugger	Use CUDA-GDB, Valgrind, TotalView to debug
		parallel code
Class 12	Parallel profiler	Use gprof, VTune, PAPI, Tau, Vampire to profile
		parallel code
Class 13	Performance primitives	Learn how to use performance primitives
		such as ModernGPU and MapReduce
Class 14	Graph partitioning	Use METIS and ParMETIS to partition a large
		graph in parallel
Class 15	Deep Learning	Use ChainerMN to train a large neural network on
		a parallel computer

How to use TSUBAME

High Performance Scientific Computing 2018 Rio Yokota

How to create an account

- 1. Login to Tokyo Tech Portal
- 2.Click "TSUBAME 3 Portal"
- 3. Create new account

Uploading your public key

ssh-keygen (this generates id_rsa.pub)
 Login to TSUBAME 3 Portal
 Click "Register SSH public key"
 Copy & Paste your public key

Login and setup

- 1. ssh username@login.t3.gsic.titech.ac.jp
- 2. module avail
- 3. module load cuda intel intel-mpi
- 4. module list

System configuration

TSUBAME3.0 Compute Node SGI ICE-XA, a New GPU Compute Blade Co-Designed by SGI and Tokyo Tech GSIC

Job script

job.sh

#!/bin/sh
#\$ -cwd
#\$ -l f_node=1
#\$ -l h_rt=0:01:00
./a.out

test.c

#include <stdio.h>

```
int main() {
    printf("hi\n");
}
```

1.gcc test.c

- 2.qsub -g tga-hpc-lecture job.sh
- 3. qrsh -g tga-hpc-lecture -l f_node=1 -l h_rt=0:01:00
- 4.qstat

5.qdel

error file output file

- r running
- qw waiting in the queue
- h on hold
- d deleting
- t transition during job-start
- s suspended
- S suspended by the queue
- T has reached the limit of the tail
- E error