Collaborative Exercise 1

June 28, 2018

Problem A:

Write answer to the following questions about design of wireless communication systems.

- 1. Calculate channel capacity C_0 bps when bandwidth B=10 MHz and SNR (SNR at coverage edge) $\gamma_0=10$ dB.
- 2. Calculate coverage d_0 m (distance between basestation and coverage edge) to realize $\gamma_0 = 10$ dB when transmit power $P_t = 10$ mW, transmit antenna gain $G_t = 0$ dB, receive antenna gain $G_r = 0$ dB, carrier frequency $f_0 = 1$ GHz, temperature T = 270 K, and propagation channel is modeled as a free space.
- 3. Calculate user rate at coverage edge C_{UE} bps/UE when UE density (density of user equipment) $\eta = 1000 \text{ UE/km}^2$.
- 4. Change carrier frequency from f_0 to \widetilde{f}_0 to achieve 100 times more user rate than C_{UE} calculated in Problem 3 under conditions of $\widetilde{B}=B\frac{\widetilde{f}_0}{f_0}, \widetilde{G}_t=G_t\left(\frac{\widetilde{f}_0}{f_0}\right)^2$, and $\widetilde{G}_r=G_r$.
- 5. How many more basestations are needed to achieve 100 times more user rate in Problem 4?

Collaborative Exercise 1

June 28, 2018

Name: Student ID:

Problem B:

Write answer to the following questions about up/down converters.

1. Calculate and draw power spectrum of baseband (BB) transmit signal $S_B^s(f)$ W/Hz when BB transmit signal $s_B(t)$ is given as

$$s_B(t) = \sum_n a_n g(t - nT_s)$$
 $a_n = \begin{cases} +1, & \text{if } m_n = 0 \\ -1, & \text{if } m_n = 1 \end{cases}$

$$g(t) = \begin{cases} A, if |t| \le \frac{T_s}{2} \\ 0, if |t| > \frac{T_s}{2} \end{cases}$$

where m_n is a random binary message at time index n and g(t) is a rectangular pulse with pulse length (symbol period) $T_s = 100 \ ns$.

- 2. Calculate and draw power spectrum of analytical transmit signal $s_A(t) = s_B(t)e^{j2\pi f_0 t}$ when carrier frequency $f_0 = 1$ GHz.
- 3. Calculate and draw power spectrum of RF transmit signal $s(t) = \text{Re}[s_A(t)]$.
- 4. Calculate BB equivalent channel response $H_B(f)$ and draw $|H_B(f)|^2$ when channel impulse response $h(\tau) = \delta(\tau) + \delta(\tau \tau_0)$ and $\tau_0 = 100$ ns.
- 5. Calculate and draw power spectrum of BB receive signal $S_B^{\gamma}(f)$ by using equivalent BB system model.