Collaborative Exercise 2

August 2, 2018

Name:	Student ID:
Ivanic.	Student ID.

Problem A:

Write answer to the following questions about OFDM communication system drawn in Fig 2.

- 1. Given channel coefficients $\mathbf{h} = [h_0, h_1, 0, 0]^T$, calculate its cyclic shift matrix \mathbf{H}_{cp} to calculate receive signal $\mathbf{y} = [y_0, y_1, y_2, y_3]^T$ via convolution with transmit signal $\mathbf{s} = [s_0, s_1, s_2, s_3]^T$ with cyclic prefix of one symbol (sample).
- 2. Calculate 4×4 Fourier transformation matrix \mathbf{F} and inverse Fourier transformation matrix \mathbf{F}^{-1} , and verify $\mathbf{F}^{-1}\mathbf{F} = \mathbf{I}$.
- 3. Calculate frequency response of the channel $\tilde{\mathbf{h}} = \mathbf{F}\mathbf{h}$ and draw their gain when $h_0 = 1$ and $h_1 = 1$.
- 4. Confirm $\mathbf{F} \mathbf{H}_{cp} \mathbf{F}^{-1} = \operatorname{diag}(\mathbf{\tilde{h}})$ when $\mathbf{h} = [h_0, h_1, 0, 0]^T$.
- 5. Explain why Inter Symbol Interference is not occurred on frequency domain receive signal $\tilde{y} = Fy$, when frequency domain transmit signal is $\tilde{s} = Fs$.

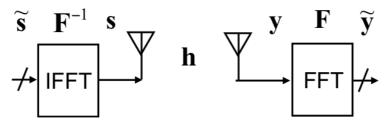


Figure 2: OFDM communication system.

Collaborative Exercise 2

August 2, 2018

Problem B:

Write answer to the following questions about SISO, SIMO, and MIMO communication systems when $P/\sigma^2 = 100$ and B = 1 [Hz], where P is transmit power, σ^2 is noise variance, and B is occupied bandwidth. For calculation, you can use $\log_2(1 + \gamma) \cong \log_2(\gamma)$, $\log_2(100) \cong 6.6$ and $\log_2(3) \cong 1.6$.

- 1. Calculate SNR γ and channel capacity C of a SISO system when the channel response is given as h = 1/2.
- 2. Calculate SNR γ and channel capacity C of a SIMO system with MRC diversity when channel vector is given as $\mathbf{h} = \begin{bmatrix} 1/2, \sqrt{3}/2 \end{bmatrix}^T$.
- 3. Calculate SNR γ and channel capacity C of a MIMO system with MIMO diversity (1st eigenmode) when channel matrix is given as

$$\mathbf{H} = \begin{bmatrix} 1/2 & 1 \\ \sqrt{3}/2 & 0 \end{bmatrix}.$$

- 4. Calculate SNR γ_1 , γ_2 and channel capacity C_1 , C_2 of two streams over the MIMO channel given in question 3 when spatial multiplexing (ZF interference cancellation) is used instead of the MIMO diversity.
- 5. Calculate SNR γ_1 , γ_2 and channel capacity C_1 , C_2 of two streams over the MIMO channel given in question 3 when SVD-MIMO is used instead of the MIMO diversity.
- 6. Compare the calculated capacities for SISO, SIMO, and MIMO systems, and give remarks.