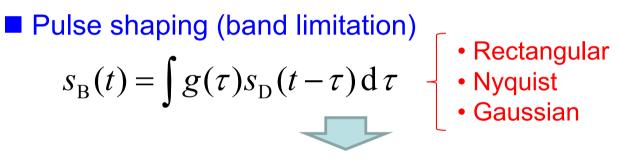
2018 2Q Wireless Communication Engineering

#5 Demodulation and Matched Filter

Kei Sakaguchi sakaguchi@mobile.ee. June 25, 2018

Course Schedule (1)


	Date	Text	Contents
#1	June 11	1, 7	Introduction to wireless communication systems
#2	June 14	2, 5, etc	Link budget design of wireless access
#3	June 18		Up/down conversion and equivalent baseband system
#4	June 21	3.3, 3.4	Digital modulation and pulse shaping
#5	June 25	3.5	Demodulation and matched filter
#6	June 28		Collaborative exercise for better understanding 1
#7	July 2	3.5	Detection and error due to noise
#8	July 5	4.4	Channel fading and diversity combining

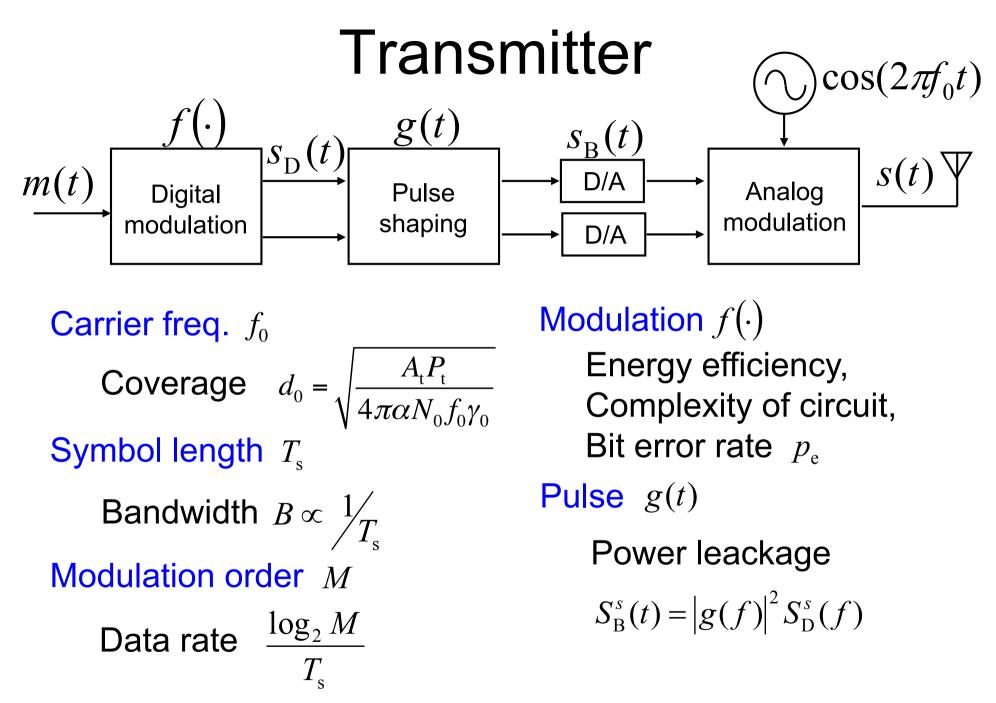
From Previous Lecture

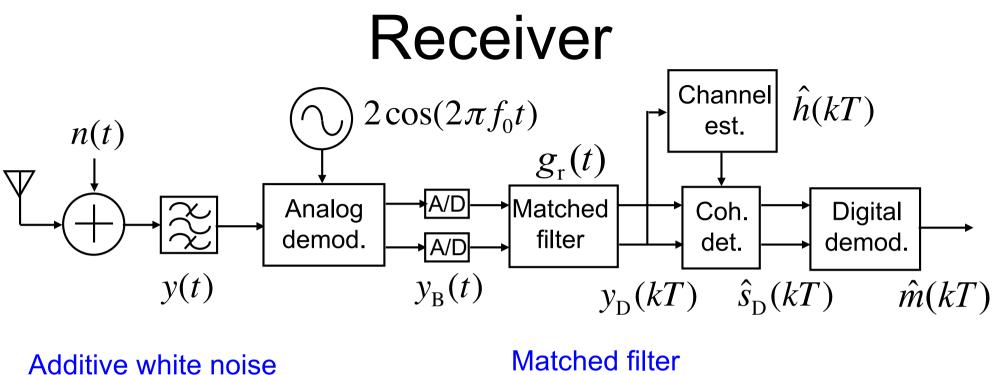
Digital modulation

$$s_{\rm D}(t) = s_{\rm DI}(t) + js_{\rm DQ}(t) = f(m(t)) - \begin{cases} \bullet \text{ Amplitude} \\ \bullet \text{ Phase} \\ \bullet \text{ Frequency} \end{cases}$$

Data rate, power efficiency, complexity, error rate

Bandwidth, error rate


IQ analog modulation


$$s(t) = s_{\rm BI}(t)\cos(2\pi f_{\rm c}t) - s_{\rm BQ}(t)\sin(2\pi f_{\rm c}t)$$

Carrier frequency

Contents

- Structure of receiver
- Analog demodulation
- Noise through analog demodulator
- Receive sampling
- Matched filter
- Output SNR

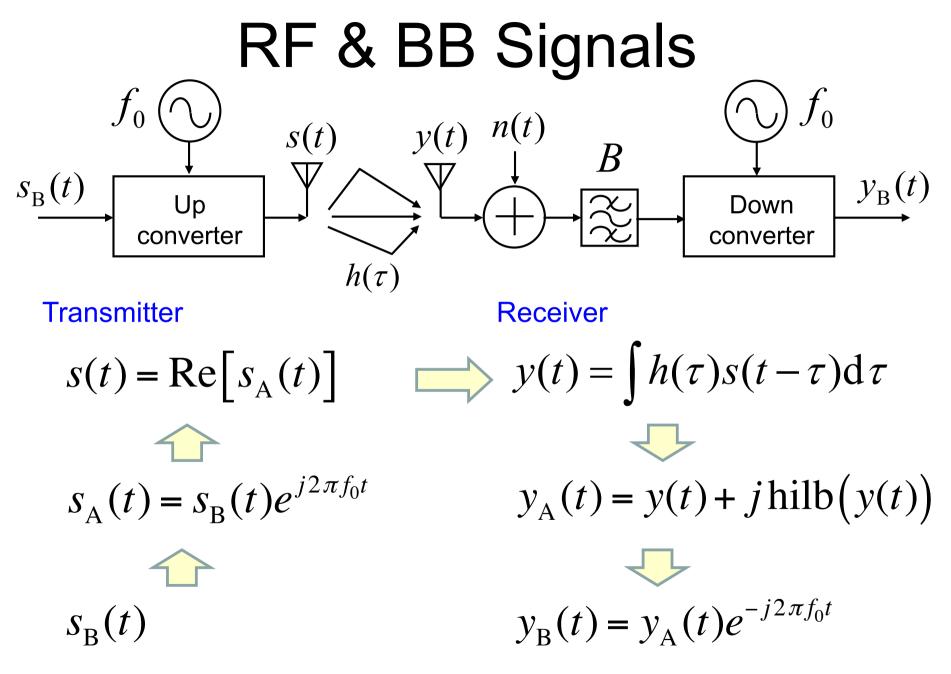
Matched filter

Thermal noise generated in receiver

Bandpass fileter

Coherent detection

Maximization of SNR


Inter system interference cancellation Compensation of channel response

Analog demodulation

Convert signal from RF to BB

Digital demodulation

Convert complex signal to message

Analog Demodulation

Inputs & outputs of analog demodulator

$$y_{\rm B}(t) = y_{\rm BI}(t) + jy_{\rm BQ}(t)$$

$$y_{\rm A}(t) = y_{\rm B}(t)e^{j2\pi f_0 t}$$

$$y(t) = \operatorname{Re}[y_{\rm A}(t)]$$

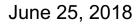
$$y(t) = \operatorname{Re}[y_{\rm A}(t)]$$

$$y_{\rm BI}(t)\cos 2\pi f_0 t - y_{\rm BQ}(t)\sin 2\pi f_0 t$$

$$y_{\rm BI}(t)\cos 2\pi f_0 t - y_{\rm BI}(t)\sin 2\pi f_0 t$$

$$y_{\rm BI}(t)\cos 2\pi f_0 t - y_{\rm BI}(t)\sin 2\pi f_0 t$$

Analog Demodulation


 $y(t) = y_{\rm BI}(t)\cos 2\pi f_0 t - y_{\rm BQ}(t)\sin 2\pi f_0 t$

In-phase BB receive signal $y_{\rm BI}(t) = {\rm LPF}[2y(t)\cos 2\pi f_0 t]$

$$= LPF[y_{BI}(t)(1 + \cos 4\pi f_0 t)]$$
$$-y_{BQ}(t)\sin 4\pi f_0 t]$$

Quadrature BB receive signal

$$y_{BQ}(t) = LPF[-2y(t)\sin 2\pi f_0 t]$$
$$= LPF[-y_{BI}(t)\sin 4\pi f_0 t]$$
$$+ y_{BQ}(t)(1 - \cos 4\pi f_0 t)$$

Wireless Communication Engineering

 $y_{\rm BQ}(t)$

 $y_{\rm BI}(t)$

 $2\cos(2\pi f_0 t)$

A/C

 $y_{\rm B}(t)$

Analog

demod.

y(t)

y(t)

Noise Through Analog Demodulator

BB noise

BB noise

$$n_{\rm B}(t) = n_{\rm BI}(t) + jn_{\rm BQ}(t)$$

$$n_{\rm A}(t) = n_{\rm B}(t)e^{j2\pi f_0 t}$$

$$n(t) = \operatorname{Re}\left[n_{\rm A}(t)\right]$$

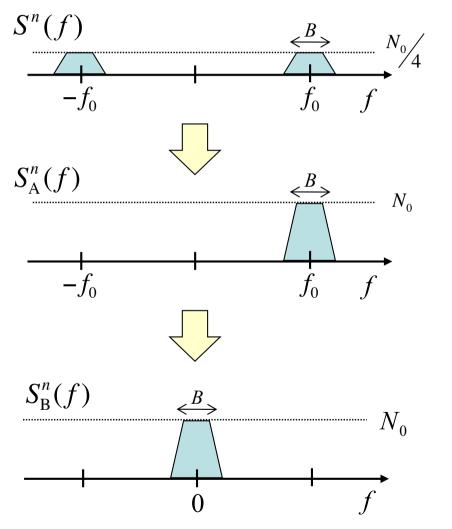
$$= n_{\rm BI}(t) \cos 2\pi f_0 t - n_{\rm BQ}(t) \sin 2\pi f_0 t$$

Analog demodulation

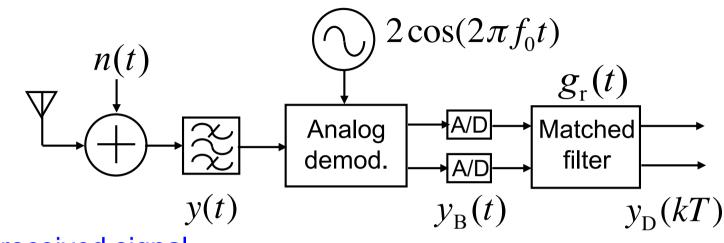
$$n_{\rm BI}(t) = {\rm LPF} \Big[2n(t)\cos 2\pi f_0 t \Big]$$
$$n_{\rm BQ}(t) = {\rm LPF} \Big[-2n(t)\sin 2\pi f_0 t \Big]$$

Property of Noise

Noise power


$$P_{\rm n} = P_{\rm nI} + P_{\rm nQ} = N_0 B = \sigma^2$$

PDF of noise


$$p(n_{\rm I}) = p(n_{\rm Q}) = \frac{1}{\sqrt{\pi\sigma^2}} e^{-\frac{n_x^2}{\sigma^2}}$$

$$\mathbf{E}[n_{\mathrm{I}}] = \mathbf{E}[n_{\mathrm{Q}}] = 0$$

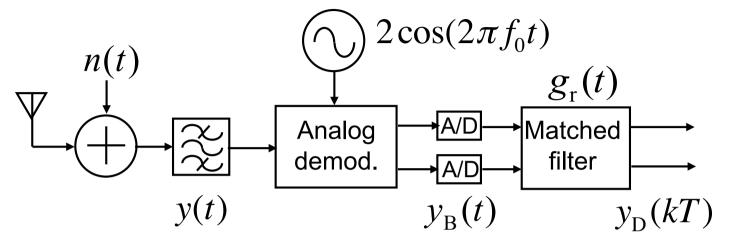
$$\mathbf{E}\left[\left|n_{\mathrm{I}}\right|^{2}\right] = \mathbf{E}\left[\left|n_{\mathrm{Q}}\right|^{2}\right] = \frac{\sigma^{2}}{2}$$

BB Receive Filter

BB received signal

$$y_{\rm B}(t) = h_{\rm B}s_{\rm B}(t) + n_{\rm B}(t)$$

BB transmit signal


$$s_{\rm B}(t) = g_{\rm s}(t) \otimes s_{\rm D}(t) = \sum_{n} a_{n}g_{\rm s}(t-nT)$$

Transmit pulse

Output of receiver filter

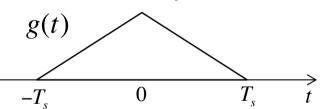
$$y_{\rm D}(t) = g_{\rm r}(t) \otimes y_{\rm B}(t) = g_{\rm r}(t) \otimes g_{\rm s}(t) \otimes s_{\rm D}(t) + g_{\rm r}(t) \otimes n_{\rm B}(t)$$
Receive pulse Combined pulse
June 25, 2018 Wireless Communication Engineering

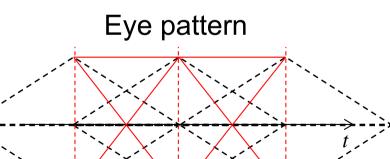
12

BB Receive Sampling

Output of receive filter (wo noise)

$$y_{\rm D}(t) = g_{\rm r}(t) \otimes g_{\rm s}(t) \otimes s_{\rm D}(t)$$
$$= g(t) \otimes s_{\rm D}(t)$$


Digital modulated signal (BPSK)


$$s_{\rm D}(t) = \sum_{k} a_{2k} \delta(t - kT_{\rm s})$$

Receive sampling

$$y_{\rm D}(kT_{\rm s}) = g(0)a_{2k}$$

Combined pulse

13

 T_{s}

June 25, 2018

BB Receive Power

Signal power

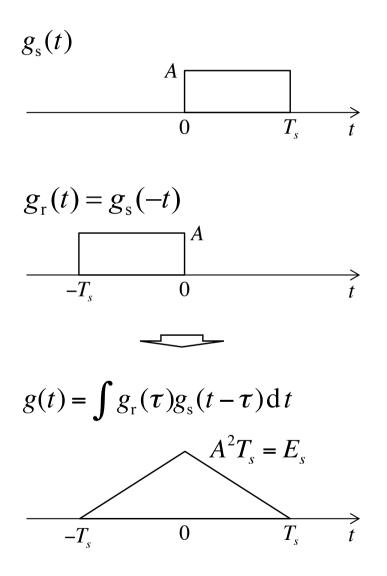
$$g(t) = g_{r}(t) \otimes g_{s}(t) \qquad \longleftrightarrow \qquad G(f) = G_{r}(f)G_{s}(f)$$
$$g(0) \qquad = \qquad \int G_{r}(f)G_{s}(f)e^{j2\pi ft} df$$
$$P_{s} = |g(0)|^{2} \qquad = \qquad \left|\int G_{r}(f)G_{s}(f)df\right|^{2}$$

Noise power

Matched Filter

SNR maximization

$$\gamma_{\max} = \max \frac{P_{s}}{P_{n}} = \max_{G_{r}(f)} \frac{\left|\int G_{r}(f)G_{s}(f)df\right|^{2}}{N_{0}\int \left|G_{r}(f)\right|^{2}df}$$


Schwartz inequality

$$\left|\int G_{\mathrm{r}}(f)G_{\mathrm{s}}(f)\mathrm{d}f\right|^{2} \leq \int \left|G_{\mathrm{r}}(f)\right|^{2}\mathrm{d}f\int \left|G_{\mathrm{s}}(f)\right|^{2}\mathrm{d}f$$

Matched filter

$$G_{\rm r}(f) = \left(G_{\rm s}(f)\right)^* \quad \Longleftrightarrow \quad g_{\rm r}(t) = g_{\rm s}(-t)$$
$$\gamma_{\rm max} = \frac{1}{N_0} \int \left|G_{\rm s}(f)\right|^2 {\rm d}f$$

Example of Matched Filter

 $n_{\rm B}(t)$

$$g_{r}(t) = g_{s}(-t)$$

$$A$$

$$-T_{s} \qquad 0 \qquad t$$

$$n_{\rm D}(t) = \int g_{\rm r}(\tau) n_{\rm B}(t-\tau) dt$$

$$E\left[\left|n_{\rm D}(t)\right|^{2}\right] = N_{0} \int \left|G_{\rm r}(f)\right|^{2} df = A^{2}T_{s}N_{0}$$

$$\underbrace{N_{\rm M}}_{0} \underbrace{M_{\rm M}}_{0} \underbrace{M_{\rm M}}_{t}$$

Output SNR

Matched filter output

$$\gamma_{\rm max} = \frac{1}{N_0} \int \left| G_{\rm s}(f) \right|^2 {\rm d}f$$

Parseval's theorem

Output SNR

$$\int \left| G_{s}(f) \right|^{2} \mathrm{d}f = \int \left| g_{s}(t) \right|^{2} \mathrm{d}t = E_{s}$$

Energy per symbol

$$\gamma_{\max} = \frac{E_s}{N_0} = \frac{P_s T_s}{N_0} = \frac{P_s}{N_0 B} = \frac{P_s}{\sigma^2}$$

Summary

Analog demodulation

$$y(t) = y_{BI}(t)\cos 2\pi f_0 t - y_{BQ}(t)\sin 2\pi f_0 t$$
$$y_{BI}(t) = \text{LPF}[2y(t)\cos 2\pi f_0 t] \quad y_{BQ}(t) = \text{LPF}[-2y(t)\sin 2\pi f_0 t]$$

Matched filter

$$P_{s} = \left| \int G_{r}(f) G_{s}(f) df \right|^{2} \leq \int \left| G_{r}(f) \right|^{2} df \int \left| G_{s}(f) \right|^{2} df$$
$$G_{r}(f) = \left(G_{s}(f) \right)^{*} \qquad \Longleftrightarrow \qquad g_{r}(t) = g_{s}(-t)$$

Output SNR

$$\gamma_{\text{max}} = \frac{1}{N_0} \int \left| G_{\text{s}}(f) \right|^2 \mathrm{d}f = \frac{E_{\text{s}}}{N_0} = \frac{P_{\text{s}}}{\sigma^2}$$