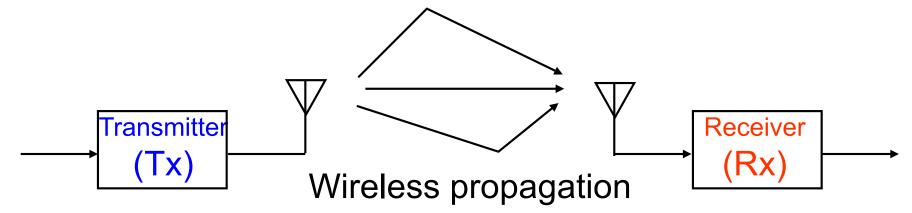
2018 2Q Wireless Communication Engineering

#0 Introduction to Course


Kei Sakaguchi sakaguchi@mobile.ee.
June 11, 2018

Wireless Communication Systems

■ Your surrounding wireless communications

- 1) Pick up your surrounding wireless communication systems as many as possible
- 2) Explain specifications (frequency, modulation schemes, etc.) of those systems
- Wireless communication systems

Aims of Course

■ Aims

This course enables students to have basic techniques to design wireless communication systems such as wireless LANs and cellular systems as in our daily life.

Measure

By picking up IEEE802.11a as a representative of modern wireless communication systems, the lecture gives details about technologies used in the system such as interference management, diversity combining, and multplexing.

Outcomes

The studetnts will be able to understand the design concept, transceiver architecture, role of components, and specifications of IEEE802.11a wireless LAN.

Related Courses

- Fourier Transform and Laplace Transform Spectrum, Convolution, Frequency conversion
- Applied Probability and Statistical Theory
 Gaussian distribution, Stochastic process, Auto
 correlation, Power spectral density
- Communication Theory
 Source & channel coding theory, Mutual Information
- Signal Systems
 Linear time-invariant system, Signal space analysis

■ Wireless Communication Engineering (this course)

Textbooks

Textbook H. Matsue, M. Morikura, A. Sato, K. Watanabe, "Broadband Wireless Access Technologies," IEICE, 2004. (in Japanese)

 Reference books
 S. Taromaru, K. Sakaguchi, "Design of Software Defined Radio," Kagakujyoho Shuppan, 2016. (in Japanese)

K. Sakaguchi, S. Sampei, "Wireless Distributed Networks," IEICE, 2011. (in Japanese)

S.Haykin, "Communication Systems," 5th Edition International Student Version, Wiley, 2013.

Contents of Textbook

Chapter	Contents	Notes
1	Introduction to wireless access	
2	Propagation modeling for wireless access	Not so much With other prints
3	Digital modulation & demodulation	Major scope
4	Factor of performance degradation and technologies to mitigate them	Major scope
5	Antenna	Out of scope
6	Access scheme	Major scope
7	WLAN system	Major scope
8	WLAN other than IEEE802.11	Out of scope
9	Fixed Wireless Access (FWA)	Out of scope

Course Schedule (1)

	Date	Text	Contents
#1	June 11	1, 7	Introduction to wireless communication systems
#2	June 14	2, 5, etc	Link budget design of wireless access
#3	June 18		Up/down conversion and equivalent baseband system
#4	June 21	3.3, 3.4	Digital modulation and pulse shaping
#5	June 25	3.5	Demodulation and matched filter
#6	June 28		Collaborative exercise for better understanding 1
#7	July 2	3.5	Detection and error due to noise
#8	July 5	4.4	Channel fading and diversity combining

Course Schedule (2)

	Date	Text	Contents
#9	July 9	4.6	Error correction coding
	June 12		No class
#10	July 19		Adaptive modulation coding
#11	July 23	4.3	Inter symbol interference and adaptive equalizer
#12	July 26	3.5	Orthogonal frequency division multiplexing (OFDM)
#13	July 30		Array signal processing and MIMO communications
#14	Aug 2		Collaborative exercise for better understanding 2
#15	TBD	All	Final examination

Assessment Criteria

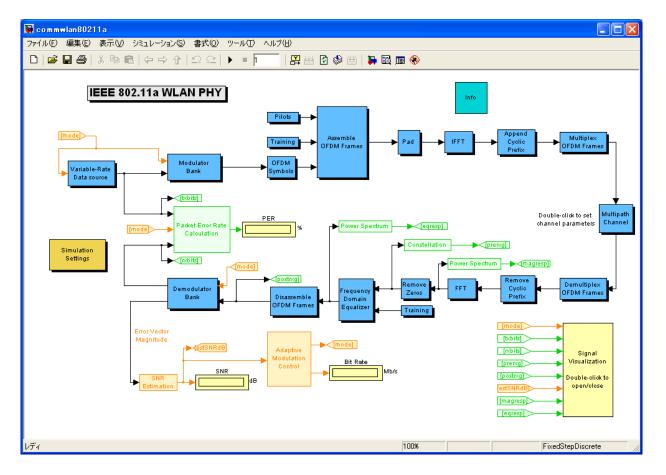
■ Collaborative exercise (50 points)

Date: June 28 (Thu) and August 2 (Thu)

Method:

Collaborative exercise between students

Questions are given in advance for better understanding Evaluation on the answer after collaborative discussions


■ Final examination (50 points)

Date: Beginning of august

Method: Paper test to check technological understanding

MATLAB Simulator

■ Demonstration IEEE802.11a WLAN demo is available in MATLAB (Download MATLAB from http://tsubame.gsic.titech.ac.jp/MATLAB-TAH)

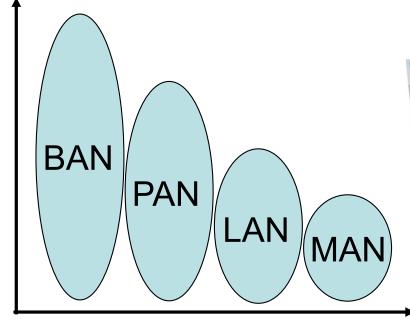
Course Schedule (1)

	Date	Text	Contents
#1	June 11	1, 7	Introduction to wireless communication systems
#2	June 14	2, 5, etc	Link budget design of wireless access
#3	June 18		Up/down conversion and equivalent baseband system
#4	June 21	3.3, 3.4	Digital modulation and pulse shaping
#5	June 25	3.5	Demodulation and matched fileter
#6	June 28		Collaborative exercise for better understanding 1
#7	July 2	3.5	Detection and error due to noise
#8	July 5	4.4	Channel fading and diversity combining

Contents

- Introduction to wireless communication systems
- Design of wireless communication systems
- Performance degradation factors
- Technologies to mitigate them
- Introduction of IEEE802.11a WLAN
- MATLAB demonstration

Classification of Wireless Communication Systems

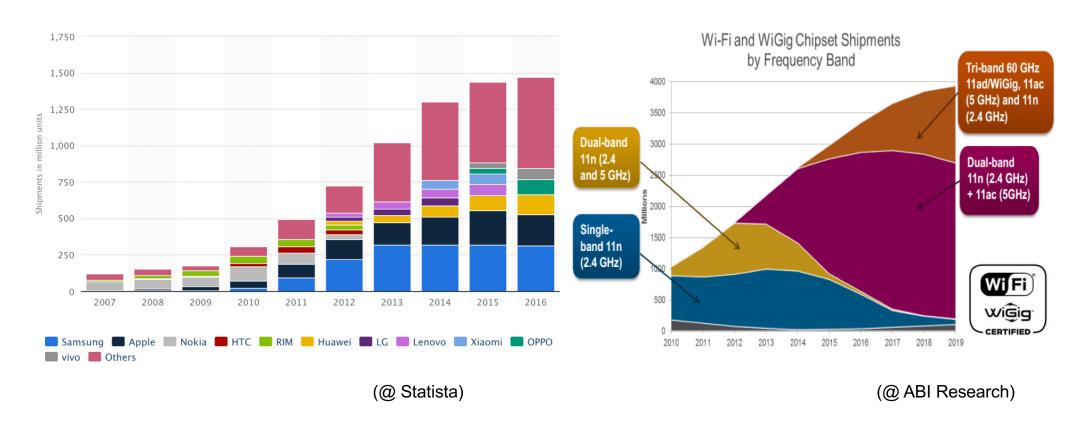

Body Area Network

Personal Area Network

Data rate

Distance (coverage)

Local Area Network


Metropolitan Area Network

Status of Cell-phone and WLAN

of shipments of cell-phone

of Wi-Fi chipset shipment

International Harmonization & Spectrum Regulation

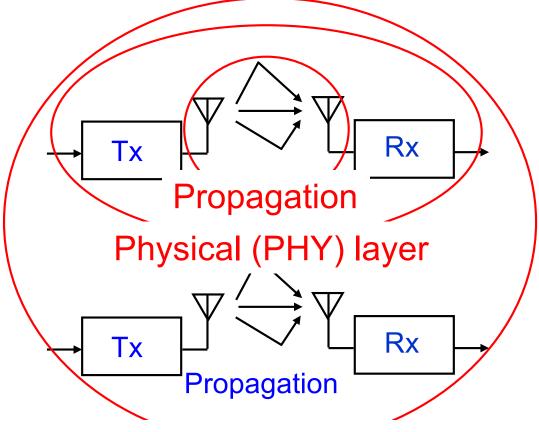
Spectrum allocation in Japan

ITU (International Telecommunication Union)

- International spectrum recommendation
- 3kHz ~ 300GHz

WRC (World Radio Conference)

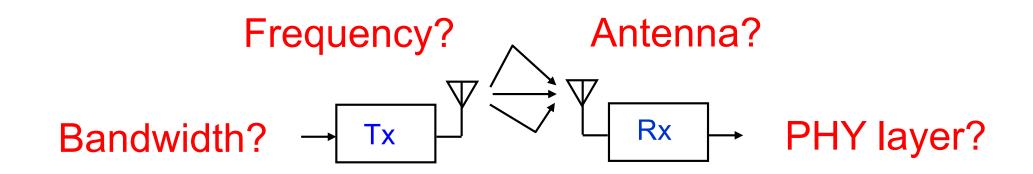
- Amendment of international treaty
- Every 4 years
- Latest meeting at Nov. 2015


Milli	60GHz	Ultra high speed WLAN	
	38GHz		
Sub-milli	26GHz	Fixed Wireless Access (FWA)	
	19GHz	High speed WLAN	
Micro	5GHz	High speed WLAN	
Sub-micro	2.5GHz	High speed WMAN (WiMAX)	
	2.4GHz (ISM band)	Low power data access (WLAN)	
	2GHz	4G cell phone (LTE)	
	1.9GHz	PHS	
	1.5GHz		
	900MHz	3G cell phone (WCDMA)	
	800MHz	(VVCDIVIA)	

Wireless Communication Systems

Layer structure

Application
Network
MAC
PHY
Propagation

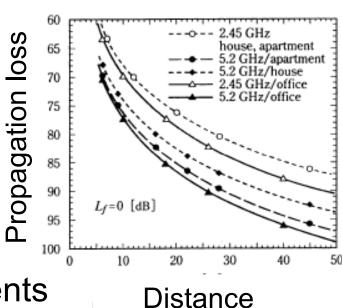

Wireless communication system

Media Access Control (MAC) layer

Design of Wireless Communication Systems

How to design wireless communication systems?

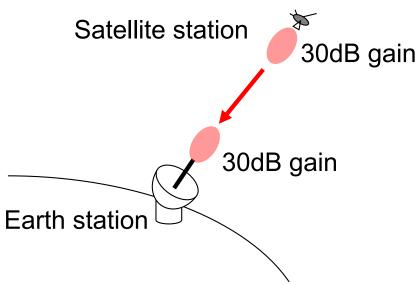
Transmit power?

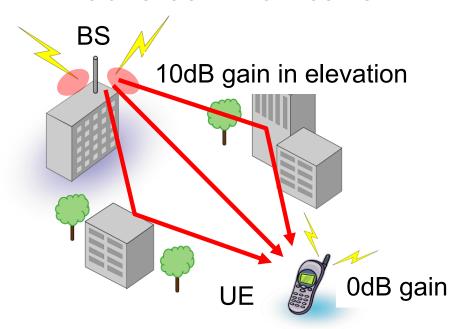

MAC layer?

Frequency, Bandwidth, Tx Power

- 1. Scenarios Indoor, Outdoor, Distance, Data rate
- 2. Frequency and Bandwidth Politically determined based on ITU-R recommendation
- 3. Propagation loss

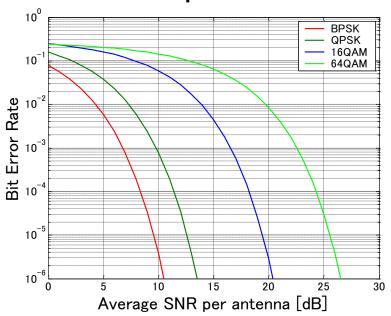
 Depends on frequency and environments
- Transmission power
 Minimum data rate → Minimum Rx power
 Minimum Rx power + Propagation loss = Minimum Tx power
 Unnecessary increase of Tx power causes interferences

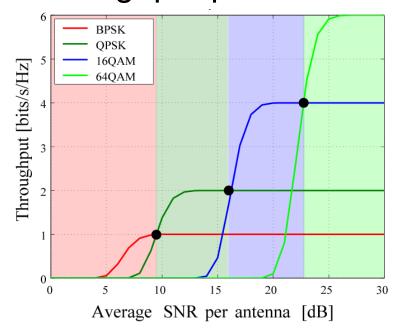



Antenna

Antenna To compensate propagation loss due to distance Design of antenna location and directivity

Satellite communication


Mobile communication


PHY Layer

6. Physical (PHY) layer scheme Maximization of reliability → Forward error correction Maximization of data rate → Adaptive modulation & coding Tradeoff between performance and complexity

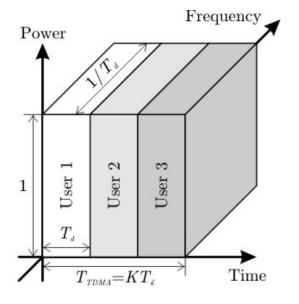
Error rate performance

Throughput performance

MAC Layer

7. Media Access Control (MAC) scheme Resource allocation rule for multiple terminals

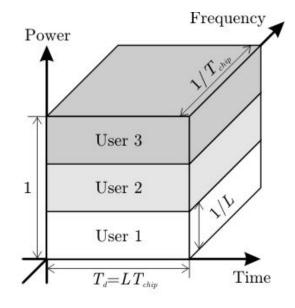
Reserved: FDMA, TDMA, CDMA


Contention: ALOHA, CSMA (Carrier Sense Multiple Access)

Frequency division

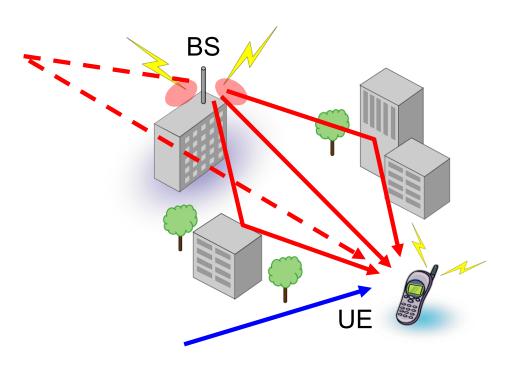
Power User 3 User 2 User 1 Time

FDMA


Time division

TDMA

Wireless Communication Engineering


Code division

CDMA

Performance Degradation and Technologies to Mitigate

Factor of performance degradation in wireless communications

Fading (standing wave)

Superposition of multi-path signals

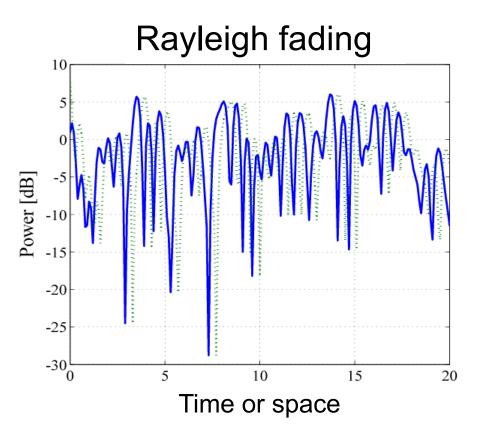
Inter symbol interference

Due to long delayed signals

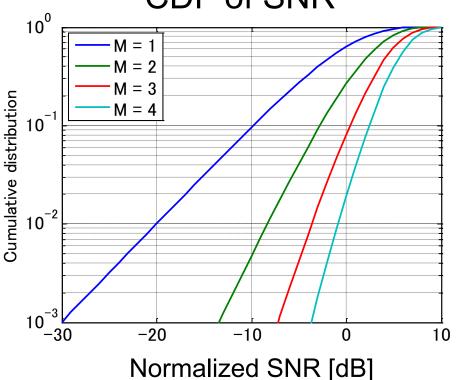
Inter system interference

Due to shared radio channels (ISM)

Fading and Diversity


Tx

1. Diversity


Power fluctuation due to fading

Weighted Combining of multiple antennas

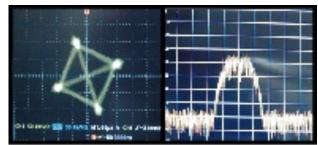
Space/Time/Freq diversity

Rx

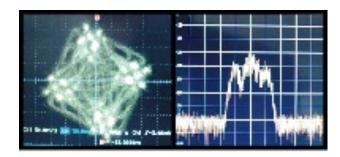
Inter Symbol Interference and

Equalizer

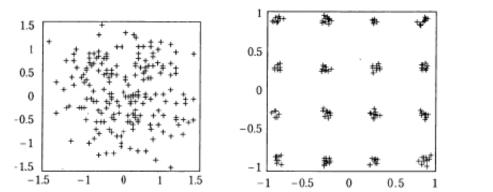
Tx


2. Equalizer

Inter symbol interference due to delayed signal

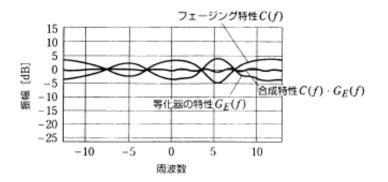

→ Equalizer to realize

inverse frequency response


Inter symbol interference

Without delay signal

With delay signal



qualize

Before equalization

After equalization

Rx

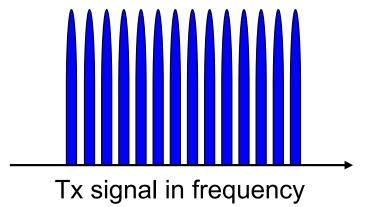
Frequency response of equalizer

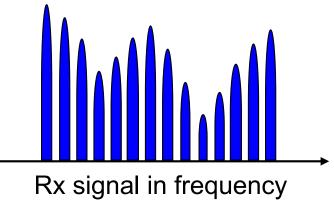
Inter Symbol Interference and OFDM

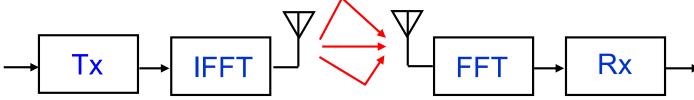
4. OFDM

Inter Symbol Interference due to delay

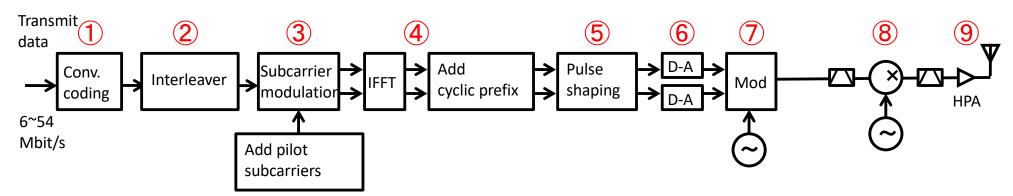
Time domain equalizer


Principally infinite tap is needed




Frequency domain filter

Orthogonal frequency division multiplexing



IEEE802.11 WLAN

Wireless access in indoor environment using ISM band

	802.11b	802.11a	802.11g	802.11n	802.11ac
Year of approval	1999	1999	2003	2009	2014
RF band	2.4GHz	5GHz	2.4GHz	2.4 & 5GHz	5GHz
Channel bandwidth	20MHz	20MHz	20MHz	20/40MHz	20/40/80/ 160MHz
Modulation	DSSS, CCK	OFDM, AMC	OFDM, AMC, CCK	MIMO-OFDM, AMC, CCK	MIMO-OFDM, AMC256Q, MU-MIMO
Max data rate	11Mbps	54Mbps	54Mbps	600Mbps	6.93Gbps
MAC	CSMA/CA	CSMA/CA	CSMA/CA	CSMA/CA	CSMA/CA+ MU-MIMO

IEEE802.11a Transmitter

- Convolutional coding + Puncture Adaptive parity bit control
- ⑥ D-ADigital-Analog conversion

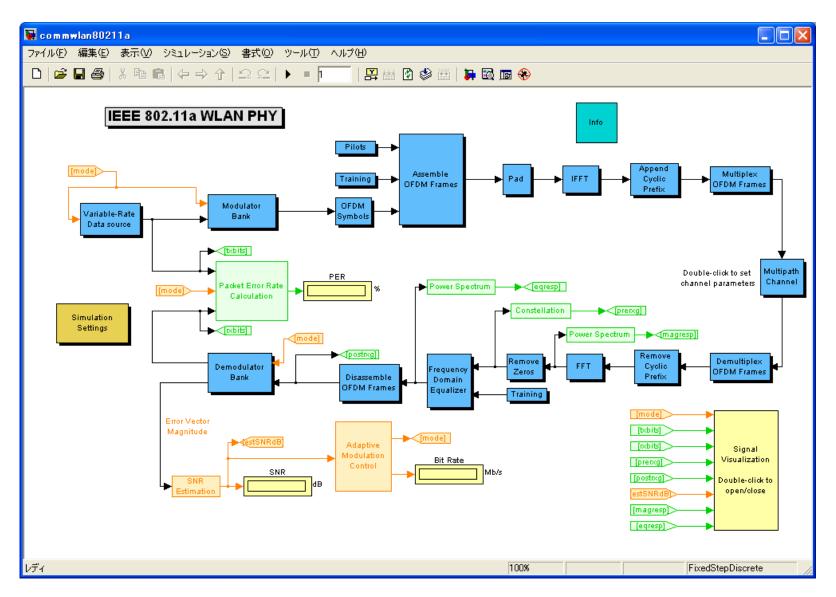
② Interleaver Subcarrier randomization

- Modulation Conversion to IF signal
- ③ Subcarrier modulation BPSK~64QAM adaptive modulation
- 8 Mixer
 Conversion to RF(5GHz) signal

4 IFFT+Add cyclic prefix OFDM modulation (9) High power amplifier + antenna Transmission of RF signal

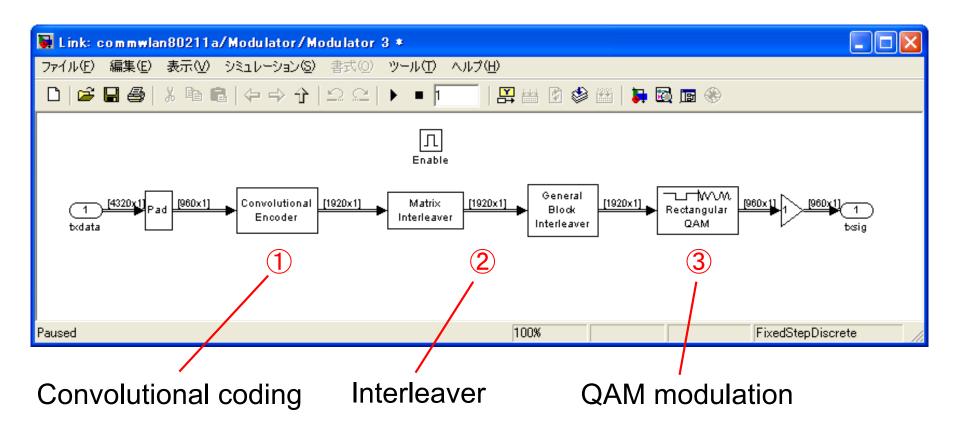
⑤ Pulse shaping Reduce power leakage

IEEE802.11a Receiver

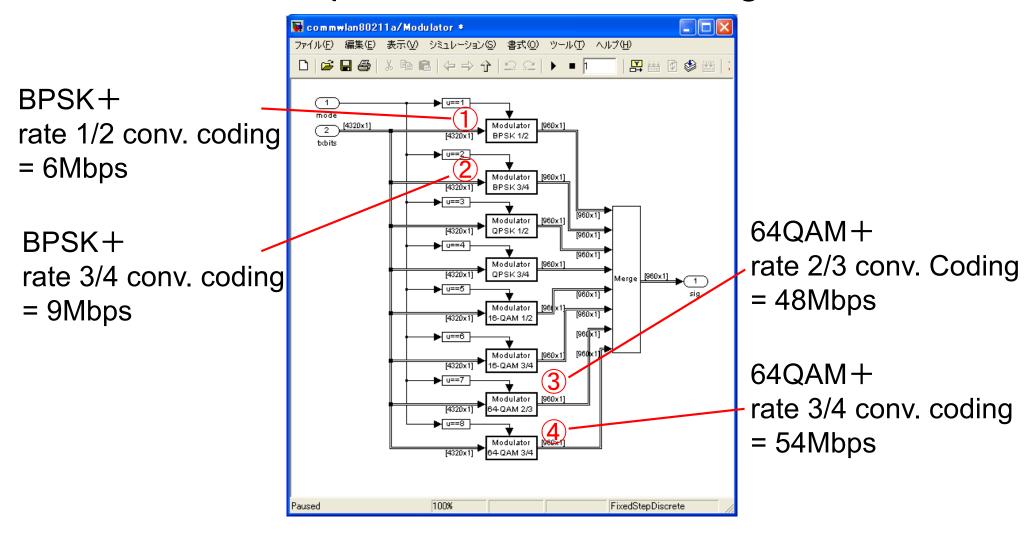

- Antenna + Low noise amplifier Receiption of RF signal
- ② Mixer Frequency conversion to IF
- ③ Demodulator Conversion to baseband signal
- 4 A-D
 Analog-Digital conversion
- ⑤ AFC, Timing recovery
 Time frequency synchronization

- 6 Remove cyclic prefix + FFT OFDM demodulation
- 7 Channel equalizer Frequency domain equalizer
- 8 Subcarrier detection BPSK~64QAM demodulation
- 9 De-interleaver Inverse of interleaver
- Witerbi decoder Forward error correction

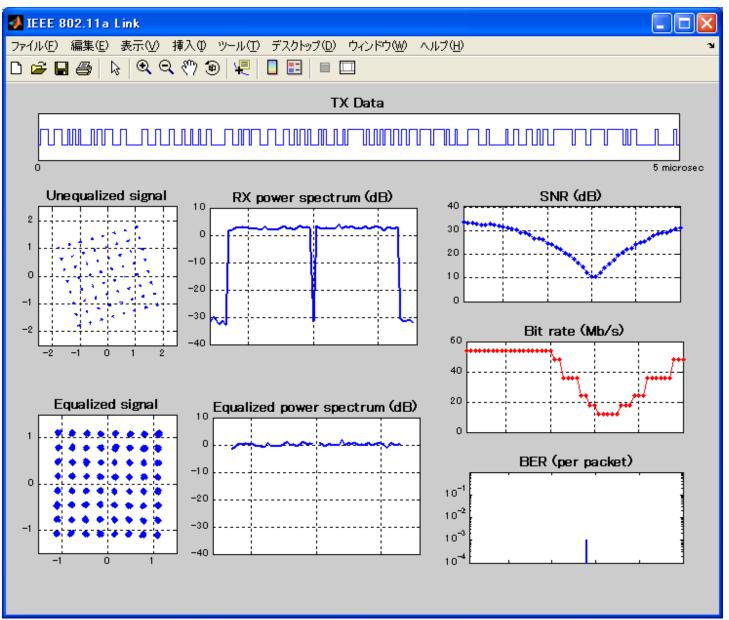
Specification of IEEE802.11a


Modulation	OFDM (Orthogonal Frequency Division Multiplexing) (Subcarrier modulation: BPSK, QPSK, 16QAM, 64QAM)
Subcarriers	52 (including 4 pilot subcarriers) Assuming 64 point FFT
Error correction	Convolutional coding with subcarrier interleaver constraint length: K=7, coding rate: R=1/2, 2/3, 3/4 Viterbi decoding
Data rates	6 Mbit/s (BPSK, R=1/2) mandatory 9 Mbit/s (BPSK, R=3/4) option 12 Mbit/s (QPSK, R=1/2) mandatory 18 Mbit/s (QPSK, R=3/4) option 24 Mbit/s (16QAM, R=1/2) mandatory 36 Mbit/s (16QAM, R=3/4) option 48 Mbit/s (64QAM, R=2/3) option 54 Mbit/s (64QAM, R=3/4) option
OFDM symbol	4.0 µs
Guard interval	0.8 μs
Bandwidth	16.6 MHz
Channel	4 (Available frequency: 5.150~5.250 MHz [Japan]) Channel spacing: 20MHz

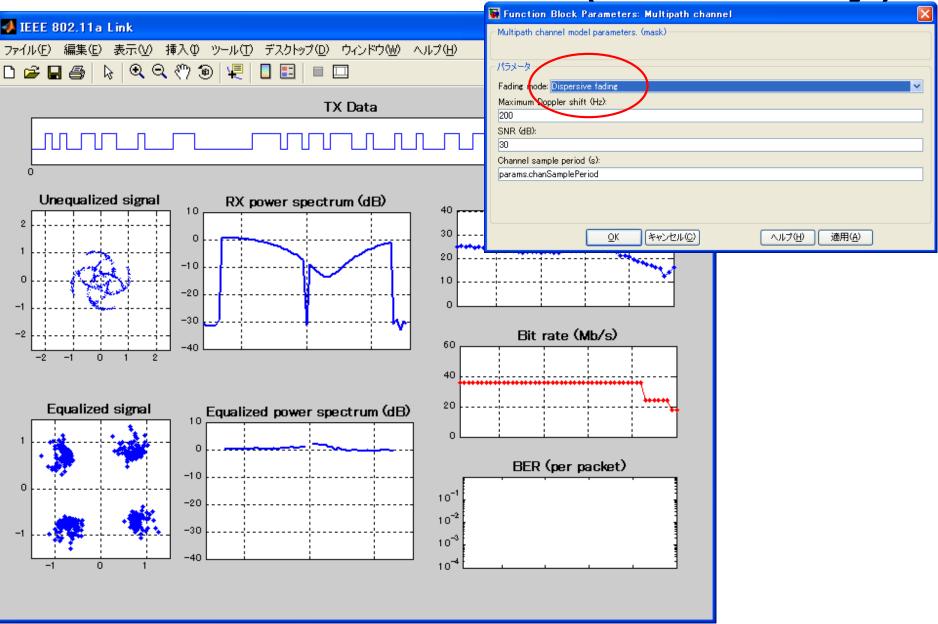
IEEE802.11a Demonstration


IEEE802.11a Demo (Tx1)

Subcarrier modulation



IEEE802.11a Demo (Tx2)


Adaptive Modulation Coding

IEEE802.11a Demo (no delay)

IEEE802.11a Demo (with delay)

Summary

- Introduction to wireless communication systems BAN, PAN, LAN, MAN, ITU, PHY, MAC
- Design of wireless communication systems
 Frequency, Bandwidth, Tx power, Antenna, PHY scheme
- Factor of performance degradation
 Fading, Inter symbol interference, Inter system interference
- IEEE802.11a WLAN
 WLAN using OFDM and adaptive modulation coding