Neutron Transport Theory Lecture Note (6)

- One-speed diffusion theory of a nuclear reactor (2) -
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5.2 The critical condition for general bare geometries

Considering a bare reactor of uniform composition surrounded by a free surface
characterized by vacuum boundary conditions.

If the reactor is critical then the neutron flux must satisfy the steady-state diffusion

equation.

— DV2 + Z,¢(r) = vEd(r) (1)
boundary condition : ¢(¥) = 0 T : extrapolated boundary

Dividing Eq.(1) by —D,

VZf - Za

V2 + (=) o) = 0 - (2)

boundary condition : ¢(¥) = 0

ke —1
LZ

ie. v2¢+( )cb(r) =0 (3

boundary condition : ¢(fs) =0

This equation is identical to that which generates the special eigenfunctions for this
geometry.
VA, + BnZlIJn(r) =0 - (4)

boundary condition : Y(f5) =0
The requirement that the reactor is critical is the same as that for slab reactor,

vif—X
B2 = (—fD a) = B,% = B,? - (5)
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The critical neutron flux distribution ¢(r) is given by the fundamental eigenfunction

P ().

Geometric buckling and flux profile for various bare core

Bare core geometry Geometric buckling Flux profile
Slab (thickness : TN 2 X
(:) cos—
a) a a
Sphere (radius : 0\ 2 ir
<=) r~!sin (T)
R) R
Rectangular 2 2 2
g (g) + (E) + (3) cos (E) cos (E) cos (E)
parallelepiped b ¢ a b c

Eq.(4) will provide us with flux shape only in critical reactor.
The magnitude of neutron flux shall be determined by the total power P generated by

the core.

P= f dngfod)(l‘) (6)

ws : energy produced per fission event

5.3 Reflected reactor geometries
We consider a slab reactor with reflectors of nonmultiplying material of thickness of
to the both side of the core.

Time-independent diffusion equation (x>0)

d?¢C a
Core : — D¢ o T (=$—vif)otx) =0, 0<x< > (7
d?pR a a -
Reflector : — DR o T RpR(x) =0, ZSX<o+ b - (8)
Boundary conditions
c(@ _ 4r(2
@ ¢°(3)="(3)
c(d _r(2
® 1°G)=1*G) ©)

© ¢R(%+B)=o
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General solution in the core (symmetric solution)
¢ (x) = ACcosBS x

vt — 3¢
e - (10)

2
where, BS,” = o

Solution in reflector which satisfies boundary condition (c)

%+B—x
< (11)

¢R(x) = ARsinh R

where, IR = |—
R

By applying interface boundary conditions (a) and (b),

Ba b

ACcos <%> = ARsinh <§> - (12)
_ (BSa\ DR b

DCBS A sin (%) = FARcosh <§> - (13)

Dividing Eq.(13) by Eq.(12),

BGa\ DR b
CpC m —
D Bmtan <T> = F coth (L—R> (14-)

This equation is the reactor critical condition.

(cf. B’ =Bg® inbare core)

Rewrite Eq.(14) as
Bia Bha DRa b
(T) tan(%5°) = gperreott | - (19)

BSa m 2 T 2
T<E or Bm <(g)

[In bare (unreflected) corel

= (5)
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It is conventional to define the difference between bare and reflected core dimensions
as the reflector savings § :
8 = [a(bare) — a(reflected)]/2 - (16)

Ex. The reflector savings for the slab core

1 DCBS LR b
§=—tan ! [—2"tanh(— (17
s [Ppetann (i) a
For the thick reflector b >» LR
DC
§ = —IR -+ (18)

DR

5.4 Reactor criticality calculations
(1) General procedure to determine geometries and material composition of critical
reactors
Diffusion equation
— VDV + Z,$(r) = vEeh(r) - (19)
(no solutions in general unless the reactor is critical)

boundary condition
¢(F) =0
We introduce on arbitrary parameter "k" into the equation.

— VDV + Z,4(r) = %vchb(r) - (20)

Picking up a core size and composition and solve the equation while determining k.
(eigenvalue problem)

k : multiplication eigenvalue

(2) Solution of eigenvalue problem by power method

Rewriting Eq.(20) in operator notation

M¢ = ~Fo - (21)

where,M = —VD(r)V + X,(r) = Destruction operator (leakage plus absorption)

F = vI¢(r) = Production operator (fission)
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Assuming the estimate ¢$™ and k™are given.
Estimate of fission source

SM = Fp® -+ (22)
We can iteratively solve for an improved source estimates S®™*D from an earlier
estimate S™ by solving

1

for ¢+ and then computing

S(n+1) — F¢(n+1) (24.)

as n becomes large, $™*V will converge to the true eigenfunction ¢(r) that satisfies

Eq.(21) with the eigenvalue

M¢(n+1) =~

Fp®+D - (25)

k(n+1)

If we integrate Eq.(25) overall space, we should be able to obtain a resonance estimate

for k(D ag

3 +1
gy o J PFOCTD

From Eq.(23), Eq.(24)
J Brs®+(r)

o J drsO(r)

k(n+1) ~

- (27)

\ effective fission sources

that generate S®+D

This shows the eigenvalue, k in Eq.(21) is the same as the effective multiplication
factor, that is the ratio of the number of neutrons in two consecutive fission generations

1n the reactor.

In k=1, to make the reactor critical, we can change the reactor size and composition

and repeat the calculation.
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