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Neutron Transport Theory Lecture Note (6) 
 - One-speed diffusion theory of a nuclear reactor (2) - 

 
Toru Obara 

Tokyo Institute of Technology 
 
5.2 The critical condition for general bare geometries 
 Considering a bare reactor of uniform composition surrounded by a free surface 
characterized by vacuum boundary conditions. 
 If the reactor is critical then the neutron flux must satisfy the steady-state diffusion 
equation. 
   − D∇2ϕ + Σaϕ(𝐫𝐫) = νΣfϕ(𝐫𝐫)                                     ⋯ (1) 
 
    boundary condition：ϕ(𝐫𝐫�s) = 0  𝐫𝐫�s：extrapolated boundary 
 
Dividing Eq.(1) by −D, 

   ∇2ϕ + �
νΣf − Σa

D
�ϕ(𝐫𝐫) = 0                                       ⋯ (2) 

 
    boundary condition：ϕ(𝐫𝐫�s) = 0 
 

   i. e.   ∇2ϕ + �
k∞ − 1

L2
�ϕ(𝐫𝐫) = 0                                  ⋯ (3) 

 
    boundary condition：ϕ(𝐫𝐫�s) = 0 
 
This equation is identical to that which generates the special eigenfunctions for this 
geometry. 
   ∇2ψn + Bn

2ψn(𝐫𝐫) = 0                                         ⋯ (4) 
 
    boundary condition：ψ(𝐫𝐫�S) = 0 
 
The requirement that the reactor is critical is the same as that for slab reactor, 

   Bm2 ≡ �
νΣf − Σa

D
� = B12 ≡ Bg

2                                   ⋯ (5) 
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The critical neutron flux distribution ϕ(𝐫𝐫) is given by the fundamental eigenfunction 
ψ1(𝐫𝐫). 
 

Geometric buckling and flux profile for various bare core 
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Eq.(4) will provide us with flux shape only in critical reactor. 

The magnitude of neutron flux shall be determined by the total power P generated by 
the core. 

   P = � d3rwfΣfϕ(𝐫𝐫)
v

                                             ⋯ (6) 

     wf：energy produced per fission event 
 
5.3 Reflected reactor geometries 
 We consider a slab reactor with reflectors of nonmultiplying material of thickness of 
to the both side of the core. 
 Time-independent diffusion equation（x≥0） 

   Core：− DC d2ϕC

dx2
+ �ΣaC − νΣf

C�ϕC(x) = 0,      0 ≤ x ≤
a
2
         ⋯ (7) 

 

  Reflector：− DR d2ϕR

dx2
+ ΣaRϕR(x) = 0,    

a
2
≤ x ≤

a
2

+ b�         ⋯ (8) 

 
Boundary conditions 

   (a)   ϕC �
a
2�

= ϕR �
a
2�

 

   (b)   JC �
a
2�

= JR �
a
2�

                                           ⋯ (9) 

   (c)   ϕR �
a
2

+ b�� = 0 
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General solution in the core（symmetric solution） 
   ϕC(x) = ACcosBm

C x 

    where, Bm
C 2 ≡

νΣf
C − ΣaC

DC                                         ⋯ (10) 

 
Solution in reflector which satisfies boundary condition (c) 

   ϕR(x) = ARsinh �
a
2 + b� − x

LR
�                                       ⋯ (11) 

    where, LR = �
DR

ΣaR
 

By applying interface boundary conditions (a) and (b), 

   ACcos�
Bm
C a
2
� = ARsinh�

b�
LR
�                                       ⋯ (12) 

 

   DCBm
C Acsin�

Bm
C a
2
� =

DR

LR
ARcosh�

b�
LR
�                              ⋯ (13) 

 
Dividing Eq.(13) by Eq.(12), 

   DCBm
C tan�

Bm
C a
2
� =

DR

LR
coth�

b�
LR
�                                   ⋯ (14) 

 
This equation is the reactor critical condition. 

（cf. Bm2 = Bg
2   in bare core） 

 
Rewrite Eq.(14) as 

   �
Bm
C a
2
� tan �

Bm
c a
2
� =

DRa
2DCLR

coth�
b�
LR
�                               ⋯ (15) 
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In bare (unreflected) core

Bm
2＝ �

π
a��

2 � 



4 
 

©2018 Toru Obara  
 

 
It is conventional to define the difference between bare and reflected core dimensions 
as the reflector savings δ： 
   δ = [a(bare)− a(reflected)] 2⁄                                        ⋯ (16) 
 
Ex. The reflector savings for the slab core 

   δ =
1

Bm
C tan−1 �

DCBm
C LR

DR tanh�
b�
LR
��                                   ⋯ (17) 

For the thick reflector b ≫ LR 

   δ ≅
DC

DR LR                                                         ⋯ (18) 

 
5.4 Reactor criticality calculations 
(1) General procedure to determine geometries and material composition of critical 
reactors 
  Diffusion equation 
   − ∇D∇ϕ + Σaϕ(𝐫𝐫) = νΣfϕ(𝐫𝐫)                                       ⋯ (19) 
            （no solutions in general unless the reactor is critical） 
 boundary condition 
     ϕ(𝐫𝐫�s) = 0 
 
We introduce on arbitrary parameter "k" into the equation. 

   − ∇D∇ϕ + Σaϕ(𝐫𝐫) =
1
k
νΣfϕ(𝐫𝐫)                                    ⋯ (20) 

 
Picking up a core size and composition and solve the equation while determining k. 
（eigenvalue problem） 
 k：multiplication eigenvalue 
 
(2) Solution of eigenvalue problem by power method 
 Rewriting Eq.(20) in operator notation 

   Mϕ =
1
k

Fϕ                                                     ⋯ (21) 

 
    where, M ≡ −∇D(𝐫𝐫)∇ + Σa(𝐫𝐫) ≡ Destruction operator（leakage plus absorption） 
       F ≡ νΣf(𝐫𝐫) ≡ Production operator（fission） 
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Assuming the estimate ϕ(n) and k(n)are given. 
Estimate of fission source 
   S(n) = Fϕ(n)                                                    ⋯ (22) 
 
We can iteratively solve for an improved source estimates S(n+1) from an earlier 
estimate S(n) by solving 

   Mϕ(n+1)＝
1

k(n) S(n)                                               ⋯ (23) 

 
for ϕ(n+1) and then computing 
   S(n+1) = Fϕ(n+1)                                               ⋯ (24) 
 
as n becomes large, ϕ(n+1) will converge to the true eigenfunction ϕ(𝐫𝐫) that satisfies 
Eq.(21) with the eigenvalue 

   Mϕ(n+1) ≅
1

k(n+1) Fϕ(n+1)                                 ⋯ (25) 

 
If we integrate Eq.(25) overall space, we should be able to obtain a resonance estimate 
for k(n+1) as 

   k(n+1) ≅
∫d3rFϕ(n+1)

∫d3rMϕ(n+1)                                      ⋯ (26) 

 
From Eq.(23), Eq.(24) 

   k(n+1) ≅
∫d3rS(n+1)(𝐫𝐫)
1

k(n) ∫d3rS(n)(𝐫𝐫)
                                         ⋯ (27) 

 
 
 This shows the eigenvalue, k in Eq.(21) is the same as the effective multiplication 
factor, that is the ratio of the number of neutrons in two consecutive fission generations 
in the reactor. 
 
 In k≠1, to make the reactor critical, we can change the reactor size and composition 
and repeat the calculation. 
 

effective fission sources 

that generate S(n+1) 


