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Neutron Transport Theory Lecture Note (5) 
 - One-speed diffusion theory of a nuclear reactor (1) - 

 
Toru Obara 

Tokyo Institute of Technology 
 
5. One-speed diffusion theory of a nuclear reactor 
5.1 The time-dependent "slab" reactor 
(a)Solution of diffusion equation 
 Considering a uniform slab of fissile material characterized by cross sections 
Σa,Σtr,Σf（Slab reactor） 
   One-speed diffusion equation 

    
1
𝑣𝑣
∂ϕ
∂t

− D
∂2ϕ
∂x2

+ Σaϕ(x, t) = νΣfϕ(x, t)                                 ⋯ (1) 

 
   Initial condition 
 ϕ(x, 0) = ϕ0(x) = ϕ0(−x) （symetric）                          ⋯ (2) 
   Boundary conditions 

    ϕ�
a�
2

, t�＝ϕ�−
a�
2

, t� = 0                                         ⋯ (3) 

 
 A solution of the form（separation variables） 
   ϕ(x, t) = ψ(x)T(t)                                                 ⋯ (4) 
 
Substituting Eq.(4) to Eq.(1) and dividing by ψ(x)T(t) 

   
1
T

dT
dt

=
𝑣𝑣
ψ
�D

d2ψ
dx2

+ (νΣf − Σa)ψ(x)� = constant ≡ −λ                 ⋯ (5) 

 
hence 

   
dT
dt

= −λT(t)                                                    ⋯ (6) 

   D
d2ψ
dx2

+ (νΣf − Σa)ψ(x) = −
λ
𝑣𝑣
ψ(x)                                 ⋯ (7) 

 
Solution of the time-dependent Eq.(6) 
   T(t) = T(0)e−λt                                                ⋯ (8) 



2 
 

© 2018 Toru Obara 
 

 
Space dependent equation 

   D
d2ψ
dx2

+ �
λ
𝑣𝑣

+ νΣf − Σa�ψ(x) = 0                                ⋯ (9) 

 Boundary condition 

     ψ�
a�
2
� = ψ�−

a�
2
� = 0                                       ⋯ (10) 

here λ is still to be determined. 
 
 Considering the eigenvalue problem. 

   
d2ψ
dx2

+ Bm
2ψn(x)

= 0                                                              ⋯ (11) 

   ψn �
a�
2
�＝ψn �−

a�
2
� = 0 

 
We are interested in symmetric solutions since ϕ0(x) is symmetric. 
   eigen functions：ψn(x) = cos Bnx 

   eigenvalue：Bn2＝ �
nπ
a� �

2
、 n = 1,3,5,∙∙∙∙                        ⋯ (12) 

 
If we identify Eq.(9) as the same problem, we must choose 
   λ = 𝑣𝑣Σa + 𝑣𝑣DBn

2 − 𝑣𝑣νΣf ≡ λn、 n = 1,3,5                        ⋯ (13) 
 λn：time eigenvalues 
 
General solution of Eq.(1), 

   ϕ(x, t) = �Anexp (−λnt)cos
nπx

a�n
odd

                               ⋯ (14) 

 
The solution satisfies the boundary conditions. From initial condition Eq.(2), 

   ϕ(x, 0) = ϕ0(x) = �Ancos
n
odd

nπx
a�

                                 ⋯ (15) 

Using orthogonality, 
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   An＝
2
a�
� dxϕ0(x)cos

nπx
a�

a�
2

−a�2

                                      ⋯ (16) 

 
Thus 

   ϕ(x, t) = ��
2
a�
� dx′ϕ0(x′)cosBnx′
a�
2

−a�2

�
n
odd

exp(−λnt) ∙ cosBnx            ⋯ (17) 

 
where the time eigenvalues λn are given by 
 

   λn＝𝑣𝑣Σa + 𝑣𝑣DBn
2 − 𝑣𝑣νΣf、 Bn =

nπ
a�
                           ⋯ (18) 

 
(b)Long time behavior 
 From Eq.(12) 

    B1
2

< B3
2 <∙∙∙∙< Bn

2＝ �
nπ
a� �

2
                                ⋯ (19) 

 
hence from Eq.(18) 
   λ1 < λ3 < λ5 ∙∙∙∙                                             ⋯ (20) 
 
This means that the modes（terms in Eq.(17)）corresponding to larger n decay out 
rapidly in time. 
 
as t → ∞ 
   ϕ(x, t)～A1 exp(−λ, t) cosB1x                                   ⋯ (21) 
 （fundamental mode） 
 
 This shows the regardless of the initial shape ϕ0(x) the flux will decay into the 
fundamental mode shape. 
 It is usual to refer the value of Bn

2 characterizing this model as 

   B1
2

= �
π
a��

2
≡ Bg

2 ≡ geometric buckling                      ⋯ (22) 
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⎣
⎢
⎢
⎢
⎡ Thus nomenclature is used since Bn2 is a
measure of the curvature of the mode shape

Bn2＝−
1
ψn

d2ψn

dx2 ⎦
⎥
⎥
⎥
⎤
 

 
 (c)Criticality condition 
 What is required to make the flux distribution in the reactor time-independent
 i.e. what is required to make the fission chain reaction steady-state 
 We will define this situation to be that of reactor criticality： 
 
   Criticality ≡

when a time- independent neutron flux can be sustained in the reactor 
       （in the absence of sources other than fissions） 
 
The general solution of the flux 

   ϕ(x, t)＝A1 exp(−λ, t) cosB1x + �Anexp (−λnt)
∞

n=3
odd

cosBnx        ⋯ (23) 

 
It is evident that requirement for a time-independent flux is just that the fundamental 
eigenvalue vanish. 
   λ1＝0 = 𝑣𝑣(Σa − νΣf) + 𝑣𝑣DB12                                 ⋯ (24) 
 
since then higher modes（n=3,5,∙∙∙∙）will have negative −λn and decay out in time, 
leaving just, 
   ϕ(x, t) → A1cosB1 ≠ function of time 
 
From Eq.(24), using notation B12 = Bg

2 
 

   Bm
2

= Bg
2    （criticality condition）                     ⋯ (25) 

    where, Bm
2 ≡

νΣf − Σa
D

   （material buckling）         ⋯ (26) 

 
To achieve a critical reactor, we must either adjust the size（Bg2）or the core 
composition（Bm

2）such that Bm
2 = Bg

2 
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we also note, 

   Bm
2

> Bg
2    ⇒    λ1 < 0   ⇒    super critical 

   Bm
2

= Bg
2    ⇒    λ1 = 0   ⇒    critical 

   Bm
2

< Bg
2    ⇒    λ1 > 0   ⇒    sub critical 

 
 
 
 

    Bg
2
＝ �

π
a��

2
 

    Bm
2
＝
νΣf − Σa

D
 

    t → ∞  ϕ(x, t) → A1exp(−λ1t) ∙ cosBgx 
 
 


