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- One-speed diffusion theory of a nuclear reactor (1) -
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5. One-speed diffusion theory of a nuclear reactor
5.1 The time-dependent "slab" reactor

(a)Solution of diffusion equation
Considering a uniform slab of fissile material characterized by cross sections

2., 2 2 (Slab reactor)

One-speed diffusion equation

10 0?
;a—dt) - Da_X(l) + Ead)(X, t) = szd)(x’ t)

Initial condition
d(x,0) = Po(x) = do(—x)  (symetric)

Boundary conditions
G005 =0
q) 2 ’ - q) 2 ’ -

A solution of the form (separation variables)

¢ 0 = YT

Substituting Eq.(4) to Eq.(1) and dividing by W(x)T(t)

1dT v[_d?y
T E DW + (vEZ; — 2 )U(x)| = constant = —A
hence
dr _ AT(t)
dt
d2y A
DE + (VE - ZIY(x) = —;llJ(X)

Solution of the time-dependent Eq.(6)
T(t) = T(0)e ™™
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Space dependent equation

2y /2 ~
Dw+<;+VZf—Za>lIJ(X)—O (9)

Boundary condition

R

here A is still to be determined.

Considering the eigenvalue problem.

a2y
@ + Bmijn(x)

—0 - (11)
RN

We are interested in symmetric solutions since ¢y(x) is symmetric.
eigen functions : y,(x) = coSB,x

Nty 2
eigenvalue : B,*= (—) . n=135"- - (12)

If we identify Eq.(9) as the same problem, we must choose
A=vE,+vDB, > —wZ=A,. n=135 -+ (13)

A, : time eigenvalues

General solution of Eq.(1),

d(x,t) = Z Anexp(—knt)cos? - (14)

odd

The solution satisfies the boundary conditions. From initial condition Eq.(2),

$(x,0) = po(x) = ) Ancos— - (15)

T
odd

Using orthogonality,
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2 (2 nmx
An:g _édxq)o(x)cosT -+ (16)

Thus

o(xt) = Z Ig Ji dx'do(x")cosBpx' | exp(—A,t) - cosB,x - (17)
m |72

odd
where the time eigenvalues A, are given by

nm

A =vZ, + vDB > —wE; B, = = -+ (18)
(b)Long time behavior
From Eq.(12)
B e p i (M
B, < B;% << B, (5) (19)
hence from Eq.(18)

This means that the modes (terms in Eq.(17)) corresponding to larger n decay out

rapidly in time.

as t—» o
d(x,t)~A; exp(—A, t) cosB;x -+ (21)

(fundamental mode)

This shows the regardless of the initial shape ¢y(x) the flux will decay into the
fundamental mode shape.

It is usual to refer the value of B,* characterizing this model as

BZ—(E)2=B2= tric buckli (22
1 = =bg = geometric buckliing ( )

a
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[ Thus nomenclature is used since B, is a ]
imeasure of the curvature of the mode shapeI

o2 1d |
n

P, dx? J

(c)Criticality condition
What is required to make the flux distribution in the reactor time-independent
i.e. what is required to make the fission chain reaction steady-state

We will define this situation to be that of reactor criticality :

Criticality =
when a time-independent neutron flux can be sustained in the reactor

(in the absence of sources other than fissions)

The general solution of the flux

d(x,t)=A; exp(—A, t) cosB;x + Z Apexp(—A,t) cosByx -+ (23)
=3
odd

It is evident that requirement for a time-independent flux is just that the fundamental
eigenvalue vanish.

M =0=v(Z, — vZ) + vDB,* - (24)

since then higher modes (n=3,5,~) will have negative —A, and decay out in time,
leaving just,

¢(x,t) = AjcosB; # function of time

From Eq.(24), using notation B;* = Bg2

Bm =B’ (criticality condition) -+ (25)

2 sz - z:a . .
where, B’ = — (material buckling) -+ (26)

To achieve a critical reactor, we must either adjust the size (Bgz) or the core

composition (B,,?) such that By? = B,
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we also note,

B, > Bg2 = M<0 = super critical
B, = Bg2 = M=0 = critical

B, < Bg2 = M>0 = sub critical

= (5)

z_vZf—Za

B
m D

t— o d(x,t) > Ajexp(—Aqt) - cosBgx
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