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Synchronization

• Basic building blocks:
• Atomic exchange

• Swaps register with memory location
• Test-and-set

• Sets under condition
• Fetch-and-increment

• Reads original value from memory and increments it in memory
• These requires memory read and write in uninterruptable 

instruction

• load linked/store conditional
• If the contents of the memory location specified by the load linked 

are changed before the store conditional to the same address, the 
store conditional fails
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Orchestration 

• LOCK and UNLOCK around critical section
• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0;       /* variable  in shared memory */

void solve_pp (int pid, int ncores) {
int i, done = 0;                    /* private variables */
int mymin = 1 + (pid * N/ncores);   /* private variable  */
int mymax = mymin + N/ncores – 1;   /* private variable  */
while (!done) {

float mydiff = 0;
for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i‐1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] ‐ A[i]);

}
LOCK();
diff = diff + mydiff;
UNLOCK();

BARRIER();
if (diff <TOL) done = 1;
BARRIER();
if (pid==1) diff = 0;
for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

}
}

(1) load diff
(2) add
(3) store diff

These operations must be executed 
atomically

After all cores update the diff,  
if statement must be executed. 

if (diff <TOL) done = 1;
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Implementing an atomic exchange EXCH

• Load linked/store conditional instructions
• If the contents of the memory location specified by the load 

linked are changed before the store conditional to the same 
address, the store conditional fails

• Store conditional instruction
• it returns 1 if it was successful and a 0 otherwise

• EXCH R4,0(R1)     ; exchange R4 and 0(R1) atomically

try: ADD R3,R4,R0 ; move exchange value, R3<=R4
LL R2,0(R1) ; load linked
SC R3,0(R1) ; store conditional
BEQ R3,R0,try ; branch if store fails (R3==3)
ADD R4,R2,R0 ; put load value in R4, R4<=R2
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Implementing Locks using coherence

• Spin lock
• R1 is the address of the lock variable and its initial value is 0.
• We can cache the lock using the coherence mechanism to maintain 

the lock value coherently.
• This code spins by doing read on a local copy of the lock until it 

successfully sees that the lock is available (lock variable is 0).

lockit: LD  R2,0(R1) ; load of lock
BNE R2,R0,lockit  ; not available‐spin if R2==1
ADDI R2,R0,1 ; load locked value, R2<=1
EXCH R2,0(R1) ; swap
BNE R2,R0,lockit ; branch if lock wasn’t 0
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Implementing Unlocks using coherence

• Unlock
• Just resetting the lock variable

unlock: SW  R0,0(R1) ; reset the lock, lock variable <= 0
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Implementing Barriers using coherence

• This code counts up the arrived threads using a shared variable 
counter.

• If all threads counts up the variable, the last thread set the shared 
variable flag to exit the barrier. 

BARRIER(){
LOCK();

if (counter == 0) flag = 0; /* counter and flag are shared data */
mycount = counter++;        /* mycount is a private variable    */

UNLOCK();
if (mycount == p) {

counter = 0;
flag = 1;

}
else while (flag == 0) { };     /* wait until all threads reach BARRIER */

}
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Problem in multi-core context (consistency)

• Assume that A=0 and Flag=0 initially
• C1 writes data into A and sets Flag to tell C2 that data value can be 

read (loaded) from A.
• C2 waits till Flag is set and then reads (loads) data from A.
• What is the printed value by C2?

A = 3;  while (Flag==0); 
Flag = 1;  print A; 

C1 (Core 1) C2 (Core 2)
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Problem in multi-core context

• If the two writes (stores) of different addresses on C1 can be 
reordered, it is possible for C2 to read (load) 0 from variable A.

• This can happen on most modern processors.
• For single-core processor, Code1 and Code2 are equivalent. These 

writes may be reordered by compilers statically or by OoO 
execution units dynamically.  

• The printed value by C2 will be 0 or 3.

A = 3;
Flag = 1;

Code1 

Flag = 1;
A = 3;

Code2 

A = 3;  while (Flag==0); 
Flag = 1;  print A; 

C1 (Core 1) C2 (Core 2)
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Problem in multi-core context

• Assume that A=0 and B=0 initially
• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.

A = 1;  B = 1; 
print B;  print A; 

C1 (Core 1) C2 (Core 2)
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Problem in multi-core context

• Assume that A=0 and B=0 initially
• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.
• This is true only if reads and writes on the same core to 

different locations are not reordered by the compiler or 
the hardware.

• The outputs may be 01, 10, 11, and 00.

A = 1;  B = 1; 
print B;  print A; 

C1 (Core 1) C2 (Core 2)
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Memory Consistency Models

• A single-core processor can reorder instructions subject only to 
control and data dependence constraints

• These constraints are not sufficient in shared-memory multi-
cores
• simple parallel programs may produce counter-intuitive results

• Question: what constraints must we put on single-core 
instruction reordering so that
• shared-memory programming is intuitive
• but we do not lose single-core performance?

• The answers are called memory consistency models supported by 
the processor
• Memory consistency models are all about ordering constraints on 

independent memory operations in a single-core’s instruction 
stream 
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Simple and Intuitive Model: Sequential Consistency

• Sequential consistency (SC) model
• It constrains all memory operations:

• Write -> Read
• Write -> Write
• Read -> Read
• Read -> Write

• Simple model for reasoning about parallel programs
• You can verify that the examples considered earlier work 

correctly under sequential consistency.
• This simplicity comes at the cost of single-core performance.

• How to implement SC?
• How do we modify sequential consistency model with the 

demands of performance?
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Relaxed consistency model: Weak Consistency

• Programmer specifies regions within which global memory 
operations can be reordered

• Processor has fence or sync instruction:
• all data operations before fence in program order must complete 

before fence is executed
• all data operations after fence in program order must wait for 

fence to complete
• fences are performed in program order

• Example: MIPS has SYNC instruction
• Implementation of SYNC 

• a processor may flush all instructions 
when a SYNC instruction is retired

Program 
execution

Fence, Sync

Fence, Sync

Region 
A

Region
B

Region 
C

Memory operations within a region can be reordered
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Release Consistency Model

• Further relaxation of weak consistency
• A fence instruction is divided into 

• Acquire: operation like lock
• Release: operation like unlock

• Semantics of Acquire:
• Acquire must complete before all following memory accesses
• Memory operations in region B and C must complete before Acquire

• Semantics of Release: 
• all memory operations before 

Release are complete
• Memory operations in region A 

and B must complete 
before Release

Fence, Acquire

Fence, Release

Region 
A

Region
B

Region 
C
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Memory Consistency Model

• In the literature, there are a large number of other consistency 
models
• Sequential Consistency
• Causal Consistency
• Processor Consistency
• Weak Consistency (Weak Ordering)
• Release Consistency
• Entry Consistency
• …

• It is important to remember that these are concerned with 
reordering of independent memory operations within a single 
thread.

• Weak or Release Consistency Models are adequate
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Syllabus (3/3)
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Intel Skylake-X, Core i9-7980XE, 2017

• 18 core
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Final report

1. For details of the final report, please visit the lecture support page.
http://www.arch.cs.titech.ac.jp/lecture/ACA 

2. Submit your final report in a PDF file via E-mail by February 17, 2019


