Fiscal Year 2018

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

14. Thread Level Parallelism: Memory Consistency

Model
f
www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Synchronization

* Basic building blocks:
« Atomic exchange
» Swaps register with memory location
Test-and-set
e Sefts under condition
* Fetch-and-increment
* Reads original value from memory and increments it in memory

* These requires memory read and write in uninterruptable
instruction

e |load linked/store conditional

« If the contents of the memory location specified by the load linked
are changed before the store conditional o the same address, the
store conditional fails

~ "\ ="
) 2

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Orchestration

« LOCK and UNLOCK around critical section
e Set of operations we want to execute atomically
« BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */

float diff=0.0; /* variable in shared memory */ .
These operations must be executed

void solve pp (int pid, int ncores) { g

int i, done = ©; /* private variables */ GTomICG”y

int mymin = 1 + (pid * N/ncores); /* private variable */ e

int mymax = mymin + N/ncores - 1; /* private variable */ (1) load diff

while (!done) { (2) add

float mydiff = 0; (3) store diff

for (i=mymin; i<=mymax; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);
} .
LOCK() After all cores update the diff,

SHZCEJ%H + mydiff; if statement must be executed.

BARRIER(); if (diff <TOL) done = 1;
if (diff <TOL) done = 1;

BARRIER();

if (pid==1) diff = o;

for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

;‘@‘ }

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing an atomic exchange EXCH

\
e Load linked/store conditional instructions X

« If the contents of the memory location specified by the load
linked are changed before the store conditional to the same
address, the store conditional fails

e« Store conditional instruction
e itreturnslif it was successful and a O otherwise

« EXCHR4,0(R1) ;exchange R4 and O(R1) atomically

try: ADD R3,R4,R0 ; move exchange value, R3<=R4
LL R2,0(R1) load linked
SC R3,0(R1) store conditional
BEQ R3,R0O,try ; branch if store fails (R3==3)
ADD R4,R2,R0 ; put load value in R4, R4<=R2

~ ="
) 4

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

oo

oo

Implementing Locks using coherence
\

e Spin lock
e Rl is the address of the lock variable and its initial value is O.

« We can cache the lock using the coherence mechanism to maintain
the lock value coherently.

« This code spins by doing read on a local copy of the lock until it
successfully sees that the lock is available (lock variable is 0).

lockit: LD R2,0(R1) ; load of lock
BNE R2,R0,1lockit ; not available-spin if R2==1
ADDI R2,R0,1 ; load locked value, R2<=1

EXCH R2,0(R1) swap
BNE R2,R0,1ockit ; branch if lock wasn’t ©

@ o

~ "\ ="
) 5

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing Unlocks using coherence X
\

 Unlock

e Just resetting the lock variable

unlock: SW RO,0(R1) ; reset the lock, lock variable <= ©

~ "\ ="
) 6

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Implementing Barriers using coherence

3
* This code counts up the arrived threads using a shared variable
counter.

« If all threads counts up the variable, the last thread set the shared
variable flag to exit the barrier.

BARRIER(){
LOCK();
if (counter == @) flag = @; /* counter and flag are shared data */
mycount = counter++; /* mycount is a private variable */
UNLOCK();
if (mycount == p) {
counter = 0;
flag = 1;
}
else while (flag == 0) { }; /* wait until all threads reach BARRIER */

~ "\ ="
) 7

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Problem in multi-core context (consistency) x
\

« Assume that A=0 and Flag=0 initially

e Clwrites data into A and sets Flag to tell C2 that data value can be
read (loaded) from A.

« C2 waits till Flag is set and then reads (loads) data from A.
* What is the printed value by C2?

Cl (Core 1) C2 (Core 2)
A = 3; while (Flag==0);
Flag = 1; print A;

;"9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Problem in multi-core context x
\

e If the two writes (stores) of different addresses on C1 can be
reordered, it is possible for C2 to read (load) O from variable A.
 This can happen on most modern processors.

* For single-core processor, Codel and Code?2 are equivalent. These
writes may be reordered by compilers statically or by OoO
execution units dynamically.

* The printed value by C2 will be O or 3.

Codel Code2
A = 3; Flag = 1;
Flag = 1; A = 3;
Cl (Core 1) C2 (Core 2)
A = 3; while (Flag==0);
Flag = 1; print A;

=)

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Problem in multi-core context

« Assume that A=0 and B=0 initially

« Should be impossible for both outputs to be zero.

e Intuitively, the outputs may be 01, 10, and 11.

Cl (Core 1) C2 (Core 2)
A= 1; B =1;
print B; print A;

;"9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

Problem in multi-core context
\
» Assume that A=0 and B=0 initially 3%

« Should be impossible for both outputs to be zero.
e Intuitively, the outputs may be 01, 10, and 11.

» This is true only if reads and writes on the same core to
different locations are not reordered by the compiler or
the hardware.

» The outputs may be 01, 10, 11, and OO.

Cl (Core 1) C2 (Core 2)
A=1; B =1;
print B; print A;

;\9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Memory Consistency Models

=)

A@‘

\

A single-core processor can reorder instructions subject only to
control and data dependence constraints

These constraints are not sufficient in shared-memory multi-
cores
» simple parallel programs may produce counter-intuitive results

Question: what constraints must we put on single-core
instruction reordering so that

» shared-memory programming is infuitive
« but we do not lose single-core performance?

The answers are called memory consistency models supported by
the processor

« Memory consistency models are all about ordering constraints on
independent memory operations in a single-core's instruction
stream

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

12

Simple and Intuitive Model: Sequential Consistency X
\

* Sequential consistency (SC) model

It constrains all memory operations:
* Wprite -> Read
e Write -> Write
 Read -> Read
 Read -> Write

« Simple model for reasoning about parallel programs

* You can verify that the examples considered earlier work
correctly under sequential consistency.

« This simplicity comes at the cost of single-core performance.
* How to implement SC?

* How do we modify sequential consistency model with the
demands of performance?

~ "\ ="
) 13

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Relaxed consistency model: Weak Consistency x
\

» Programmer specifies regions within which global memory
operations can be reordered

Processor has fence or sync instruction:

 all data operations before fence in program order must complete
before fence is executed

 all data operations after fence in program order must wait for
fence to complete

« fences are performed in program order Re%ion
« Example: MIPS has SYNC instruction | _L—— | Fence, Sync
* Implementation of SYNC Re%ion
 a processor may flush all instructions - s
when a SYNC instruction is retired Tt -----Fence, oync
Program Re%lon
execution |,

) jﬁ,;. Memory operations within a region can be reordered

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Release Consistency Model

Further relaxation of weak consistency
A fence instruction is divided into
e Acquire: operation like lock
« Release: operation like unlock
Semantics of Acquire:
e Acquire must complete before all following memory accesses
« Memory operations in region B and C must complete before Acquire
Semantics of Release:

« all memory operations before Region

Release are complete A Fence, Acquire
* Memory operations in region A Region | | Region

and B must complete B C

before Release

Fence, Release

~ "\ ="
\Q\ 15

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Memory Consistency Model

\
e In the literature, there are a large number of other consistency 3%
models

« Sequential Consistency

e Causal Consistency

« Processor Consistency

« Weak Consistency (Weak Ordering)
« Release Consistency

« Entry Consistency

« Itisimportant to remember that these are concerned with
reordering of independent memory operations within a single
thread.

« Weak or Release Consistency Models are adequate

=)

~ ="
\Q\ 16

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Syllabus (3/3)

Course schedule/Required learning

Course schedule

Required learning

Class 1

Design and Analysis of Computer Systems

Understand the basic of design and analysis of computer
systems.

Class 2

Instruction Set Architecturs

Understand the examples of instruction set architectures

Class 3

Mermory Higrarchy Design

Understand the organization of memory hierarchy
designs

Class 4

Pipelining

Understand the idea and organization of pipelining

Class 5

Instruction Level Parallelism:

Concepts and Challenges

Understand the idea and requirements for exploiting
instruction level parallelism

Class &

Instruction Level Parallelism:

Instruction Fetch and Branch Prediction

Understand the organization of instruction fetch and
branch predictions to exploit instruction level parallelism

Class 7

Instruction Level Parallelism

: Advanced Technigues for Branch Prediction

Understand the advanced technigues for branch
prediction to exploit instruction level parallelism

Class &

Instruction Level Parallelism:

Dynamic Scheduling

Understand the dynamic scheduling to exploit instruction
level parallelism

Class 9

Instruction Level Parallelism:

Speculation

Exploiting ILP Using Multiple Issus and

Understand the multiple issue mechanism and
speculation to exploit instruction level parallelism

Class 10

Instruction Level Parallelism:

Dut-of-order Execution and Multithreading

Understand the out-of-order execution and
multithreading to exploit instruction level parallelism

Class 11

Multi-Processor: Distributed Memory and Shared Memory Architecture

Understand the distributed memory and shared memory
architecture for multi-processors

Class 12

Thread Level Parallelism: Coherence and Synchronization

Understand the coherence and synchronization for
thread level parallelizm

Class 13

Thread Level Parallelism: Memory Consistency Model

Understand the memory consistency model for thread
level parallelism

Class 14

Thread Level Parallelism: Interconnection Metwork

Understand the interconnection network for thread level
parzllelism

Class 15

Thread Level Parallelism: Many-core Processor and Network-on-chip

Understand the many-core processor and network-on-
chip for thread level parallelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Intel Skylake-X, Core i9-7980XE, 2017

e 18 core

)]

=
CORE i9

X-series

~ "\ ="
) 18

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Final report
\
1

For details of the final report, please visit the lecture support page.
http://www.arch.cs.titech.ac.jp/lecture/ACA

2. Submit your final report in a PDF file via E-mail by February 17, 2019

~ "\ ="
) 19

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

