
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

14. Thread Level Parallelism: Memory Consistency
Model

Ver. 2019-01-28aFiscal Year 2018

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 13:20-14:50, Thr 13:20-14:50

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Synchronization

• Basic building blocks:
• Atomic exchange

• Swaps register with memory location
• Test-and-set

• Sets under condition
• Fetch-and-increment

• Reads original value from memory and increments it in memory
• These requires memory read and write in uninterruptable

instruction

• load linked/store conditional
• If the contents of the memory location specified by the load linked

are changed before the store conditional to the same address, the
store conditional fails

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Orchestration

• LOCK and UNLOCK around critical section
• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve_pp (int pid, int ncores) {
int i, done = 0; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores – 1; /* private variable */
while (!done) {

float mydiff = 0;
for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i‐1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] ‐ A[i]);

}
LOCK();
diff = diff + mydiff;
UNLOCK();

BARRIER();
if (diff <TOL) done = 1;
BARRIER();
if (pid==1) diff = 0;
for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

}
}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Implementing an atomic exchange EXCH

• Load linked/store conditional instructions
• If the contents of the memory location specified by the load

linked are changed before the store conditional to the same
address, the store conditional fails

• Store conditional instruction
• it returns 1 if it was successful and a 0 otherwise

• EXCH R4,0(R1) ; exchange R4 and 0(R1) atomically

try: ADD R3,R4,R0 ; move exchange value, R3<=R4
LL R2,0(R1) ; load linked
SC R3,0(R1) ; store conditional
BEQ R3,R0,try ; branch if store fails (R3==3)
ADD R4,R2,R0 ; put load value in R4, R4<=R2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Implementing Locks using coherence

• Spin lock
• R1 is the address of the lock variable and its initial value is 0.
• We can cache the lock using the coherence mechanism to maintain

the lock value coherently.
• This code spins by doing read on a local copy of the lock until it

successfully sees that the lock is available (lock variable is 0).

lockit: LD R2,0(R1) ; load of lock
BNE R2,R0,lockit ; not available‐spin if R2==1
ADDI R2,R0,1 ; load locked value, R2<=1
EXCH R2,0(R1) ; swap
BNE R2,R0,lockit ; branch if lock wasn’t 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Implementing Unlocks using coherence

• Unlock
• Just resetting the lock variable

unlock: SW R0,0(R1) ; reset the lock, lock variable <= 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Implementing Barriers using coherence

• This code counts up the arrived threads using a shared variable
counter.

• If all threads counts up the variable, the last thread set the shared
variable flag to exit the barrier.

BARRIER(){
LOCK();

if (counter == 0) flag = 0; /* counter and flag are shared data */
mycount = counter++; /* mycount is a private variable */

UNLOCK();
if (mycount == p) {

counter = 0;
flag = 1;

}
else while (flag == 0) { }; /* wait until all threads reach BARRIER */

}

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Problem in multi-core context (consistency)

• Assume that A=0 and Flag=0 initially
• C1 writes data into A and sets Flag to tell C2 that data value can be

read (loaded) from A.
• C2 waits till Flag is set and then reads (loads) data from A.
• What is the printed value by C2?

A = 3; while (Flag==0);
Flag = 1; print A;

C1 (Core 1) C2 (Core 2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Problem in multi-core context

• If the two writes (stores) of different addresses on C1 can be
reordered, it is possible for C2 to read (load) 0 from variable A.

• This can happen on most modern processors.
• For single-core processor, Code1 and Code2 are equivalent. These

writes may be reordered by compilers statically or by OoO
execution units dynamically.

• The printed value by C2 will be 0 or 3.

A = 3;
Flag = 1;

Code1

Flag = 1;
A = 3;

Code2

A = 3; while (Flag==0);
Flag = 1; print A;

C1 (Core 1) C2 (Core 2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Problem in multi-core context

• Assume that A=0 and B=0 initially
• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.

A = 1; B = 1;
print B; print A;

C1 (Core 1) C2 (Core 2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Problem in multi-core context

• Assume that A=0 and B=0 initially
• Should be impossible for both outputs to be zero.

• Intuitively, the outputs may be 01, 10, and 11.
• This is true only if reads and writes on the same core to

different locations are not reordered by the compiler or
the hardware.

• The outputs may be 01, 10, 11, and 00.

A = 1; B = 1;
print B; print A;

C1 (Core 1) C2 (Core 2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Memory Consistency Models

• A single-core processor can reorder instructions subject only to
control and data dependence constraints

• These constraints are not sufficient in shared-memory multi-
cores
• simple parallel programs may produce counter-intuitive results

• Question: what constraints must we put on single-core
instruction reordering so that
• shared-memory programming is intuitive
• but we do not lose single-core performance?

• The answers are called memory consistency models supported by
the processor
• Memory consistency models are all about ordering constraints on

independent memory operations in a single-core’s instruction
stream

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Simple and Intuitive Model: Sequential Consistency

• Sequential consistency (SC) model
• It constrains all memory operations:

• Write -> Read
• Write -> Write
• Read -> Read
• Read -> Write

• Simple model for reasoning about parallel programs
• You can verify that the examples considered earlier work

correctly under sequential consistency.
• This simplicity comes at the cost of single-core performance.

• How to implement SC?
• How do we modify sequential consistency model with the

demands of performance?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Relaxed consistency model: Weak Consistency

• Programmer specifies regions within which global memory
operations can be reordered

• Processor has fence or sync instruction:
• all data operations before fence in program order must complete

before fence is executed
• all data operations after fence in program order must wait for

fence to complete
• fences are performed in program order

• Example: MIPS has SYNC instruction
• Implementation of SYNC

• a processor may flush all instructions
when a SYNC instruction is retired

Program
execution

Fence, Sync

Fence, Sync

Region
A

Region
B

Region
C

Memory operations within a region can be reordered

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Release Consistency Model

• Further relaxation of weak consistency
• A fence instruction is divided into

• Acquire: operation like lock
• Release: operation like unlock

• Semantics of Acquire:
• Acquire must complete before all following memory accesses
• Memory operations in region B and C must complete before Acquire

• Semantics of Release:
• all memory operations before

Release are complete
• Memory operations in region A

and B must complete
before Release

Fence, Acquire

Fence, Release

Region
A

Region
B

Region
C

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Memory Consistency Model

• In the literature, there are a large number of other consistency
models
• Sequential Consistency
• Causal Consistency
• Processor Consistency
• Weak Consistency (Weak Ordering)
• Release Consistency
• Entry Consistency
• …

• It is important to remember that these are concerned with
reordering of independent memory operations within a single
thread.

• Weak or Release Consistency Models are adequate

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Syllabus (3/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Intel Skylake-X, Core i9-7980XE, 2017

• 18 core

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Final report

1. For details of the final report, please visit the lecture support page.
http://www.arch.cs.titech.ac.jp/lecture/ACA

2. Submit your final report in a PDF file via E-mail by February 17, 2019

