
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

9. Instruction Level Parallelism: Exploiting ILP
Using Multiple Issue and Speculation

Ver. 2019-01-09aFiscal Year 2018

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 13:20-14:50, Thr 13:20-14:50

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Hardware register renaming

• Logical registers (architectural registers) which are ones defined by
ISA
• $0, $1, … $31

• Physical registers
• Assuming plenty of registers are available, p0, p1, p2, …

• A processor renames (converts) each logical register to a unique
physical register dynamically

IF ID EX MEM WB

IF ID Renaming Dispatch Issue

Typical instruction pipeline of scalar processor

Execute Commit Retire

Typical instruction pipeline of high-performance superscalar processor

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Out-of-order execution

• In in-order execution model, all instructions
executed in the order that they appear. This
can lead to unnecessary stalls.
• Instruction (3) stalls waiting for insn (2) to go

first, even though it does not have a data
dependence.

• Using register renaming to eliminate output
dependence and antidependence, just having
true data dependence

• With out-of-order execution, insn (3) is allowed
to executed before the insn (2)
• Scoreboarding (CDC6600 in 1964)
• Tomasulo algorithm (IBM System/360 Model 91

in 1967)

(3)

(4)

Data flow graph

(1)

(2)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Instruction window

The key idea for OoO execution (1/3)

• In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

IF ID Renaming
1

2

3

4

Cycle 2

IF ID Renaming
1

2

3

4

5

6

Cycle 4
7

8

IF ID Renaming
5

6

Cycle 5
7

8

9

10

I1: sub p9,p1,p2
I2: add p10,p9,p3
I3: or p11,p4,p5
I4: and p12,p10,p11

(3)

(4)

Data flow graph

(1)

(2)

p9

p10
p11

1

2

3

4

IF ID Renaming
1

2

3

4

5

6

Cycle 3

In-order front-end

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

The key idea for OoO execution (2/3)

• In-order front-end, OoO execution core, in-order retirement using instruction
window and reorder buffer (ROB)

I1: sub p9,p1,p2
I2: add p10,p9,p3
I3: or p11,p4,p5
I4: and p12,p10,p11

(3)

(4)

Data flow graph

(1)

(2)

p9

p10
p11

Instruction windowIF ID Renaming
5

6

Cycle 5
7

8

9

10

1

2

3

4

Instruction windowIF ID Renaming
7

8

Cycle 6
9

10

11

12

5

2

6

4

Issue
1

3

Instruction windowIF ID Renaming
89

10

Cycle 7
11

12

13

14

5

7

6

4

Issue
2

Execute
1

3

Instruction windowIF ID Renaming
8

10

11

12

Cycle 8
13

14

15

16

5

7

6

9

Issue
4

Execute
2

Commit
1

3

We assume that I1 can be issued at cycle 6 by dependence.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

The key idea for OoO execution (3/3)
• In-order front-end, OoO execution core, in-order retirement using instruction

window and reorder buffer (ROB)
Instruction windowIF ID Renaming

7

8

Cycle 6
9

10

11

12

5

2

6

4

Issue
1

3

Instruction windowIF ID Renaming
89

10

Cycle 7
11

12

13

14

5

7

6

4

Issue
2

Execute
1

3

Instruction windowIF ID Renaming
8

10

11

12

Cycle 8
13

14

15

16

5

7

6

9

Issue
4

Execute
2

Commit
1

3

6 5 4 3 2 1ROB

8 7 6 5 4 3 2 1ROB

10 9 8 7 6 5 4 3 2 1ROB

Instruction windowIF ID Renaming
8

10

13

14

Cycle 9
15

16

17

18

11

7

12

9

Issue
5

6

Execute
4

Commit
2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire
1

Retire
2

3

RF

RF
Architectural register file

Head of the FIFO

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Instruction pipeline of OoO execution processor

• Allocating instructions to instruction window is called dispatch
• Issue or fire wakes up instructions and their executions begin
• In commit stage, the computed values are written back to ROB
• The last stage is called retire or graduate. The result is written back

to register file (architectural register file) using a logical register
number.

Instruction
Fetch

Instruction
Decode

Register
Renaming

Register Read/
Dispatch

Issue Execute/
Memory Commit

Retire

In-order front-end

Out-of-order back-end

In-order retirement

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Exercise: OoO execution

• Draw the cycle by cycle processing behavior of these 12
instructions
• wakeup
• select

75

6

8 11

9 10

3

4

1
2

12

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Instruction window Issue Execute Commit

ROB

Retire

Cycle 1

Instruction window Issue Execute Commit

ROB

Retire

Cycle 2

Instruction window Issue Execute Commit

ROB

Retire

Cycle 3

Instruction window Issue Execute Commit

ROB

Retire

Cycle 4

Instruction window Issue Execute Commit

ROB

Retire

Cycle 5

Instruction window Issue Execute Commit

ROB

Retire

Cycle 6

Instruction window Issue Execute Commit

ROB

Retire

Cycle 7

Instruction window Issue Execute Commit

ROB

Retire

Cycle 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 9

Instruction window Issue Execute Commit

ROB

Retire

Cycle 10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Prediction miss and recovery

• Assume that instruction 3 is a miss predicted branch and its target insn is 20
• Register file (and PC) has the architecture state after insn 3 is executed
• When insn 3 is retired, recover by flushing all instructions and restart

Instruction windowIF ID Renaming
8

10

13

14

Cycle 9
15

16

17

18

11

7

12

9

Issue
5

6

Execute
4

Commit
2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire
2

3

RF

Instruction windowIF ID RenamingCycle 10 Issue Execute Commit

ROB

Retire

RF
Recovery by flushing instructions on the wrong path (may takes several cycles)

Instruction windowIF ID RenamingCycle 11
20

21

Issue Execute Commit

ROB

Retire

RF
Restart by fetching instructions using the correct PC

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

MIPS R3000 Instruction Set Architecture (ISA)

• Instruction Categories
• Computational
• Load/Store
• Jump and Branch
• Floating Point

• coprocessor
• Memory Management
• Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd shamt funct

rs rt immediate

jump target (immediate)

3 Instruction Formats: all 32 bits wide

R format

I format

J format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Branch prediction miss and aggressive recovery

• Instruction 3 is a miss predicted branch and its target insn is 20
• Register file (and PC) has the architecture state after insn 3 is executed
• When insn 3 is executed, recover by flushing instructions after insn 3 and restart

Instruction windowIF ID Renaming
89

10

Cycle 7
11

12

13

14

5

7

6

4

Issue
2

Execute
1

3

Instruction windowIF ID RenamingCycle 8 Issue Execute
2

Commit
1

3

8 7 6 5 4 3 2 1ROB

3 2 1ROB

Retire
1

RF
Recovery by flushing instructions on the wrong path (may takes several cycles)

Instruction windowIF ID RenamingCycle 9
20

21

Issue Execute Commit
2

3 2ROB

Retire
2

3

RF

Restart by fetching instructions using the correct PC

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Instruction window

Instruction window

Aside: What is a window?

• A window is a space in the wall of a building or in the side of a vehicle,
which has glass in it so that light can come in and you can see out. (Collins)

Instructions to be executed for an application

Instruction large window

Instruction window

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

OoO CoreFront-end

Register dataflow

• In-flight instructions are ones processing in a processor

Instruction window
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Instructions to be executed for an application

Newer instructions

In-flight instructions

Instruction windowIF ID Renaming
8

10

11

12

Cycle 8
13

14

15

16

5

7

6

9

Issue
4

Execute
2

Commit
1

3

10 9 8 7 6 5 4 3 2 1ROB

Retire
1

RF

1
Executed insns

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Case 1: Register dataflow from a far previous instn

• One source operand of insn I2 is from a retired instruction Ia.
• Because Ia is retired, the destination register has no renamed tag. The tag of

a source register can not be renamed at renaming stage, still having a logical
register tag $3.

• Where does the operand $3 comes from?

OoO CoreFront-end Instruction window
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Instructions to be executed

Newer instructions

In-flight instructions

Instruction windowIF ID Renaming
8

10

11

12

Cycle 8
13

14

15

16

5

7

6

9

Issue
4

Execute
2

Commit
1

3

10 9 8 7 6 5 4 3 2 1ROB

Retire
1

RF

1 Ia
Executed insns

Ia: add $3,$0,$0
I1: sub p9,$1,$2
I2: add p10,p9,$3
I3: or p11,$4,$5
I4: and p12,p10,p11

Data dependence

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Register renaming again
• A processor remembers a set of renamed logical registers.
• If $1 and $2 are not renamed in in-flight instructions, it uses $1 and $2

instead of p1 and p2.

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1
2
3
4

5‐>9
6
7
8

0
1
2
3
4
5
6
7
8
9
10

31

dst = $5
src1 = $1
src2 = $2

dst = p9
src1 = p1
src2 = p2

I0: sub p9,$1,$2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Case 2: Register dataflow from ROB

• Assume that one source operand of insn I5 is from I2 which is not retired. The
operand is generated a few clock cycles (sometimes, tens of cycles) earlier.

• Because I2 is not retired, RF does not have the operand.
I2 is committed, so the operand is stored in ROB.

• Where does the operand comes from?

OoO CoreFront-end Instruction window
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions

1
Executed insns

Data dependence

Instruction windowIF ID Renaming
8

10

13

14

Cycle 9
15

16

17

18

11

7

12

9

Issue
5

6

Execute
4

Commit
2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire
2

3

RF

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Case 3: Register dataflow from ALUs

• Assume that one source operand of insn I5 is from I4 which is not retired. The
operand is generated in the previous clock cycle.

• Because I2 is not retired, RF does not have the operand.
Because I2 is not committed, ROB does not have the operand.

• Where does the operand comes from?

OoO CoreFront-end Instruction window
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 218

Instructions to be executed

Newer instructions

In-flight instructions

1
Executed insns

Data dependence

Instruction windowIF ID Renaming
8

10

13

14

Cycle 9
15

16

17

18

11

7

12

9

Issue
5

6

Execute
4

Commit
2

12 11 10 9 8 7 6 5 4 3 2ROB

Retire
2

3

RF

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Datapath of OoO execution processor

Instruction cache

Data cache

Integer

FP ALU FP ALU

Floating-point Memory

Reorder buffer
Store
queue

Adr gen.Adr gen.ALU ALU

Register file

RS

Branch handler

Memory dataflow

Register dataflow

Instruction flow

Instruction decode

Dispatch

Renaming

Instruction fetch

Reservation station (RS)

Instruction window

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

