Fiscal Year 2018

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

4. Pipelining

f
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Datapath of processor supporting ADD, ADDI, LW, SW

\

IR[25:21] IR[20:16]
op rs rt 16 bit immediate | format
Ox80c sw $t2, 8($t0) [sw $10, 8(%$8)]
4—--/
Instruction [25:21] Read
Read - i
PC "l address register 1 FRead .
Instruction [20:16] Pead data 1
Instruction _I | 5 - register 2 >ALU fero
[31:0] M Write Fead - HLlii Address FLE;:; —
Instruction | | |stryction [15:11] X register data 2 rest 'S
memory | ¢ =| 1 d |
| Write 8]
data Registers _ Data
| Write memory
data
$8 = 0x10 Instruction [15:0] Sign

$10 = 2

;"@‘

extend

Instruction [5:0]

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

MIPS Control Flow Instructions

e MIPS conditional branch instructions:

bne $s0, $s1, Lbl
beq $s0, $s1, Lbl

e Ex: if (i==3j) h
bne $s0, $s1, Lbll
add $s3, $s0, $si

Lbll:

= Instruction Format (I format):

go to Lbl if $s0=%$sl
go to Lbl if $s0=%s1

i+ J;

op rs

It

16 bit offset

= How is the branch destination address specified?

=)

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

Datapath of processor supporting ADD, ADDI, LW, SW, BNE, BEQ

IR[25:21] IR[20:16] x

op rs rt 16 bit immediate | format
Ox810 beqg $to, $t1, Lb [beq $8, $9, Lb]
\ -0
>Add l . E:
X
ALL
44/ . >Add result 1
Instruction [25:21] Read
Read - i
PC ~| address register 1 dﬁf a;:1:i R
Instruction [20:16] Read ata
Instruction _I | 5 " | register 2 Zero
S1:0] M Write Read q ALY AL Address °39 | 7
_ u X data 2 = result data M
Instruction Instruction [15:11] | x register u
memaory [=1 1 -
— Write — 0
data Registers Data
| Write
$8 = 7 data memory
$9 = 7 Instruction [15:0] Sign
. extend
imm = -3
Instruction [5:0]

;"@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Single-cycle implementation of processors

« Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

Add
4
Instruction [25:21] Bead
Read register 1
pC address d Read
Instruction [20:16] Read data 1
Instrug:i_z:ﬂn L4 | o register 2
5101 M| wirit Read
u .
Instruction Instruction [15:11] | x register data 2
memaory 1
| WVt
data Registers
Instruction [15:0] 16 sign 32
extend

Instruction [5:0]

~ "\ ="
) 5

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Single-cycle implementation of laundry

A
* (A) Ann, (B) Brian, (C) Cathy, and (D) Don each have dirty clothes to be‘%%

washed, dried, folded, and put away where each takes 30 minutes.
« Cycle time is 2 hours.
« Sequential laundry takes 8 hours for 4 loads.

6 PM 7 8 9 10 11 12 1 2 AM

Time " J oy e W ey e

Task
order

~ "\ ="
) 6

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Single-cycle implementation and pipelining

 Pipelined laundry takes 3.5 hours just using the same hardware
resources. Cycle time is 30 minutes.

« What is the latency of each load?

T 6 PM 7 8 9 10 11 12 1 2 AM
me -t 11 11
Task
arder —
» o=l
. Jo=ll
‘ Joe=ll
; o=l
6 PM 7 8 9 10 11 12 1 2 AM
Time -
| | T T T
. e
order —
» o=l
. (5=l
c Jo=l
_ | o =

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Single-cycle and pipelined processors

Program
execution . 200 400 600 B0OO 1000 1200 1400 1600 1800
order Time ! I l | | I I , —
(in instructions)

w $1, 100($0) ["suction|gog | ay | P2 peg

= ™ | Instruction Data

w $2, 200($0) 800 ps wtoh | Feg| ALU ooess | R0

w $3, 300($0) = 800 ps ™ |istrustor

T f— s

800 ps

Program

execution —. 200 400 600 800 1000 1200 1400

order Time ' I | I I , | -

(in instructions)

w $1,100($0) [™ol fpeg AL | D2 fpReg

e .
w $2, 200($0) 200 ps "IN |Reg| AU | D |Reg
| .
Iw $3, 300($0) 200 ps [T |Reg| AL [D IReg
Y - — -

200 ps 200ps 200 ps 200 ps 200 ps

Conventional five steps (stages) of MIPS

e IF: Instruction Fetch from instruction memory
« ID: Instruction Decode and operand fetch from regfile (register file)

« EX: EXecute operation or calculate address for load/store or calculate
branch condition and target address

« MEM (MA): MEMory access for load/store
« WB: Write result Back to regfile

l 0
— "
Add f — u
|) x
EX
1
4 ID N , Add ooy
/ ‘ :
| Shift -
G MEM
[L b
Instruction [25:21] Read
Fead eqister 1
PC address il Fead E%""«-m_m
Instruction [20:16] Hend data 1 L e
My | Zero |
e Instruction || L ; T register 2 it 4 1 m
[eh 1] 1] Write Fead o r;LulrltJ Address Hdeaatlg 1
— =] | ==
Instruction Instruction [15:11] : register data i S h._",‘
memory ot g | x
= el Write SR 0
WB data Registers e _ Data
Write memory

IF data
Instruction [15:0] 18 {isign | 32
i‘extend
|

Instruction [5:0]
=

~ ="
) :

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Towards four stage pipelined one supporting ADD

e IF: Instruction Fetch from instruction memory

« ID: Instruction Decode and operand fetch from regfile
« EX: EXecute operation

« WB: Write result Back to regfile

J

Instruction [25:21] Bear
Read register 1
pC address 9 Read
Instruction [20:18] Read data 1
; Zero
Instruction | [M register 2

[31:0] Read ALY ALu

Write result

Instruction Instruction | register data 2 —_— \ﬂ
memory >
1 Write
= 1
data Registers | | g

;\9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

10

Pipeline registers

™

A@‘

add
add
add
add
add
add

$0,
$1,
$2,
$0,
$0,
$0,

$0,
$1,
$2,
$0,
$0,
$0,

t0 #
$1 #
$2 #
f0 #
t0 #
f0 #

assuming initial values of r[1]=22 and r[2]=33

NOP, $0 <=0 + ©
$1 <= 22 + 22
$2 <= 33 + 33
NOP
NOP
NOP

PC

Read

IF

address

Instruction

Instruction
memory

Add ;

[31:0]

| Instruction [25:21]

Instruction [20:1 6]
T
Instruction >—
]

ID

Read
register 1 Bead
Read data 1
register 2

; Read
Wite
register data 2
Wite
data Registers

+

Lero

ALL a1
result

WB

I CSC.T433 Advanced Computer Architecture, Department of Computer Science,

11

TOKYO TECH

Exercise: Correcting the pipeline datapath X
\

=)

~ ="
4 12

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Single-cycle and pipelined processors

Program
execution . 200 400 600 800 1000 1200 1400 1600 1800
Time I T 1 I T I | , —

order
(in instructions)

Instruction Data
hw $1’ 100($0} fetch ACCess Reg
= ™ | Instructi
lw $2, 200($0) 800 ps retruation Reg
g - .
Iw $3, 300{$0} 800 ps Ins;;lijg;c.]mn
T f— s
800 ps
Program
execution —. 200 400 600 800 1000 1200 1400
order Time ' I | I I , | -

(in instructions)

Instruction

w $1, 100($0) | " Reg

Instruction

B
lw $2, 200($0) 200 ps| Feen

-] :
lw $3, 300($0) 200 ps | "Hecton ool
Y P ——— — -

Homework 4
AN
1,

Design a four stage pipelined processor supporting MIPS add
instructions in Verilog HDL. Please download procOl.v from the
support page and refer it.

2. Verify the behavior of designhed processor using following
assembly code
assuming initial values of r[1]=22, r[2]=33, r[3]=44, and r[4]=-55
+ add $e, $e, $e0 # NOP {6'he, 5'de, 5'de, 5'de, 5'de, 6'h20}
+ add $1, $1, $1 #
* add $2, $2, $2 #
« add $3, $3, $3 #
+ add $4, $4, $4 #

3. Submit a report printed on A4 paper at the beginning of the
next lecture.

e The report should include a block diagram, a source code in Verilog
HDL, and obtained waveforms of your design.

L=

~

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Data hazard caused by data dependency

e The register value $2 for AND instruction is not written back to

register file yet.

Time {in clock cycles)
CCH

10Q

Value of
reqister 2.

Frogram
executian
arder

(in instructions)

sub

b1 %3

and$12, -2, %5

ar$i13, §6,

add 14,

sw $15, 100

™

A@‘

-

ccz
10

cC3
10

CC4
10

CCs
10/=2

a

CCa
—20

CC7

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

cca CCs
=20 =20
Reg|
_—
oM Feq)
|

pipeline diagram

15

Data forwarding
\

* Do not wait for data to be written to register file. Sending the
data directly to where needed (consumers).

« In these cases, pipeline registers provide the operand.

Time {in clock cycles) -
CCAH ccz CC3 CC4 CCs CCea CC7 CCa [

Value of register $2: 10 10 10 10 10/—20 | —20 20 -20
Value of EX/MEM: X X X —20 X X X X X
Value of MEMANVE: x X X x —20 X X X X
Pragram
exacutian
arder

fin instructions)

sub 2, 1, 3 III—I_E‘EI:I:" szgj
anagr2, 12,85 EI-IJm#i@%I{;
s #l= | Plete

sw $15, 100 III I g I:’I E I I—|

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Stalling the processor by data hazard

« Stall needed only when ...

Time {in clock cycles) -

CC1 ccz CC3 CC4 CCs CcCa CC7 cCa cCa

Program
execution
arder
{in instructions) m m m
- 1
i zogn M ‘H‘%ﬂ_@l: :D' r|. N
— . — r. — | — .
and -+, 17, $5 M e AD~ DM i
— — — | =| o
ar$a, o, $a M| = s :|— D[~E7gi
[y | l I' 1
— — f s Lt
add $3, [o LR
AH D B
st 1, 368, &7 - - -

;"@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

17

Adding path and mux for data forwarding

IDVEX EX/MEM MEMWE
—
| —_— -
—
Registers >ALLI
™ ™ .'.-/ Data ,
memary
a. Mo farwarding
ID/EX EX/MEM MEMWE
— ~ — —
> W
|
—= L
— X
| . "'\‘_’,J
Reqgiste rs }ALIJ
. N
M
sl * rrE:'ltgry -
-
Fa
I“‘—_ EX/MEM. Regist=rAd
Pt -~ M -
Fd]
x —

- ~=—— | MEM/WE Regsterfd —‘
-
. A@‘ b. With forwarding
AN

\

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

18

