
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

2. Instruction Set Architecture

Ver. 2018-12-05aFiscal Year 2018

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 13:20-14:50, Thr 13:20-14:50

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

MIPS R3000 Instruction Set Architecture (ISA)

• Instruction Categories
• Computational
• Load/Store
• Jump and Branch
• Floating Point

• coprocessor
• Memory Management
• Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd shamt funct

rs rt immediate

jump target (immediate)

3 Instruction Formats: all 32 bits wide

R format

I format

J format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

MIPS Register Convention and ABI

Name Register
Number

Usage Preserve on
call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

ABI (Application Binary Interface)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

MIPS Arithmetic Instructions

• MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs only one operation
 Each arithmetic instruction fits in 32 bits and specifies

exactly three operands
destination source1 op source2

 Operand order is fixed (destination first)
 Those operands are all contained in the datapath’s register

file ($t0,$s1,$s2) – indicated by $

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Machine Language - Add Instruction

• Instructions, like registers and words, are 32 bits long
• Arithmetic Instruction Format (R format):

add $10, $8, $9

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

{6'h0, 5'd8, 5'd9, 5'd10, 5'd0, 6'h20} for add $10, $8, $9

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Exercise

• Compiling a C assignment Using Resisters

• f = (g + h) – (i + j);
• The variables f, g, h, i, and j are assigned to the registers

$s0, $s1, $s2, $s3, and $s4, respectively. What is the
compiled MIPS code?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

addi $sp, $sp, 4 # $sp = $sp + 4
slti $t0, $s2, 15 # $t0 = 1 if $s2<15

• Machine format (I format):

MIPS Immediate Instructions

op rs rt 16 bit immediate I format

 Small constants are used often in typical code
 Possible approaches?

 put “typical constants” in memory and load them
 create hard-wired registers (like $zero) for constants like 1
 have special instructions that contain constants !

 The constant is kept inside the instruction itself!
 Immediate format limits values to the range +215–1 to -215

{6'h8, 5'd0, 5'd8, 16'd3} for addi $8, $0, 3

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Instruction Level Parallelism (ILP)

(1)

(2)

(3)

(4)
ILP = 4/3 = 1.33

add $8, $3, $5 (1)

addi $9, $8, 1 (2)

addi $10, $5, 1 (3)

add $11, $10, $9 (4) data
dependency

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Computer Memory

• Read-only memory (ROM)
• Random-access memory (RAM)

We use 8K word memory.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Machine Language - Load Instruction

• Load/Store Instruction Format (I format):
lw $t0, 24($s2)

op rs rt 16 bit offset

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 = 0x120040ac

0x120040ac$t0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Exercise

• Compiling an Assignment When an Operand Is in Memory

• g = h + A[8];
• Let’s assume that A is an array of 100 words and the

compiler has associated the variable g and h with the
registers $s1 and $s2 as before. Let’s also assume that the
starting address, or base address, of the array is in $s3.
Compile this C assignment statement.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

MIPS Memory Access Instructions

• MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

• The data is loaded into (lw) or stored from (sw) a register
in the register file – a 5 bit address

• The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value
• A 16-bit field meaning access is limited to memory locations

within a region of 213 or 8,192 words (215 or 32,768 bytes)
of the address in the base register

• Note that the offset can be positive or negative

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Exercise

• Compiling Using Load and Store

• A[12] = h + A[8];
• Assume variable h is associated with register $s2 and base

address of the array A is in $s3. What is the MIPS
assembly code for the C assignment statement?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Instruction Level Parallelism (ILP)

(1)

(2)

(4)

(3)

lw $t0, 32($s3) (1)

add $t0, $s2, $t0 (2)

sw $t0, 48($s3) (3)

lw $t1, 32($s4) (4)

data
dependency

?
ambiguous
data dependency

?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

MIPS Control Flow Instructions

• MIPS conditional branch instructions:
bne $s0, $s1, Lbl # go to Lbl if $s0$s1
beq $s0, $s1, Lbl # go to Lbl if $s0=$s1
• Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

 Instruction Format (I format):

op rs rt 16 bit offset

 How is the branch destination address specified?

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

• MIPS also has an unconditional branch instruction or jump
instruction:
j label # go to label

Other Control Flow Instructions

 Instruction Format (J Format):

op 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

RISC – Reduced Instruction Set Computer

• RISC philosophy
• fixed instruction lengths
• load-store instruction sets
• limited addressing modes
• limited operations

• RISC-I, MIPS, DEC Alpha, ARM, RISC-V, …

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

CISC - Complex Instruction Set Computer

• CISC philosophy
• ! fixed instruction lengths
• ! load-store instruction sets
• ! limited addressing modes
• ! limited operations

• DEC VAX11, Intel 80x86, …

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

Single-cycle implementation of processors

• Single-cycle implementation also called single clock cycle
implementation is the implementation in which an
instruction is executed in one clock cycle. While easy to
understand, it is too slow to be practical.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Some building blocks of processor datapath

We use 8K word memory.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Datapath of single-cycle processor supporting ADD

op rs rt rd shamt funct

0x800 add $t0, $s1, $s2 [add $8, $17, $18]

IR[15:11]IR[20:16]IR[25:21]

$17 = 3
$18 = 4

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Datapath of processor supporting ADD and ADDI
IR[20:16]IR[25:21]

$8 = 7

0x804 addi $t1, $t0, 3 [addi $9, $8, 3]

op rs rt 16 bit immediate I format

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Homework 2

1. Design a single-cycle processor supporting MIPS add, addi
instructions in Verilog HDL. Please download proc01.v from the
support page and refer it.

2. Verify the behavior of designed processor using following
assembly code
• add $0, $0, $0 # NOP {6'h0, 5'd0, 5'd0, 5'd0, 5'd0, 6'h20}
• addi $t0, $zero, 3 # {6'h8, 5'd0, 5'd8, 16'd3}
• addi $t1, $zero, 5 # {6'h8, 5'd0, 5'd9, 16'd5}
• add $t2, $t0, $t1 # {6'h0, 5'd8, 5'd9, 5'd10, 5'd0, 6'h20}

3. Submit a report printed on A4 paper at the beginning of the
next lecture.
• The report should include a block diagram, a source code in Verilog

HDL, and obtained waveforms of your design.

